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Abstract—We introduce the Set MHT, a tracking algorithm
that maintains multiple hypotheses and produces “smooth”
estimates without the track coalescence often associated with
Minimum Mean Squared Error (MMSE) estimation or the
jitter associated with Maximum Likelihood (ML) estimation.
It does this by utilizing Minimum Mean Optimal Subpattern
Assignment (MMOSPA) estimation techniques coupled with a
theoretically-grounded approach for probabilistically determin-
ing the identities of the state estimates. Unlike traditional MHT
algorithms, the Set MHT does not “forget” uncertainty in target
identities, i.e. display an unjustifiably high confidence level in
the target identities, as a result of pruning out competing
hypotheses. Rather, it uses merging techniques while avoiding the
shortcomings of traditional Gaussian mixture reduction trackers.

Keywords: tracking, MMOSPA, target identity, track co-
alescence

I. INTRODUCTION

There are a number of properties that a radar or sonar
operator might want from a tracking algorithm. Namely, they
might want to:

1) Know how many targets there are.
2) Know the locations of the targets.
3) Predict the trajectories of the targets.
4) Know what the targets are. This could mean knowing:

a) Their identity relative to a specific time designated
by the operator.

b) Their physical nature according to classification
information (e.g. warheads, decoys).

5) Have a probabilistic model for the uncertainties in the
above estimates.

The above requirements consider what a human operator
might want to make tactical decisions. Though an algorithm
might need little but a probabilistic model, e.g. Joint Multitar-
get Probability Density Function (JMPDF) [34] and [22] with
classification information from which decisions can be made,
final tactical decisions will always be made by a human, as he
is able to understand and compensate for weaknesses in the
model.1

This work was partially supported by the Office of Naval Research under
contracts N00014-09-10613 and N00014-10-10412.

1As an example, in 1983, a Soviet lieutenant colonel, Stanislav Petrov,
chose to ignore computer alerts regarding an American nuclear strike attack
and not launch a nuclear counterstrike [19].
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Figure 1: A diagram showing how the mixing of hypotheses
between two targets can lead to MMSE estimates (t1 and t2)
that are between the targets.

It has been observed that the Minimum Mean Squared Error
(MMSE) estimate of the target states is “smoother” and more
pleasing to an operator compared to the Maximum Likelihood
(ML) estimate [9]. On the other hand, it has been noted that
the Minimum MSE (MMSE) estimates can cause undesired
track coalescence. Indeed, it has been shown that an “optimal”
particle filter can be outperformed by an approximation [7],
as illustrated in Figure 1, which demonstrates how the MMSE
estimates of two targets (the mean) can coalesce when tar-
gets are closely-spaced. Though it has been shown that this
coalescence problem will resolve itself over time [8], this “res-
olution” of the problem stems from the from the resampling
of the particles, indicating that information in the probability
density function (PDF) regarding the uncertainty in the target
identities has been lost.2 Approaches involving generating
hypotheses for estimating the mean that prune “symmetric”
hypotheses to avoid coalescence have been considered [24],
but the pruning inherently eliminates alternate hypotheses that
provide information on the uncertainty of the target identities.
On the other hand, the Minimum Mean Optimal Sub-Pattern
Assignment (MMOSPA) estimate, discussed in [35] and [17],
does not suffer from the problem of coalescence. The Set
Joint Probabilistic Data Association Filter (Set JPDAF) [38]
is a tracking algorithm that produces approximate MMOSPA
estimates [12] [38]. However, the MMOSPA estimate says
nothing about the identities of the states; that is, how the state
estimates are related over time.

2One possible way to lessen the information loss would be to use a particle
filter that does not resample the particles, as described in [15]. However, this
does not change the fact that MMSE estimates lead to coalescence.
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In this paper, we derive a generalization of the Set JPDAF,
the Set Multiple Hypothesis Tracker (Set MHT), that uti-
lizes aspects of MMOSPA estimation to produce smooth,
coalescence-free state estimates integrated with a framework
for estimating the probabilities of the target identities. The Set
MHT can also be regarded as a generalization of a Gaussian
Mixture Reduction MHT (GMR MHT) [25], [30]. We thus
describe a tracker that goes beyond previous algorithms to
provide all of the previously-listed information that an operator
might desire, with the exception of explicitly estimating the
number of targets or using classification information. However,
the algorithm can be coupled with initiation and termination
methods used in implementations of the MHT and the JPDAF
[5], [3], and classification information can be included as has
been done elsewhere [16], allowing all of the aforementioned
qualities to be satisfied.

In Section II, we consider the foundations of the tracking
problem and the accompanying difficulty regarding the explo-
sion in the number of hypotheses. In Section III, we consider
the problem of hypothesis reduction and of generating state
estimates for display. In Section IV, we look at Gaussian
mixture reduction for tracking, and in Section V, we consider
how track identities can be maintained when hypotheses are
merged both in the Set JPDAF as well as in the Set MHT. The
Set MHT is summarized in Section VI and compared to the
JPDAF, the Set JPDAF and the GMR MHT in Section VII.
The results are concluded in Section VIII.

II. HYPOTHESIS CREATION AND TRACKING

We shall consider the discrete-time stochastic target motion
model underlying the basic form of many trackers (see, for
example, [2]). The transition of the state, x, for target t from
time k to time k+1 and any available associated measurements
is modeled as

xk+1(t) =F kxk(t) + vk(t) zk(t) =Hkxk(t) + wk(t) (1)

Here, z(t) is the measurement and xk(t) represents the state
of target t at discrete time k; w(t) and v(t) are assumed to be
independent zero-mean Gaussian white sequences having co-
variance matrices Rk(t) and Qk(t).3 Given an initial estimate
of the state of a target, if the measurement originating from
the target at each time is known, then the optimal recursive
estimator of the target’s location is the Kalman filter, which is
explained in detail in [2] and shall not be repeated here due
to space constraints. 4. In keeping with the notation in [2], we
shall let R denote the covariance matrix of the measurement
noise, and Q be the covariance of the process noise, which is
assumed to be independent of the measurement noise.

In practice, however, the assignment of measurements to
tracks is not known and false measurements may be present.

3When target-measurement association uncertainty is a problem, Q and R
will be indexed by the measurement and not the target, which is unknown.

4The results in this paper can be adapted to scenarios where this model is
not adequate. For example, nonlinear target and measurement dynamics may
be handled using an Extended Kalman Filter or utilizing Interactive Multiple
Model techniques, as described in [2].

In this case, one can build a tree of all possible hypotheses of
assigning measurements to tracks, missed detections and clut-
ter (false measurements) over time. Each hypothesis, denoted
θ, has a probability of being “correct” given as follows:

Pr
�
θ|Z1:k
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NT�
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�
ξj

�
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(2)

where Z1:k represents all of the measurements up to time k,
NT is the number of targets, c is a constant such that the sum
of the probabilities of all of the hypotheses equals one; the
function ξj [θt] returns the measurement assigned to target j at
time t according to hypothesis θ. The value Lj is the likelihood
of target j, and, under standard assumptions, letting P t

D
(j) be

the probability of detecting target j at time t; the likelihood
is given by Equation (3), where N represents the normal
PDF and λ is the density of the clutter, in points per unit
area, which is assumed to be generated uniformly across the
observation area with the number of points at each sampling
time determined by a Poisson random variable.5 This result
is also presented in [1] and [3], discussing other formulations
under other assumptions.

Given a massive set of hypotheses, we need to determine:
1) How to reduce the data in the hypotheses into an

estimate of target states that can be presented to the
user.

2) How to keep the number of possible hypotheses compu-
tationally tractable. That is, how to reduce the number
of hypotheses at each time step to a tractable number.

We shall discuss both of these issues in the following sections.

III. HYPOTHESIS REDUCTION

A. MMSE Estimation

The JPDAF [3] and the GMR MHT [30], [25] use the
MMSE estimate for display. This is given according to [3]

x̂ � argmin
x̂

E
�
�x− x̂�2

�
=

NH�

i=1

wix̂i (4)

where E denotes the expected value, wi is the probability of
the ith joint association event, of which there are NH , and
x̂(i) is the stacked set of means of the Gaussian estimates of
all NT targets conditioned on the ith joint association event.
The covariance of target t associated with the MMSE estimate
is

P (t) =
NH�

i=1

wi

�
Pi(t) + (x̂i − x̂(t)) (x̂i − x̂(t))�

�
(5)

where x̂(t) is the entry in x̂ corresponding to target t and the
apostrophe denotes the transpose.

5In other words, if n is the number of clutter points at a particular time,
then the probability mass function of n is p(n) = (λV )ne

−λV

n! , where V is
the volume of the observation area.
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At each time step, the JPDAF approximates all NH hy-
potheses as a Gaussian PDF having the mean and covariance
given by the MMSE hypothesis.6

Though the GMR MHT uses the MMSE estimate for
display, it does not use it to reduce the total number of
hypotheses. Rather, it clusters the hypotheses into a fixed
number of clusters, and then replaces each cluster with its
MMSE estimate. Section IV describes how the clustering is
performed. Section V describes how target identity can be
maintained, both in the Set MHT as well as in the Set JPDAF.

B. MMOSPA Estimation
MMOSPA estimation, first considered in [17], has been

discussed in [10], [12], [14], [13], [36] and [35]. We shall
summarize some of the more important results. It estimates
the target states as

x̂M � argmin
x̂

E
�
min
a

�x(a)− x̂�2
�

(6)

where a denotes a particular permutation of the orderings of
the states in the vector. This can be evaluated approximately7

as

x̂M ≈
NH�

i=1

wix̂i(ai) (7)

where the orderings of the states in each hypothesis are given
according to8

{a1, . . . ,aNH
} = arg max

a1...aNH

(x̂M )�(x̂M ) (8)

Appendix A discusses how these ordering can be calculated
using quadratic programming. The quadratic programming
formulation in this paper has not appeared elsewhere.

It should be noted that because of the reordering of the
states in determining the MMOSPA estimate, the relationship
between state estimates and their associated tracks is lost. This
problem has previously been considered in [37]. In Section
V, we show how the state identities can be probabilistically
determined. An approximate covariance matrix for the t state
estimate is

P (t) =
NH�

i=1

wi

�
Pi(ai(t)) + [x̂i(ai(t))− x̂(t)] [x̂i(ai(t))− x̂(t)]�

�
(9)

The Set JPDAF [38] replaces the set of NH joint association
events at each time-step with a single Gaussian with its
mean approximating the MMOSPA estimate and having the

6Note that the covariance of x̂ does have cross terms between targets. The
JPDAF ignores these. The Coupled JPDAF takes these into account, but it
has been shown to not improve the performance of the tracker [3].

7This approximation is exact when the hypotheses in question are particles
in a particle filter (delta functions) rather than Gaussians, as in the MHT [12].

8In some cases, it might be preferable to consider only the position elements
of x̂M when evaluating (8). This is because the units of the full product make
no sense: They are a mixture of position and velocity components.

covariance matrix associated with the approximate MMOSPA
estimate of the cluster.

Similar to the relationship between the JPDAF and the
GMR MHT, the Set MHT shall use the MMOSPA estimate
at each time-step for display, but shall reduce the set of NH

hypotheses to a fixed number, by clustering the hypotheses,
reducing each of the clusters to a single Gaussian whose
mean and covariance are those associated with the MMOSPA
estimate.

IV. CLUSTERING FOR MIXTURE REDUCTION

A. Clustering for the GMR MHT
In [11], a number of techniques for performing Gaussian

mixture reduction were considered. A fast approach that per-
formed well is Runnalls’ algorithm [28], which successively
groups and merges pairs of hypotheses so as to minimize
an upper bound on the increase in the Kullback-Leiber (KL)
divergence between the original PDF and the reduced PDF. It
is given below.

Runnalls’ Algorithm

1) Set the current mixture to the full mixture.
2) The cost of merging components i and j in the current

mixture is the upper bound on the increase in the KL
divergence [28],

ci,j =
1

2
((wi + wj) log [|Pi,j |]− wi log [|Pi|])

− 1

2
wj log [|Pj |] (10)

where Pi,j corresponds to the full matrix of all NT tar-
gets with block elements determined by (5) for merging
only components i and j. Merge the components of the
current mixture having the lowest ci,j using (4) and (5)
(the weights of the components add, i.e. w12 = w1+w2)
and set the current mixture to the result.

3) If the current mixture has the desired number of com-
ponents, quit. Otherwise, go back to 2.

This is how clustering and mixture reduction can be per-
formed in the GMR MHT. Note that the original version
of the GMR MHT used a slightly different approach for
reduction, but Runnalls’ method has been shown to have better
performance [28].

B. Clustering for the Set MHT
For the Set MHT, we shall use a modified version of

Runnall’s method that considers pairs of hypotheses in an
unordered manner. Note that this is a somewhat ad-hoc method
of determining the clusters, since the upper bound on the KL-
divergence behind Runnall’s algorithm no longer holds.

An unordered form of Runnalls’ algorithm changes the
second step such that Pi,j corresponds to the full matrix of all



NT targets with block elements determined by (9) for merging
only components i and j and the components of the current
mixture having the lowest ci,j are merged using (7) and (9).
In other words, we choose pairs of hypotheses to merge in
a somewhat “orderless” manner and the merging operation
replaces the hypothesis pari with a Gaussian whose mean
is the MMOSPA estimate having the appropriate, associated
covariance. Section V discusses how the relationship between
states and tracks in the Set MHT can be determined.

V. MANAGING IDENTITY PROBABILITIES

Unlike the MMSE estimate, the MMOSPA estimate tells us
nothing regarding which state estimate corresponds to which
track. In deciding how to label our states, we are faced with an
ontological9 quandary: What constitutes the “best” assignment
of states to targets?

In [12], the “best” assignment was considered to either be
the one that is the least “jittery” or the one that minimizes
a certain approximate probability that a given assignment is
closer to the true vector of the track states than any other
ordering. In the following subsection, we derive an exact
version of the previous probability. In the subsection thereafter,
we discuss how this may be computed in a computationally
tractable manner. Though everything is discussed in terms of
particles, as in a particle filter, we shall use this theory in
the Set MHT, whereby individual Gaussians are treated as
particles.

A. An Exact Method for Determining Order Probabilities
Suppose that the joint PDF of NT target states at a particular

time is represented by NH particles. In a typical situation, the
ith particle might be represented by pi,

pi = {wi,xi} (11)

where wi is the probability of the particle, and xi is the stacked
vector of the target state. Using the approach described in
Section III-B, we can use the MMOSPA estimates of the target
states to avoid the coalescence problem associated with using
the mean (i.e., MMSE) state, as illustrated in (1). However,
in order to be able to say something about the identity of the
estimates, we will modify the particles.

Let us define a modified form of the particles, p̃i, which are
completely equivalent to the original particles. The modified
particles shall contain an extra component:

p̃i = {wi,xi,oi} (12)

The addition of the vector oi allows us to let each particle
represent a family of particles. The vector oi contains NT !
elements, the nth one designated as oi(n). These elements
represent the probabilities of the orderings of the states in
xi conditioned on the fact that this particle represents the
“true” set of states of the targets.10 To convert a normal set

9Here, we mean “ontological” in the traditional philosophical sense rather
than in the more (annoying) modern computer science sense.

10In other words, each oi(n) corresponds to a permutation matrix χn. If
oi(n) = 1, then that means that if this particle is sampled, the true, ordered
states conditioned on this particle being true are χnxi.

of particles, pi, into these new particles, one can just insert oi

into each particle with a one in the slot corresponding to the
original ordering of the particles, and a zero elsewhere.

The order vector allows us to change the ordering of the
target states in the particles without losing any information;
the correct way to reorder each states is encoded in each o.
Suppose that we have a p̃i such that the states have been
ordered according to the MMOSPA order optimization in (8)
and the o terms have been adjusted accordingly. When we
merge all of the particles (sum the wi’s and take the means
of the other components), we get

pmerged ={1, x̂M ,oM} oM =
NH�

i=1

wioi (13)

Here, the ordering vector corresponding to the MMOSPA
estimate, oM , can be interpreted as the probability of the
ordering of states in the sample that would be closest to x̂M

if the underlying distribution were sampled (i.e. we sample
the original set of particles). Thus, we have a method of
determining the probabilities of the “correct” ordering of the
targets in the MMOSPA estimate: The ordering of the tracks
that one would most likely want to display to the user is the
one with the highest probability in oM . To understand how the
elements of oi should be adjusted when the ordering of the
states in xi is changed, suppose that we have three tracks and
we switch states one and two. The corresponding reordering
of the elements in oj is shown in Table I.

Thus, given the MMOSPA estimate, x̂M , of a particle
filter from (7) and the orderings of the states in (8), we can
determine the probabilities of the orderings of the states in x̂M

by taking the mean of the correct permutation vector for each
particle, oi from the ordering information as in (13). When the
MMOSPA estimate comes not from a particle filter, but from
a set of components in a Gaussian mixture, as was described
in Section III-B, then we can approximate the probabilities of
the correct ordering by averaging oi for each component of
the Gaussian mixture, rather than for each particle.

However, the dimensionality of each oi is NT !. This is,
in general, untenably large. In the following subsection we
shall consider a low complexity approximation. For more
information on a procedure for maintaining track-to-target
probabilities in the SJPDA filter, see [37].

B. Reducing the Complexity of the Order Determination

Each vector oi is a Probability Mass Function (PMF)
over NT ! permutations. Compressing such PMFs has been
considered in numerous works, including [18] and [20].

As noted in [20], if all of the weight in oi is on one
permutation, then a simple way to reduce the dimensionality
of oi is to use the permutation matrix corresponding to the
ordering described in χn(i). Now, if we were to take the
expected value of the permutation matrices corresponding to
the MMOSPA estimate, instead of the expected value of oi as



The Permutation (1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1)
The Index in oj 1 2 3 4 5 6
The Index in õj 3 4 1 2 6 5

Table I: An example of how the order of the elements of oj and õj differ if NT = 3 and targets 1 and 2 in xj are switched.
Each permutation corresponds to an index (and a probability, which is not shown). When two targets are switched, the indices
corresponding to each permutation in oj must change accordingly as discussed in Section V-A and in [35].

in (13), we would have

χM =
NH�

i=1

wiχiχ
prev
i

(14)

where χi is the ith permutation matrix corresponding to ai
in (8) and χprev

i
is the prior permutation matrix for the ith

particle. In other words, whereas the relationship between the
ordering of all N ! probabilities had to be shuffled around in a
rather complicated manner when the target ordering changes,
as in Figure I, we can explicitly express the correct ordering
as a product in this simplified example. This method is much
simpler, being a NT ×NT matrix, thus having only N2

T
terms

rather than NT ! terms for oM . Using the example from [20],
a possible average permutation matrix might be

χM =





State 1 State 2 State 3
Track 1 2/3 1/6 1/6

Track 2 1/3 1/3 1/3

Track 3 0 1/2 1/2




(15)

We can see that this gives us marginal probabilities, e.g., we
can say that Pr{State 1 is Track 1} = 2/3, but it does not
consider joint probabilities. However, we can approximate the
joint probabilities as the product of the marginal probabilities,
e.g.

Pr{State 1 is Track 1 ∩ State 2 is Track 2 ∩ State 3 is Track 3}

≈ χM (1, 1)χM (2, 2)χM (3, 3)

perm[χM ]
(16)

where perm represents the matrix permanent (it is the deter-
minant with all − signs in its computation replaced with +
signs11). Basically, the denominator comes from the fact that
the sum of all possible joint probabilities has to equal one.

Under such an approximation, we can calculate the optimal
ordering by choosing exactly one element in each row and
column of χM so as to maximize the product of their proba-
bilities. This may be solved without enumerating all possible
associations using the auction or JVC algorithms [27].

Note that in some instances, the identity matrix might fail
to be bistochastic (i.e. all column sums and all row sums
equal one) due to precision problems. Methods for making
the matrix bistochastic again are discussed in Appendix B.

VI. ALGORITHMIC SUMMARY

The Set MHT is given as follows:
1) At each time, given the prior set of hypotheses, the

current set of observations is used to build up a posterior
(larger) set of hypotheses, as discussed in Section II.

11An efficient method for calculating the matrix permanent is given in [29].

2) The hypotheses are reduced using the method of Section
IV-B, keeping track of the identities as discussed in
Section V.

3) The estimate for display is calculated, as discussed in
Section III-B.

4) One then goes on to the next time-step.

VII. SIMULATIONS

We compared the JPDAF [3], the JPDAF* [6], the Set
JPDAF with identity management, the GMR MHT [30], [25]
maintaining two hypotheses using Runnalls’ method for the
clustering, the GMR MHT*12, and the Set MHT with identity
management maintaining two hypotheses in the three scenarios
portrayed in Figure 2.

In all scenarios, two targets moved on two-dimensional
trajectories from left to right approaching within 50m of each
other and separating. The targets traveled at a constant speed
of 170m/s. All turns performed were done according to the
coordinated turn model13 described in [2]. In this case, assum-
ing that the two-dimensional state is ordered x = [x, ẋ, y, ẏ],
the state transition matrix for a sampling interval of T becomes

F =





1 sin[ΩT ]
Ω 0 − 1−cos[ΩT ]

Ω
0 cos [ΩT ] 0 − sin [ΩT ]

0 1−cos[ΩT ]
Ω 1 sin[ΩT ]

Ω
0 sin [ ΩT ] 0 cos [ΩT ]



 (17)

where Ω is the turn rate in radians per second. We used a turn
rate of ±0.3 rad/s and a constant sampling period of T = 1/2 s
in all three scenarios. This means that a pilot would feel a force
of about 5.3Gs in the turn (one feels one G when standing on
the ground), and is a reasonable turn rate for a fighter jet.14

The angle by which the targets approached and separated was
±0.6 rad. The middle portion of the flight where the targets
were parallel to each other lasted 20 seconds. The straight
sections before the first turns and after the final turns were
each 10 seconds in duration. The turns were sufficiently long
that the targets could achieve and leave parallel flight during
the middle segment (2 s). As shown in Figure 2, the three
scenarios differed only in the directions of the turns and the
starting points of the targets, which were chosen to assure
that the targets were 50m apart during the horizontal, middle
section in each scenario.

12In the JPDAF* [6], pruning is used to prevent the type of symmetric
hypothesis problem that leads to coalescence. The GMR MHT* is the same
as the GMR MHT, but with the the addition of this pruning when generating
joint association events for each predicted hypothesis.

13A coordinated turn is one in which speed and altitude do not change.
14A pilot will typically fall unconscious for turns producing between 4.5

and 5Gs, whereas military pilots wearing ‘anti-G’ suits can sustain up to 8Gs.
Combat aircraft are usually designed for load factors of at least 8Gs [23].
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Figure 2: The paths of the tracks in the three scenarios. In (a), the targets cross at the beginning; in (b), the targets never cross
and in (c), the targets cross twice. All units are in meters.

Algorithm
Scenario 1 Scenario 2 Scenario 3

% Track
Pl

% Track
Pl

% Track
PlLoss Loss Loss

JPDAF 6.16 2.00 9.78 47.53 9.14 5.88
JPDAF* 6.50 1.22 12.88 37.73 11.56 5.30

Set JPDAF 6.00 2.87 9.62 42.58 8.74 9.63
GMR MHT 7.70 3.77 9.22 50.81 9.88 35.49
GMR MHT* 2.72 8.80 6.04 54.44 3.42 9.41

Set MHT 1.04 1.40 1.08 26.49 0.94 6.65

Table II: The performance of the trackers under each of the
scenarios. Pl was calculated using only runs where none of the
methods lost tracks. Pl is the % probability of a false labeling
of the state estimates at the last time-step.

Two-dimensional measurements were taken in polar coordi-
nates with additive Gaussian noise having standard deviations
σr = 2m and σθ = 1mrad and were converted to Cartesian
coordinates using the unbiased conversion method of [2]. The
measurements from the targets were assumed to always be
resolved.15 A single sensor was placed at (x, y) coordinates
of (3.39 km,−30 km). The number of clutter points at each
step was determined according to a Poisson process with mean
λ = 1×10−6V where V is the area of the surveillance region.

Clutter points were placed uniformly over a surveillance
region spanning the maximum and minimum x and y positions
of the tracks over the whole simulation plus 200m in each
direction. The average number of clutter measurements per
scan was approximately 18. Both targets had a detection
probability of 80%. Track initialization was done for each
track by feeding two correctly associated measurements to an
Information Filter [2]. Five thousand Monte Carlo runs were
performed for each scenario.

The discretized continuous white-noise acceleration model
(DCWNA) [2] was used in the trackers. In accordance with
the model, the assumed process noise covariance and state
transition matrices for the Kalman filters were

Q =





1
3T

3 1
2T

2 0 0
1
2T

2 T 0 0
0 0 1

3T
3 1

2T
2

0 0 1
2T

2 T



 q0 F =





1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1



 (18)

15In more realistic scenarios, resolution should be taken into account [21].
However, it is peripheral to the issue we are addressing in this paper.
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Figure 3: A sample run from Scenario 2 showing how track
coalescence makes the GMR MHT perform worse than the
JPDAF and the Set JPDAF despite propagating more hypothe-
ses, whereas the Set MHT does not suffer this problem.

We used a process noise power spectral density of q0 =
400m2/s3. All of the trackers gated measurements to a
99.97% confidence region, as described in [3].

To evaluate the performance of the trackers in each scenario,
we considered the probability of track loss and the probability
of a correct labeling of track estimates. The probability of
track loss is the probability that one or both of the tracks was
lost. Track loss was declared in two ways:

1) If the distance from either of the tracks to truth in both
possible assignments of tracks to truth exceeded 400m
in either the x or the y direction at the last step of the
tracker (a rectangular region), then tracks were declared
to have been lost.

2) While tracking the targets, joint association events such
that the gates for either of the targets exceeded 1, 000m
in either position component were dropped. If a tracker
lost all of its hypotheses, then the tracks were declared



to have been lost.16

At each step, one can evaluate the MMOSPA assignment of
tracks to truth. If the “labeling” of the targets in the MMOSPA
assignment matches the true labeling of the targets, i.e. if we
can identify which target was target 1 or target 2 at the first
time-step, then the labeling is considered to be correct. In the
Set JPDAF and the Set MHT, we used the ordering matrix
described in Section V-B and found the most probable labeling
of the targets according to the ordering matrix; in the other
trackers, the labeling was explicit. If the squared error of the
association of tracks to truth was smaller for this labeling than
for any other, we declared it to be the “correct” labeling.

Table II shows the results of the simulations. It can be
seen that the “set” methods described in this paper with order
information have reduced track loss and increased probability
of correctly labeling the tracks at the final time-step. The
weakness in the GMR MHT is evident in a sample run shown
in Figure 3.

VIII. CONCLUSION

We reviewed previous literature on MMOSPA estimation
and considered the problem of identity preservation after
track merging. We then put these concepts together with an
“orderless” Gaussian mixture reduction algorithm to form the
Set MHT, a generalization of the Set JPDAF with track identity
maintenance, which propagates multiple hypotheses over time,
whereas the Set JPDAF propagates only a single hypothesis.
It was observed that the Set MHT had lower track loss and
maintained the track identities better in all three scenarios than
the other trackers maintaining as many or fewer hypotheses.
The Set MHT and the Set JPDAF are the only trackers
considered that suffer neither track coalescence resulting from
MMSE estimation nor express an increasingly false confidence
in the target identities after targets separate due to pruning of
hypotheses.
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APPENDIX A
FORMULATING THE MMOSPA OPTIMIZATION

In [36], an algorithm for determining the optimal ordering
of the hypotheses in the MMOSPA estimate was derived as
a continuous quadratic programming problem over NT !NH

variables. Here we derive a similar, optimal algorithm that
requires only N2

T
(NH − 1) variables.

We shall express the components of the MMOSPA estimate
as

x̂M =
�
x̂M (1)�, x̂M (2)�, . . . , x̂M (NT )

��� (19)

where x̂M (i) is the ith state estimate.
Fixing the ordering of the first hypothesis to reduce ambi-

guity in the solution, we can thus rewrite (7) to express the
MMOSPA state estimate for track t as

x̂M (t) = w1x̂1(t) +
NH�

i=2

NT�

j=1

wiφ
t

i
(j)x̂i(j) (20)

= w1x̂1(t) + V (t)φt (21)

where φt

i
(j) ∈ {0, 1} and φt

i
(j) = 1 means that state j goes

to track t in hypothesis i in the mixture and

φ(t) =
�
φt

2(1),φ
t

2(2), . . . ,φ
t

2(NT ),φ
t

3(1), . . . ,φ
t

NH
(NT )

��

(22)
V (t) = [w2x̂2(1), w2x̂2(2), . . . , w2x̂2(NT ), w3x̂3(1), . . . ,

wNH
x̂NH

(NT )] (23)

V (t) is D ×NT (NH − 1) and φ(t) is NT (NH − 1)× 1.17

Thus, we can write

x̂M = w1x̂1 +Vφ (24)

17Note that NH unto itself can be quite large. Given NT targets with no
clutter and no missed detections, whereby all measurements gate with all
targets, NH = NT !

where

V = diag [V (1), . . . , V (NT )] φ = [φ(1), . . . ,φ(NT )]
� (25)

and φ is N2
T
(NH − 1) × 1. Note that V (1) = V (2) . . . =

V (NT ).
The optimization problem consists of determining φ. After

dropping constant terms, the optimization of (8) becomes

max
φ

1

2
φ�V�Vφ+ w1x̂

�
1Vφ

subject to
�

j

φt

i
(j) = 1 ∀{i, t} φt

i
(j) ≥ 0 ∀{i, j, t}

�

t

φt

i
(j) = 1 ∀{i, j}

This represents 2NT (NH − 1) equality constraints, some of
which are dependent, and N2

T
(NH −1) inequality constraints.

Note that V�V is positive semidefinite, meaning that the
optimal point will be along the border region of the constraints.
In other words, the optimal solution will be such that φt

i
(j) ∈

{0, 1}, thus eliminating the need to explicitly constrain the
solution. This is a (degenerate) quadratic optimization problem
and can be solved (approximately) using various active set
techniques, as described in [4], or with certain optimization
packages, such as quadprog in MATLAB.

APPENDIX B
ALGORITHMS FOR BISTOCHASTIC NORMALIZATION

Over time, due to numeric errors in the mixing as a result of
the finite precision in digital computer systems, the identity-
probability matrices described in Section V-B can become no
longer bistochastic; that is, the row sums and the column
sums of the matrix are no longer all equal to one. In such
an instance, we would like to bistochastically normalize the
matrices, altering the individual elements as little as possible.

The problem of bistochastic normalization has been pre-
viously studied in [26] and [31], among other sources. The
simplest such algorithm, often called Sinkhorn’s algorithm and
is discussed in [32] and [33].

We suggest an alternative approach; we would like to
modify the matrix O as little as possible and still make it
bistochastic. To do that, we will find a bistochastic matrix X
with all positive elements, that differs as little as possible from
O in terms of the Frobenius norm, which is defined to be

�O�F �
�

Tr [OO�] (26)

The solution for X turns out to be a quadratic programming
problem:

min
xi,j

D�

i=1

D�

j=1

(xi,j − oi,j)
2

subject to
D�

i=1

xi,j = 1 ∀j
D�

j=1

xi,j = 1 ∀i

xi,j ≥ 0 ∀{i, j}

and can be solved using using common optimization packages,
such as quadprog in MATLAB.


