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a b s t r a c t

Specific Se-metabolites have been recognized to be the main elements responsible for beneficial effects

of Se-enriched diet, and Se-methylselenocysteine (SeMCys) is thought to be among the most effective

ones. Here we show that an engineered Saccharomyces cerevisiae strain, expressing a codon optimized

heterologous selenocysteine methyltransferase and endowed with high intracellular levels of

S-adenosyl-methionine, was able to accumulate SeMCys at levels higher than commercial selenized

yeasts. A fine tuned carbon- and sulfate-limited fed-batch bioprocess was crucial to achieve good yields

of biomass and SeMCys. Through the coupling of metabolic and bioprocess engineering we achieved a

�24-fold increase in SeMCys, compared to certified reference material of selenized yeast. In addition,

we investigated the interplay between sulfur and selenium metabolism and the possibility that redox

imbalance occurred along with intracellular accumulation of Se. Collectively, our data show how the

combination of metabolic and bioprocess engineering can be used for the production of selenized yeast

enriched with beneficial Se-metabolites.

& 2011 Elsevier Inc. All rights reserved.
1. Introduction

Selenium (Se) is an essential micronutrient for many organ-
isms, including humans, and the production of selenized yeast,
aiming to prevent Se shortage in nutrition, has long been
considered. Interest in Se-enriched yeast has been further trig-
gered by the clinical trial reported by Clark et al. (1996), which
showed that supplementation of a randomized group of people
with supra-nutritional doses of Se as Se-enriched yeast prevented
the incidence of some cancer forms by nearly 50%. Diverse
molecular mechanisms were suggested to be responsible for the
cancer preventive potential of a Se-enriched diet and it is likely
that all the proposed mechanisms act simultaneously depend-
ing on the specific cellular conditions (Whanger, 2004). Much
attention has been given to the role of low molecular weight
(LMW) Se-compounds in cancer prevention, showing that specific
ll rights reserved.
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LMW Se-compounds able to supply a steady stream of
mono-methylated Se-species have the highest potential in pro-
tection against cancer (Ip et al., 1991). Although methylselenol
(CH3SeH) is considered the main element responsible for the
bioactivity of LMW Se-metabolites, it is highly reactive; therefore,
more stable precursors have been used for anti-carcinogenic
studies. In particular, Se-methylselenocysteine (SeMCys), which
is a direct precursor of CH3SeH (Fig. 1C), has been shown to be
among the most effective Se-compounds in terms of anti-cancer
potential (Dong et al., 2001; Ip et al., 2000b; Lee et al., 2006;
Medina et al., 2001).

Plants capable to grow on soils with high Se content are the main
source of Se-methylated LMW species. In fact, methylation of
selenocysteine (SeCys) has been shown as one of the prerequisites
for accumulating Se under less toxic forms, allowing plants to survive
in seleniferous soils (Neuhierl et al., 1999). The majority of plants
with high tolerance for Se belongs to the Astragalus genus, but also
some edible plants such as broccoli (Brassica oleracea) and garlic
(Allium sativum) are tolerant to Se and accumulate Se mainly in the
form of SeMCys and gamma-glutamyl-seleno-methylselenocysteine
(g-glu-SeMCys) (Block, 1996; Cai et al., 1995; Neuhierl et al., 1999;
Shrift and Virupaksha, 1963; Trelease et al., 1960). Such peculiarities
of Se-accumulator plants reside in the presence of a methyltransfer-
ase, which specifically methylates SeCys using S-adenosyl-methio-
nine (SAM) or methyl-methionine (MeMet) as methyl donors
(Lyi et al., 2005; Neuhierl and Bock, 1996; Neuhierl et al., 1999).
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Fig. 1. Sulfur and selenium metabolism in yeast and animals. Se and S metabolites we measured are represented in a white and gray rectangular frame, respectively.

(A) Spontaneous reactions between glutathione and Se-compounds, as reported by Tarze et al. (2007). GSH, glutathione; GSSG, di-glutathione; GSSeSG, seleno-

di-glutathione. (B) Pathway of sulfur amino acid biosynthesis in S. cerevisiae (according to Saccharomyces Genome Database www.yeastgenome.org). S-metabolites are

reported with their analogous Se-metabolites. The reaction catalyzed by the recombinant gene CHIMERA-1 is reported according to information from Roje et al. (2002).

CH2-THF, 5,10-methylenetetrahydrofolate; CH3-THF, 5-methyltetrahydrofolate; SeMet, selenomethionine; SeCys, selenocysteine; SeMCys, seleno-methyl-SeCys; g-glu-

SeMCys, g-glutamyl-seleno-methyl-SeCys; SAM, S-adenosyl-methionine; SAHSeCys, S-adenosyl-homoSeCys. (C) Schematic representation of Se metabolism in animals

(adapted from (Rayman, 2005)).
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Animal studies (Ip et al., 2000a; Kotrebai et al., 2000) have demon-
strated that Se-enriched garlic containing g-glu-SeMCys and SeMCys
as major Se-components exerts a much higher cancer inhibition
effect than Se-enriched yeast, wherein SeMet is the major Se-
compound (85% on total Se). Furthermore, while Clark et al. (1996)
observed cancer preventive effects owed to Se-enriched yeast
administration, supplementation of pure SeMet during the Selenium
and Vitamin E Cancer Prevention Trial (SELECT) did not result in
observable beneficial effects (Lippman et al., 2009). Therefore, a
better characterization of Se-enriched yeast is called for identifying
less abundant Se-metabolites that are potentially more effective than
SeMet in terms of cancer prevention. Thanks to the ease and
efficiency of production and formulation, Se-enriched yeast is the
most available food supplement up to date. Due to a high batch-to-
batch variability of the Se-metabolome, analytical techniques are
continuously under development toward the definition of a blueprint
of LMW Se-species, aiming at determining causal relationships
between the production process and the Se-metabolome and
between the Se-metabolome and the effects in cancer prevention
(Dernovics et al., 2009; Far et al., 2010). A few studies have been
published on the establishment of bioprocesses that allow efficient
uptake of Se and increase the rate of conversion of inorganic Se into
Se-organic forms by yeast (Demirci and Pometto, 1999; Demirci
et al., 1999), but no details on Se-speciation were reported within
that context.

In this work, we show how coupling of metabolic engineering
strategies to bioprocess optimization and the development of an
analytical platform based on liquid chromatography coupled to
ICP-MS or ESI-MS/MS (Zha et al., 2009) was successful in achiev-
ing the production of Se-enriched yeast containing higher levels
of SeMCys and g-glu-SeMCys. To the best of our knowledge, no
metabolic engineering attempts have been reported so far aiming
at modifying the Se-metabolite profile of Se-enriched yeast
toward higher levels of methylated Se-metabolites. In particular,
we demonstrate how the balance between sulfur and selenium
sources is critical for the uptake of Se by yeast and how this
balance is important to modulate the toxic effects of Se on yeast;
low sulfur levels are necessary for an efficient Se uptake, but an
excessive decrease in S concentration is detrimental for yeast
growth in the presence of Se. Furthermore, by construction and
screening of several recombinant yeast strains, we demonstrate
that the expression of a codon optimized SMT gene and high
intracellular levels of SAM are essential to obtain significant
improvement in SeMCys yields during fine tuned fed-batch
cultivations. Further insight into yeast physiology in the presence
of Se has also been gained, based on the determination of general
physiological parameters and intracellular levels and dynamics of
both selenium and sulfur metabolites.
2. Materials and methods

2.1. Plasmid and strain construction

All the plasmids used in this study are described in Table 1.
YIplac and YEplac plasmids (Gietz and Sugino, 1988) were

www.yeastgenome.org
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purchased from LGC Standards (Queens Road, Teddington,
Middlesex, UK) and used for expression of heterologous genes
in S. cerevisiae. Promoter and terminator sequences were ampli-
fied by PCR using high fidelity PCR enzyme mix (Fermentas,
Vilnius, Lithuania) from genomic DNA preparation extracted from
S. cerevisiae CEN.PK113-7D. Primers used for TEF2 promoter
contained PstI restriction site (TEF2p_fw 50-CTGCAGCCGCGACAA-
ATTACCCATAAGG-30 and TEF2p_rv 50-CTGCAGGTTAATTATAGTTC-
GTTGACCG-30), as well as primers for ADH1 promoter (ADH1p_fw
50-CTGCAGCGGATATCCTTTTGTTGTTTCCG-30 and ADH1p_rev 50-CTG
CAGAGTTGATTGTATGCTTGGTATAGC-30). Primers used for ampli-
fication of CYC1 terminator contained SacI and EcoRI restriction
sites (CYC1t_fw 50-GAGCTCGGCCCCTTTTCCTTTGTC-30 and CYC1-
t_rev 50-GAATTCGCAAATTAAAGCCTTCGAGC-30, respectively). The
amplified products were inserted into YEplac and YIplac plasmids
as reported in Table 1. BoSMT sequence coding for Smt from
B. oleracea (kindly provided by Professor Li Li, Cornell University,
USA) (Lyi et al., 2005) was amplified from plasmid pTriplEx_BoSMT
Table 1
Plasmids used in this study.

Plasmid Features Reference

YEplac195 URA3 Gietz and Sugino (1988)

YCplac33 URA3 Gietz and Sugino (1988)

YEplac181 LEU2 Gietz and Sugino (1988)

YIplac128 LEU2 Gietz and Sugino (1988)

YIplac211 URA3 Gietz and Sugino (1988)

p413TEF TEF1p-CYC1t Mumberg et al. (1995)

YEplac195ADH ADH1p-CYC1t This study

YCplac33ADH ADH1p-CYC1t This study

YEplac181TEF TEF2p-CYC1t, LEU2 This study

YIplac128TEF TEF2p-CYC1t, LEU2 This study

YIplac211TEF TEF2p-CYC1t, URA3 This study

pTriplEx_BoSMT Lyi et al. (2005)

YEp_BoSMT ADH1p-BoSMT-CYC1t, URA3 This study

pUC_OptSMT pUC57þOptSMT GenScript Corp, USA

pUC_OptMMT pUC57þOptMMT GenScript Corp, USA

YEpOptSMT TEF2p-OptSMT-CYC1t, LEU2 This study

YEpOptMMT TEF2p-OptMMT-CYC1t, URA3 This study

YIpOptSMT TEF2p-OptSMT-CYC1t, LEU2 This study

YIpOptMMT TEF2p-OptMMT-CYC1t, URA3 This study

CHIMERA1-pVT103-U pVT103-U, CHIMERA1 Roje et al. (2002)

YCT-CHI TEF1p-CHIMERA1-CYC1t, HIS3 This study

p, promoter; t, terminator.

Table 2
S. cerevisiae strains used in this study.

Strain Genotype

CEN.PK113-7D MATa MAL2-8C, SUC2

CEN.PK113-5D MATa ura3-52, MAL2-8C, SUC2

CEN.PK111-32D MATa leu2-3_112, MAL2-8C, SUC2

CEN.PK102-3A MATa ura3-52, leu2-3_112, MAL2-8

CEN.PK113-7A MATa his3 D, MAL2-8C, SUC2

CEN.PK111-9A MATa leu2-3_112, his3 D1, MAL2-8

CEN.PK102-5B MATa ura3-52, leu2-3_112, his3 D1

VM.hBoSMT MATa MAL2-8C SUC2, YEp_BoSMT

VM.h0 MATa MAL2-8C SUC2, pYEplac181T

VM.hS MATa MAL2-8C SUC2, YEpOptSMT

VM.iS MATa MAL2-8C SUC2, leu2::YIpOpt

VM.iShM MATa MAL2-8C SUC2, leu2::YIpOpt

VM.iSiM MATa MAL2-8C SUC2, leu2::YIpOpt

VM.0 MATa MAL2-8C SUC2 p413

VM.S MATa MAL2-8C, SUC2, p413TEF, leu

VM.CS MATa MAL2-8C, SUC2, leu2::YIpOpt

VM.CSM MATa MAL2-8C, SUC2, leu2::YIpOpt

Abbreviations: h, high copy number; i, integrative; 0, negative control; S, SMT; M, MMT

a Max. von Laue Str. 9, Biozentrum N250, 60438 Frankfurt, Germany.
and cloned in between XbaI and SmaI restriction sites in YEplac-
195ADH and YCplac33ADH. The coding sequences of selenocys-
teine methyltransferase from A. bisulcatus (smtA) (Neuhierl et al.,
1999) and methionine S-methyltransferase from A. thaliana

(MMT) (Gene Bank NM_124359) were codon optimized for the
expression in S. cerevisiae using JCat software (Grote et al., 2005).
The synthetic genes (synthesized by GenScript, USA, Inc.) were
called OptSMT and OptMMT. OptSMT fragment was excised from
pUC_OptSMT and inserted between XbaI and SmaI sites in YIplac
128TEF obtaining the plasmid YIpOptSMT. OptMMT sequence was
excised from pUC_OptMMT and inserted between XbaI and SmaI

sites in YIplac211TEF obtaining the plasmid YIpOptMMT. The
same cloning strategies were used for cloning of OptSMT and
OptMMT into episomal plasmids. The CHIMERA-1-pVT103-U
plasmid (Roje et al., 2002) was kindly provided by Professor
Andrew D. Hanson (University of Florida, USA) and CHIMERA-1

gene was amplified by PCR using primers containing SpeI and ClaI

restriction sites (CHI_fw 50-CACTAGTATGAAGATCACAGAAAAAT-
TAGAGC-30 and CHI_rv 50-GCATCGATTCAAGCAAAGACAGAGAA-
GATATC-30, respectively). The amplified fragment was inserted
in the centromeric plasmid p413TEF (Mumberg et al., 1995)
resulting in the plasmid YCT-CHI. Each new construct was
sequenced to verify the absence of mutations (Eurofins MWG
Operon, Ebersberg, Germany). Yeast transformation was per-
formed with lithium acetate based method (Gietz and Woods,
2002). The correct integration of YIpOptSMT and YIpOptMMT
plasmids was checked by PCR on isolated genomic DNA from
selected colonies.

2.2. Strains and media

The E. coli strain DH-5a was used as an intermediate host for
cloning and plasmid amplification and was grown in LB medium
(Sambrook and Russel, 2001) containing 100 mg/l ampicillin.
All yeast strains used in this work are described in Table 2.

S. cerevisiae strains used were CEN.PK113-7D, CEN.PK113-5D,
CEN.PK111-32D, CEN.PK102-3A, CEN.PK113-7A, CEN.PK111-9A,
and CEN.PK102-5B, kindly provided by Dr. Peter Kötter (Biozen-
trum, Frankfurt, Germany). Recombinant yeast strains were
selected on solid yeast nitrogen based media supplemented with
20 g/l glucose and, according to strain requirements, with 50 mg/l
uracil, 50 mg/l leucine, and 50 mg/l histine (Formedium Ltd.,
Norwich, UK). Growth in shake flasks was performed in defined
Source

Peter Köttera

Peter Kötter

Peter Kötter

C, SUC2 Peter Kötter

Peter Kötter

C, SUC2 Peter Kötter

, MAL2-8C, SUC2 Peter Kötter

This study

EF This study

This study

SMT This study

SMT, YEpOptMMT This study

SMT, ura3::YIpOptMMT This study

This study

2::YIpOptSMT This study

SMT, YCT-CHI This study

SMT, ura3::YIpOptMMT, YCT-CHI This study

; C, CHIMERA-1.
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mineral medium (Verduyn et al., 1992) buffered at pH 5.5 with
50 mM potassium hydrogen phthalate (Hahn-Hägerdal et al.,
2005) supplemented with 20 g/l glucose; this medium is also
referred to as S-regular medium in this work. Growth in shake
flasks under sulfur shortage condition was performed in defined
mineral medium based on Boer et al. (2003) containing 40 g/l
glucose, 4.0 g/l NH4Cl, 0.05 g/l MgSO4 �7H2O, 3.0 g/l KH2PO4, and
0.85 g/l MgCl2 �6H2O and buffered at pH 5.5 with 50 mM potas-
sium hydrogen phthalate, vitamins and trace elements were as
reported by Verduyn et al. (1992); this medium is referred here as
S-shortage medium. Media for growth in shake flasks in the
presence of Se were supplemented with 20 mg/l Na2SeO4.

2.3. Batch and fed-batch cultivation conditions

For batch cultivations, yeast strains were grown at 30 1C in 2.7 l
fermenters (Applikon Biotechnology B.V., Schiedam, Netherlands)
and the total volume of the cultivation was 1.5 l. The pH was
measured online and kept constant at 5.0 by automatic addition of
2 M KOH with the use of DASGIP fedbatch-pros system provided
with DASGIP Control and Multi Pump Module MP8 (DASGIP AG,
Jülich, Germany). Stirrer speed was 800 rpm and air flow was set
at 1500 ml/min. Dissolved oxygen tension was measured online
and kept above 30% of air saturation with DASGIP Control system.
The off-gas was cooled by a condenser connected to a cryostat set
at 4 1C; oxygen and carbon dioxide were measured with DASGIP
off-gas analyzer GA4. For fed-batch cultivations, the batch phase
was run in 1 l S-shortage medium described above, supplemented
with 20 g/l glucose. Such medium was defined in order to achieve
complete depletion of glucose and sulfate at the same time, so that
glucose and sulfate could be kept at limiting concentration during
the following feeding phase. At the end of the batch phase, when
both glucose and sulfate were completely depleted, an exponential
feed of medium was started at a rate corresponding to a specific
growth rate of 0.1 h�1 (Nielsen et al., 2002). The medium
supplemented during the fed-batch phase was prepared in order
to achieve a dual limitation of glucose and sulfate and its
composition was defined according to Egli and Zinn (2003);
further details can be found in the Results section and Table 3.
The composition of the medium fed during the fed-batch phase
was 200 g/l glucose, 1.6 g/l MgSO4 �7H2O or 1.06 g/l MgSO4 �7H2O,
and 0.107 g/l Na2SeO4 when cultivations were run in the presence
of selenium source. The pH was kept constant at 5.0 by automatic
addition of 10% (v/v) NH3. After 20 h the addition of medium was
interrupted and cells were harvested by centrifugation at
4000 rpm at 4 1C.

2.4. Analysis of extracellular metabolites and residual sulfate

Culture supernatants were obtained after centrifugation of
samples from the fermenter at 14,000 rpm at 4 1C and stored at
Table 3
Predicted boundaries for dual-substrate (carbon and sulfur) limited growth.

Growth

conditions

YX/C
a YX/SO4

2�
b Boundary predicted

(ratio Glc/SO4
2�)c

Source of

experimental data

C-limited 0.5 30 60 Boer et al. (2003)

S-limited 0.14 143.8 1027 Boer et al. (2003)

a Biomass yield on glucose.
b Biomass yield on sulfate.
c Calculated according to Egli and Zinn (2003), where YX/SO4

2�/YX/C under

C-limitation and YX/SO4
2�/YX/C under S-limitation give the lower and the higher

ratio, respectively, of Glc/SO4
2� concentration in the feed for which both glucose

and sulfate limitations were occurring at the same time.
�20 1C until analysis. Concentrations of glucose, ethanol, gly-
cerol, acetate, and pyruvate were determined by HPLC (Ultimate
3000, Dionex Corp., Sunnyvale, USA) fitted with Aminexs HPX-
87H column (Bio-Rad Laboratories, Inc.) kept at 45 1C and using
5 mM H2SO4 as mobile phase at a flow rate of 0.6 ml/min. All
compounds were detected by a refractive index detector
RI-101 and variable wavelength detector VWD 3100 (Dionex
Corp., Sunnyvale, USA) at a fixed wavelength of 210 nm. The
concentration of sulfate was measured by a turbidimetric method
based on precipitation of sulfates as BaSO4 after reacting with
BaCl2 under acidic conditions (Treadwell, 1924). The turbidity of
the samples was measured spectrophotometrically at 550 nm and
the concentration of sulfate was derived from a 6-point calibra-
tion curve obtained using known concentrations of MgSO4.

2.5. Intracellular metabolite extraction

The pure methanol method was used for extraction of meta-
bolites from yeast (Villas-Boas et al., 2005). Metabolites extracted
in 100% methanol were diluted in milliQ water to a methanol
concentration r25% (v/v). Samples were frozen in liquid nitrogen
and then lyophilized using a freeze drier Christ alpha 2-4 LSC
(Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am
Harz, Germany). After lyophilization, metabolites were dissolved
in 1.4 ml of 25% (v/v) methanol and transferred to 2 ml sterile
tubes. The second step of lyophilization was performed and
samples were stored at �80 1C until analysis.

2.6. Analysis of intracellular Se and S metabolites

Instrumental operating conditions were the same as in Kápolna
et al. (2009), with some modifications as follows. An Agilent 1100
liquid chromatography (LC) system (Agilent, Santa Clara, USA) was
used for hyphenation with the mass spectrometers for analysis of
metabolites. Extracted lyophilized metabolites were re-suspended
in 150 ml 0.25% formic acid (Merck KGaA, Darmstadt, Germany)
and further diluted with 0.25% formic acid before analysis with the
strong cation exchange system (SCX) for selenium speciation with
the inductively coupled plasma-mass spectrometric (ICP-MS)
detection and for targeted sulfur metabolite determination with
a triple quadrupole mass spectrometry (ESI-MS/MS) detection. The
ICP-MS instrument used was a quadrupole-based Perkin Elmer
(Glendale, Canada) Sciex Elan 6100 equipped with a dynamic
reaction cell (DRC), while the triple quadrupole mass spectrometer
was a Quattro Micro (Waters, Milford, USA) equipped with an ESI
ion source operated in positive mode. Nitrogen was used as
nebulizer, auxiliary, and collision gas. Detections were performed
in MRM mode. The cation exchange separation was achieved with
IonoSpher 5C column (150 mm�2 mm, 5 mm) from Varian (Palo
Alto, USA) protected with SCX SecurityGuard (4.0 mm�2.0 mm)
from Phenomenex (Torrance, USA). The outlet of the column was
connected to a micro-splitter (Upchurch, Oak Harpor, WA), split-
ting the flow 1:1 between the ICP-MS and the ESI-MS/MS. All
connections were PEEK tubing (ID 65 mm). The sample-introduc-
tion system of the ICP-MS consisted of a pneumatic nebulizer and
a spray chamber. Methane at optimized flow rate was used as
collision gas in the DRC of the ICP-MS system to eliminate argon-
based polyatomic interferences on 80Se.

2.7. Analysis of residual extracellular inorganic selenium

Samples of cell-free cultivation broth were stored at �20 1C
until analysis. An aliquot was diluted with the mobile phase and
analyzed in the strong anion exchange system (SAX) with ICP-MS
detection. Instrumental operating conditions were the same as
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in Kápolna et al. (2009), with some modifications as follows. The
SAX separation system was hyphenated with a Perkin Elmer 200
HPLC pump equipped with a Waters 717PLUS autosampler (Waters
Corp.). Separation of the inorganic selenium forms was achieved
with an ION-120 column (120 mm�4.6 mm, 5 mm) from Trans-
genomic (Glasgow, UK) protected with matching guard cartridge.
The outlet of the column was connected directly to the ICP-MS.

2.8. Analysis of total selenium content in dry cell biomass

Cells were harvested by centrifugation at 4000 rpm for 5 min,
the supernatant was removed, and cells were washed with sterile
deionized water at 4000 rpm for 5 min. Biomass was freeze dried
and stored at �20 1C until analysis. Prior to the total selenium
analysis by ICP-MS, samples were digested by concentrated nitric
acid using a microwave system equipped with quartz vessels
operated at a maximum pressure and temperature of 70 bar and
250 1C (Multiwave, Anton Paar, Graz, Austria) (Kápolna et al.,
2009), respectively. For extraction of Se-compounds from dried
biomass, 0.250 g of dried biomass was dissolved in milliQ water
and exposed to ultrasonication with the help of an ultrasonic
probe Microson XL 2000 ultrasonic liquid processor (New York,
USA), tip diameter 1/400 (output 7 W for 1.5 min), and sample
extracts were further diluted before chromatographic analyses.

2.9. SeCys methyltransferase activity assay

Cells were harvested and re-suspended in 0.1 M phosphate
buffer, pH 7.5, 2 mM MgSO4 �7H2O, and in 1 mM dithiothreitol.
Cells were broken by the addition of acid washed glass beads
followed by ten cycles of vortexing at 4 1C (1 min per cycle). Cell
extracts were clarified by centrifugation and total protein content
was determined according to the Bradford method, using Bio-Rad
protein assay reagent (Bio-Rad Laboratories, Inc.). Activity of
recombinant AbSMT was assayed using the methods previously
described (Lyi et al., 2005; Neuhierl and Bock, 1996). In short, the
reaction mixture (50 ml total volume) consisted of 50 mM sodium
citrate, pH 7.0, 10 mM magnesium acetate, 5 mM 1,4-dithiothreitol,
10 ml of protein extract, and 1 mM selenocysteine (pre-reduced
for at least 30 min at 25 1C with a 10-fold molar excess of sodium
borohydride). The reaction was started by addition of 1 mM
SAM and incubated at 30 1C for 5 or 40 min and analyzed for
the conversion of SeCys into SeMCys via SCX-ESI-MS/MS as
described above.
Fig. 2. Uptake of SeO4
2� in batch cultivations of CEN.PK113-7D strain in S-regular and S-

cell-free medium were measured at the indicated time points during batch cultivations

medium supplemented with 20 mg/l Na2SeO4. Only the growth phase on glucose is sho

consumption of glucose. Data shown are mean values of three individual cultivations.
3. Results

3.1. Establishing batch cultivation conditions for efficient

SE uptake by yeast

In order to establish the optimal growth conditions allowing
an efficient uptake of Se by yeast in batch cultivations using
glucose as the main carbon source, two main factors were taken
into account. First, the source and amount of Se in the medium
and second the possible influence of sulfate concentration in the
growth medium on Se uptake were investigated. Sodium selenite
(Na2SeO3) (patent no. HK1078611 (A1)) and sodium selenate
(Na2SeO4) are the Se sources typically used for Se-enriched yeast
production. Na2SeO4 was our choice as Se source because
Na2SeO3, unlike Na2SeO4, can react with reducing sugars (e.g.
glucose) forming elemental Se, which is not bioavailable. In
addition, Na2SeO4 has been shown to allow higher levels of
organically bound Se in Se-enriched yeast, compared to Na2SeO3

(Demirci and Pometto, 1999). When using sulfate (SO4
2�) as sulfur

source in growth media, S:Se ratio plays a critical role in
determining Se uptake and building of biomass (Demirci and
Pometto, 1999). Therefore, cells were grown under two different
SO4

2� concentrations (3.8 g/l for S-regular and 0.02 g/l for S-short-
age) and in the presence of different concentrations of Na2SeO4

(from 10 to 100 mg/l). At Na2SeO4 levels higher than 20 mg/l, cells
were poorly growing under S-shortage due to Se toxicity (data not
shown). Interestingly, only under S-shortage Se was completely
consumed, whereas no significant Se uptake was detected in
S-regular medium (Fig. 2A and B). Consistently, Na2SeO4 exerted
toxic effect on yeast only when growing under S-shortage. The
specific growth rate was drastically affected, dropping from 0.39
to 0.1 h�1 in the presence of 20 mg/l Na2SeO4 (i.e. 0.015 g/l
SeO4

2�) (Fig. 2A and B).

3.2. Construction of recombinant yeast strains

On analysis of Se-metabolite profile of Se-enriched yeast (Kotrebai
et al., 2000), SeMCys has been found to account for 0.5% of the total
non-protein-bound Se. In order to increase the intracellular levels of
SeMCys, the SMT gene from B. oleracea (BoSMT) (Lyi et al., 2005)
encoding a SeCys methyltransferase was expressed in S. cerevisiae on
a high copy plasmid (YEp_BoSMT, Tables 1 and 2). No intracellular
SeMCys was detectable throughout the batch cultivations under
S-shortage with 20 mg/l Na2SeO4, and in vitro assay for SeCys
shortage medium. Concentrations of biomass (g DCM/l) and residual Se (mg Se/l) in

in (A) S-regular medium supplemented with 20 mg/l Na2SeO4 and (B) S-shortage

wn for S-shortage condition, because cells did not grow any longer after complete



Fig. 3. In vitro enzymatic conversion of SeCys to SeMCys and in vivo SeMCys

biosynthesis. (A) Yeast strains carrying the high copy plasmid YEpOptSMT (VM.hS)

or with optSMT gene integrated in the genome (VM.iS) were grown without

supplementation of Se or in the presence of 20 mg/l Na2SeO4 (þSe) under

S-shortage. The strain carrying YEplac195TEF (VM.h0) was used as negative

control. The blank reaction mixture contained a crude protein extract from a

yeast strain expressing optSMT and all other components except for SAM.

Conversion of SeCys to SeMCys was tested on crude protein extracts in the

presence of 1 mM SeCys and 1 mM SAM for 40 min at 30 1C and normalized on the

total protein concentration. Detection of SeCys and SeMCys was carried out via

SCX-ESI-MS/MS. (B) Analysis of intracellular Se-metabolites from VM.iS grown
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methyltransferase activity showed very low Smt activity in protein
crude extracts (data not shown).

Since Smt from A. bisulcatus is known to have higher specific
activity than BoSmt (Lyi et al., 2005; Neuhierl and Bock, 1996),
the cDNA sequence of the smtA gene from A. bisulcatus (Neuhierl
and Bock, 1996; Neuhierl et al., 1999) was codon optimized for
expression in S. cerevisiae, and the optimized gene optSMT was
expressed in yeast both on a high copy (YEpOptSMT) and on an
integrative plasmid (YIpOptSMT), resulting in the recombinant
strains VM.hS and VM.iS, respectively (Tables 1 and 2).

The functional expression of optSMT in yeast was tested by
assaying protein crude extracts for SeCys methyltransferase
activity in vitro. Protein crude extracts were from VM.hS and
VM.iS strains grown in batch under S-shortage in the presence or
absence of Na2SeO4. The in vitro assay showed that Smt was
functionally expressed by yeast regardless of the presence of
Na2SeO4 in the growth medium and that the conversion of SeCys
into SeMCys ranged between 15% and 20% (Fig. 3A), in a compar-
able way to Neuhierl et al. (1999), where the maximal conversion
reported was 20–25%. The assay demonstrated that the level of
conversion of SeCys was not dependent on the copy number of
optSMT, as no significant differences were observed comparing
protein extracts from VM.hS and VM.iS. VM.iS was selected
for further experiments, as strains carrying heterologous
gene(s) integrated in the genome are typically more stable than
the ones carrying such gene(s) on episomal plasmids.

Although optSMT was functionally expressed, no SeMCys
biosynthesis could be detected in batch cultivations supplemen-
ted with Na2SeO4 under S-shortage (Fig. 3B). As one of the reasons
for no detection of SeMCys might be SMT low affinity for SAM as
methyl donor, the possibility to further engineer yeast for
biosynthesis of methyl-methionine (MeMet) was considered. In
fact, Smt from A. bisulcatus had shown 100% SeCys conversion into
SeMCys when using MeMet versus 20–25% conversion when
using SAM as methyl donor (Neuhierl et al., 1999). Therefore,
the cDNA sequence of the methionine methyltransferase gene
(MMT) from A. thaliana was codon optimized for expression in
yeast and synthesized, resulting in optMMT, which was cloned
both into high copy and integrative plasmids (YEpOptMMT and
YIpOptMMT, respectively, Table 1) and expressed in VM.iS strain,
resulting in VM.iShM and VM.iSiM strains, respectively (Table 2).
However, none of the two strains co-expressing optSMT and
optMMT were able to synthesize SeMCys at detectable levels
under S-shortage supplemented with 20 mg/l Na2SeO4 (data not
shown). These results led to the hypothesis that the levels of SAM
were too low to effectively sustain the biosynthesis of SeMCys
and MeMet to high levels.
under sulfur shortage medium supplemented with 20 mg/l Na2SeO4. Samples

were spiked (dotted line) with g-glu-SeMCys, SeMCys and Se-Met and analyzed

via SCX-ICP-MS.
3.3. Intracellular levels of SAM change according to

yeast growth phase

The yeast MET13 gene, encoding a NADPH-dependent methy-
lenetetrahydrofolate reductase (MTHFR), is known to be feed-
back inhibited by SAM. This inhibition can be released by
substituting the endogenous C-terminal portion with the C-term-
inal of the homologous MTHFR gene from A. thaliana: the resulting
CHIMERA-1 gene has been characterized and higher levels of SAM
have been shown in a yeast strain expressing CHIMERA-1 (Lu
et al., 2007; Roje et al., 2002). A preliminary characterization of
the CHIMERA-1 expression within the genetic background of the
yeast strains used in this work (i.e. CEN.PK strains) confirmed a
general increase in SAM intracellular levels when compared to
SAM levels in the control strain (data not shown). Interestingly, in
batch cultivations intracellular SAM levels were even higher after
the diauxic shift (data not shown), that is, when yeast undergoes
a fully respiratory metabolism.
3.4. Bioprocess setup and optimization

The uptake and conversion of Se by yeast can be influenced by
several factors including the form of Se fed through the medium,
the rate of Se supplementation, and the ratio between the
concentration of sulfur and selenium (S:Se) in the growth med-
ium (Demirci and Pometto, 1999; Demirci et al., 1999). In
particular, it has been demonstrated that using Na2SeO4 as Se
source favors the conversion of inorganic Se into organically
bound Se, if compared to the use of Na2SeO3, which results in
higher Se concentration in the biomass, but lower concentration
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of organically bound Se (Demirci and Pometto, 1999). Further-
more, the gradual addition of Na2SeO4 during fermentation has
been shown to result in a less toxic effect on yeast and higher
conversion rate into organic Se forms, when compared to the
addition of Na2SeO4 as a single dose (Demirci et al., 1999).
Interestingly, also the S:Se ratio in the growth media has been
determined as a very important factor tuning both the toxicity
of Se and its metabolism toward the biosynthesis of organic
Se-compounds (Demirci and Pometto, 1999). Similarly, we show
that the levels of SO4

2� during batch fermentations were crucial
for an efficient uptake of SeO4

2� (Fig. 2A and B) and specifically
that SeO4

2� uptake occurs only in the presence of limiting SO4
2�

concentrations.
Therefore, a fermentation process in which both: SO4

2� and
glucose were limiting at the same time was desirable, the former
to allow an effective Se uptake and the latter to trigger the
biosynthesis of SAM to higher levels in strains expressing CHI-

MERA-1 gene. At the same time, high cell density was desirable,
since the process was designed in view of possible scale-up. A
general scheme of the fed-batch bioprocess designed is reported
in Fig. 4. The batch phase was run with S-shortage medium
supplemented with 20 g/l glucose, as preliminary fermentations
Fig. 4. Schematic representation of dual limited fed-batch of strain VM.0. Data are

from one of the cultivations run with a Glc:SO4
2� ratio equal to 320.5 in the fed-

batch phase; the feeding medium contained 0.107 g/l Na2SeO4. When the carbon

dioxide transfer rate (CTR) was equal to 30 mMol/h on the descending edge, the

feed pump automatically started and kept pumping fresh medium for 20 h with

exponential profile calculated according to Nielsen et al. (2002) in order to sustain

a m¼0.1 h�1. Dry cell matter, residual glucose and residual sulfate were measured

at indicated time points. When the feeding pump started, both glucose and sulfate

were completely consumed and their level was kept at limiting concentration

throughout the whole fed-batch phase. The slight increase in the sulfate can

be considered an artifact deriving from noise detected with the analytical

method used.

Table 4
Cultivation conditions and physiological parameters of fed-batch cultivations.

Strain SO4
2�:SeO4

2� (g/g) Glc:SO4
2� (g/g)

VM.0 w/o Se – 483.5

VM.0 5.1 483.5

CTRL w/o Se – 320.5

VM.0 7.7 320.5

VM.S 7.7 320.5

VM.CS 7.7 320.5

VM.CSM 7.7 320.5

a Yields of biomass (X) on glucose (S). Biomass yields on glucose higher than 0.5 ar

phase biomass is formed from glucose and ethanol.
b At the end of the fermentation.
showed that yeast consumed 20 g/l glucose while completely
consuming 0.02 g/l SO4

2� . After complete depletion of glucose
and SO4

2� , a feed containing glucose, MgSO4, and Na2SeO4 was
provided continuously following an exponential profile able to
sustain the yeast specific growth rate of 0.1 h�1. The feed
composition was defined accordingly (Boer et al., 2003; Egli and
Zinn, 2003), and the physiological values used for the calculations
are reported in Table 3. We chose Glc:SO4

2� equal to 483.5 g/g
(i.e. the mid-value between the two boundaries), which resulted
in a dual limited process, as no residual glucose and sulfate could
be detected (data not shown). Yields of biomass and ethanol
(Table 4) also indicated that fermentative metabolism was pre-
vented when running the fermentation without the addition of
Na2SeO4 to the feed.

When Na2SeO4 was added to the feed at 0.107 g/l (Pharma-
Nord, Vojens, Denmark, personal communication), analysis of
extracellular residual Se revealed that most of the added Se was
consumed, resulting in 1061743 mg Se/g dry cell biomass. How-
ever, traces of residual Se(VI) (i.e. SeO4

2�) could still be found,
indicating that Se uptake was not complete. Furthermore, in the
presence of Na2SeO4 the yield of biomass decreased from 0.4 to
0.25 g/g and ethanol production was detected (Table 4). These
data suggested that the added amount of Se exerted toxic effect
on yeast, as the yield of biomass was drastically affected. Due to
the crucial role that S:Se ratio could play, the composition of the
feed was changed by increasing the concentration of MgSO4 with
the aim of buffering the toxicity of Se, nonetheless considering to
maintain the Glc:SO4

2� ratio within the calculated boundaries
(Table 3). Therefore, MgSO4 concentration was increased to get a
Glc:SO4

2� ratio equal to 320.5 g/g. As reported in Table 4, no
ethanol formation could be detected both in the presence and in
the absence of Na2SeO4 in the feed and no significant difference in
biomass yield was observed between the two conditions. All
recombinant strains were characterized under such conditions
and it is worth noticing that no big differences could be observed
in terms of biomass yield, ethanol formation, and amount of total
Se per g of biomass (Table 4). The biomass yield was only slightly
affected by the presence of Na2SeO4.
3.5. Selenium is fully consumed, metabolized, and partly excreted

Analysis of Se content in the cell-free fermentation broth
throughout the feeding phase of the cultivations showed that
under the established conditions (i.e. feeding containing Glc:SO4

2�

equal to 320 and 0.107 g/l Na2SeO4) the supplied Se was almost
fully consumed (Fig. 5A): traces of SeO4

2� (i.e. Se(VI)) were still
detected in the fermentation broth 2–3 h after the feed of
Na2SeO4 started, but nearly no Se(VI) could be found thereafter
(Fig. 5A and B). Surprisingly, after �7 h what was thought to be
YX/S in feeding
phasea

Residual EtOH
(g/l)b

lg Se/g
DCM

0.4070.01 0.3670.17 –

0.2570.01 770.4 1062743

0.6470.06 – –

0.5770.03 – 458757

0.6070.02 – 397747

0.5070.05 – 469740

0.5670.02 – 507729

e due to an underestimation of substrate because in the first phase of the feeding



Fig. 5. Extracellular inorganic and organic forms of selenium during fed-batch cultivations. Concentration and speciation of selenium in cell-free medium were analyzed at

the indicated time points throughout the cultivations. Plots represent a typical example of extracellular Se profile that was similar in all the cultivations, regardless of the

genetic background of the strains. (A) Concentration of extracellular residual Se (bars) and amount of Se actually added throughout the feeding phase (white circles) with

exponential feeding profile (black line). (B) SAX-ICP-MS chromatograms of extracellular samples taken at indicated time points throughout the cultivation. (C) Amount of

identified extracellular organic Se-compounds is quantified as percentage of total eluted Se. Extracellular samples are from cultivations of the four indicated strains.

(D) Typical SCX-ICP-MS chromatogram for detection of extracellular organically bound Se. Dashed line represents the chromatogram obtained after spiking the sample

with the four compounds indicated by the arrows.
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residual Se was in fact in the more reduced Se(IV) form (i.e.
SeO3

2�) (Fig. 5A and B). These observations suggested that the
uptake of Se from the medium was complete and that SeO4

2�

went through reduction to SeO3
2� (Fig. 1B). Furthermore, the

finding of a third early eluting chromatographic peak in the
SAX-ICP-MS output (Fig. 5B), possibly corresponding to organic
forms of Se, suggested that SeO4

2� went through even further
metabolic steps. The presence of organic Se forms was confirmed
by SCX-ICP-MS analysis (Fig. 5D) and it was then possible to
observe that SeMCys, SeMet, and GSSeSG were actually present in
the fermentation broth in the range of 1–12% out of the total
eluted Se (i.e. in the mg/l range) (Fig. 5C). These results repre-
sented a first indication that SeO4

2� went through several meta-
bolic steps after its uptake and also that part of the metabolites
were thereafter excreted to some extent.
3.6. VM.CS strain is the best performer in SeMCys biosynthesis

As shown in Table 4, the concentration of total Se in the
biomass harvested at the end of the cultivations reached 450 mg/g
DCM. Therefore, accounting for the total amount of Se added to
the cultivation, most of it was found in the harvested cells, and
the extracellular fraction of Se represented only a very small part
of the Se fed throughout the bioprocess. The different genetic
backgrounds of the strains did not affect the accumulation of Se;
however, the comparison with the certified reference material of
selenized yeast SELM-1 (Mester et al., 2006) showed that the
amount of total Se in our yeasts was �4.5-fold lower (Table 5).
Speciation analysis of non-protein-bound Se-metabolites in yeast
dry biomass showed that relevant differences between our yeast
strains and the reference strains could also be found in terms of
organic Se-species (Table 5 and Fig. 6). As expected, SeMet
represented the biggest fraction of the Se-metabolite profile in
all analyzed yeast strains. Under the established cultivation
conditions, a small amount of SeMCys could be detected in
the control strain VM.0, but the best performing strain in terms
of SeMCys content was VM.CS, co-expressing CHIMERA-1

and optSMT, with a �24-fold increase compared to SELM-1 and
�8-fold increase compared to VM.0 (Table 5). Surprisingly, the
amount of SeMCys in VM.CMS strain was lower compared to
VM.CS, anyway showing a �14- and 4.7-fold increase compared
to SELM-1 and VM.0, respectively.

Since no significant difference in SeMCys levels was found in
VM.S compared to VM.0, we could determine that high levels of
intracellular SAM, peculiar of strains expressing CHIMERA-1, were
essential to achieve substantial increase in SeMCys biosynthesis,
likely triggering the selenocysteine methyltransferase reaction



Table 5
Organic Se-metabolites in cell dry biomass.

Strain c-glu-SeMCys
lg/g DCM

FCa c-glu-
SeMCys

SeMCys
lg/g DCM

FC SeMCys SeMet
lg/g DCM

FC SeMet GSSeSG
lg/g DCM

FC GSSeSG Total Se
lgSe/g DCM

VM.0 0.171 – 0.147 – 10.155 – 0.512 – 458757

VM.S 0.101 k 0.6 0.160 k1.1 10.026 k 0.9 N.D. 397747

VM.CS 0.160 k 0.9 1.140 m7.7 16.547 m 1.6 1.238 m 2.4 469740

VM.CSM 0.247 m 1.4 0.691 m4.7 29.505 m 2.9 0.659 m 1.3 507729

SELM-1b 0.064 0.048 0.180 B.LOD 2096775

Se-PRECISEb 0.251 B. LOD 0.439 0.225 1300c

N.D.: not detected; B.LOD: below limit of detection.

a FC: fold change, VM.0 values are considered as reference values.
b Reference Se-enriched yeasts were analyzed in parallel and with the same technique as all other samples.
c Value from Larsen et al. (2004).

Fig. 6. Selenium speciation in cell dried biomass. Quantification (mg/g DCM) of the

four identified organic Se-compounds in cell biomass of the different recombinant

strains. Samples were analyzed via SCX-ICP-MS at the end of the bioprocess.
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further. In addition, among the studied yeast strains, VM.CS
accumulated the highest levels of g-glu-SeMCys and GSSeSG
(Fig. 6), possibly increasing the beneficial effects of Se-enriched
yeast, if used as Se-supplement.
3.7. Intracellular S metabolites

As S and Se share the same metabolic pathways (Birringer
et al., 2002), the co-presence of S and Se sources throughout the
cultivations and the introduced genetic modifications might
actually affect the balance of the natural and essential metabo-
lism of sulfur compounds in the recombinant strains. Through
SCX-ESI-MS/MS analysis, levels of glutathione disulfide (GSSG),
reduced glutathione (GSH), methionine (Met), methyl-methionine
(MeMet), and methyl-cysteine (MeCys) were monitored through-
out the feeding phase of the fed-batch cultivations. No significant
levels of MeCys were detected, irrespective of strain genotype
(data not shown). This might be due to both the facts that the
levels of cysteine in yeast are typically very low and that the
specificity of Smt for Cys is lower, compared to SeCys (Neuhierl
and Bock, 1996). MeMet was present at quite low levels in all the
tested strains (i.e.o0.3 ng/g l�1 DCM), and even though the
expression of optMMT did not result in significant increase in
MeMet, it could be noticed that the highest levels of MeMet were
detected in strains expressing CHIMERA-1, which was likely
favoring the methylation reactions.
The presence of Se sources during yeast growth has been
shown to generate a stressful environment for the cells possibly
linked to redox imbalance due to an imbalance between GSH and
GSSG (Lewinska and Bartosz, 2008; Tarze et al., 2007). Interest-
ingly, the analysis of intracellular GSH and GSSG in our strains
throughout the cultivation showed that as long as the concentra-
tion of total intracellular Se increased, the ratio GSH:GSSG
decreased, due to the increase in GSSG levels (Fig. 7A), regardless
of the strain genetic backgrounds. The increase in intracellular
GSSG might be the result of spontaneous intracellular reactions
between Se-species and reducing thiols (Tarze et al., 2007).
Specifically, the reaction between selenite (SeO3

2�) and GSH
present in excess leads to the formation of GSSG and GSSeSG
(reaction 1) and can trigger a series of reactions contributing to
the increase in GSSG levels (Tarze et al., 2007) (Fig. 1A).

Reaction 1: SeO3
2�
þ4GSHþ2Hþ-GSSeSGþGSSGþ3H2O

Although GSSG formation should result in GSH decrease, the
latter was not observed, possibly due the fact that GSH was
continuously synthesized, therefore resulting in a non-sensible
variation. However, these hypotheses need to be further
investigated.

Comparing the glutathione profile between the cultivations
run with Glc:SO4

2� ratio equal to 483 and 320 g/g, respectively,
lower levels of GSSG and GSH were found at lower concentration
of SO4

2� , whereas the GSH:GSSG ratio was higher under such
condition (Fig. 7B). The general lower levels of GSH and GSSG
were possibly related to the lower levels of S, compared to the
condition in which higher levels of SO4

2� were supplied. The
higher GSH:GSSG ratio might be due to the lack of GSH excess,
which is actually necessary to trigger reaction 1. Even though
these hypotheses are at this point only speculations, the higher
levels of GSSeSG found in the presence of higher SO4

2� concentra-
tion could be linked to the occurrence of reaction 1 to greater
extent, following the excess of GSH (Fig. 7B).

3.8. Se-metabolite profile is affected by specific bioprocess phase

In addition to analyzing organic Se-species in yeast biomass,
we also extracted intracellular metabolites, aiming to detect a
higher number of Se-metabolites. Intracellular metabolites were
extracted using the pure methanol method and after quenching of
cell metabolism, as reported in Villas-Boas et al. (2005). Metabo-
lites were extracted at different time points throughout the
cultivations and analyzed for Se-metabolites with SCX-ICP-MS
with the aim of identifying possible differences in metabolic
profiles that could be traced back to different physiological states



Fig. 7. Intracellular glutathione (GSH) and di-glutathione (GSSG). (A) Bar plot shows intracellular GSH and di-glutathione GSSG levels determined at the indicated time

points of the cultivation. Feeding medium was supplemented with Na2SeO4. The ratio GSH:GSSG (white circle) is calculated in correspondence of GSH and GSSG

measurements. Total Se/g DCM at each considered time point is shown (black circle). GSH content and speciation was obtained through SCX-ESI-MS/MS. Data are from one

experiment and represent the typical profiles observed in all the cultivations, regardless of the genetic background of the strains. Time is considered from inoculation (t¼0)

of the fermenter. (B) Comparison of intracellular GSH, GSSG, and GSSeSG between fed-batch cultivations run in the presence of different S:Se ratios equals to 320.5 (high S)

and 483.5 (low S), respectively. GSH:GSSG is calculated from the determined GSH and GSSG levels. Results shown are mean values from 4 individual cultivations.
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throughout the bioprocess (Chrysanthopoulos et al., 2010). Princi-
pal component analysis (PCA) was used to highlight possible
differences among the Se-metabolite fingerprints (i.e. intracellular
metabolite profiles) of VM.0, VM.S, VM.CS, and VM.CSM strains:
only Se-organic forms were considered. Fig. 8A shows that most of
the variation in the Se-metabolite fingerprints is captured by PC1,
which explains 22% of the variation. Interestingly, the two clusters
forming along PC1 were not distinguished by different genetic
backgrounds of the strains, but by different phases of the biopro-
cess. In particular, early and late time points (where ‘‘late’’ means
at 17–20 h since the fed batch started or 1 h after the feed stopped
and DCM was Z20 g/l) of the fed-batch phase could be distin-
guished into two clusters. Unfortunately, most of the Se-metabo-
lites detected could not be identified via our analytical methods;
therefore, we could not precisely pinpoint specific metabolites
responsible for defining the differences between the two clusters.
However, from the loading plot of PC1 versus PC2 (Fig. 8B) we
could observe that GSSeSG was highly influencing the separation
of the two clusters, as it was significantly higher in the late phase
of the cultivations.
4. Discussion

SeMCys and g-glu-SeMCys are CH3SeH precursors in mammal
metabolism and are typically present in Se-accumulator edible
plants (Birringer et al., 2002). Although Se-accumulator plants are
the main natural source of these compounds in the human diet,
Se-enriched yeast is the most popular Se-supplement. SeMet is
the major Se-metabolite in Se-enriched yeast and it seems to
exert beneficial effects to a lower extent than SeMCys and g-glu-
SeMCys (Dong et al., 2001; Ip et al., 2000b; Lippman et al., 2009;
Medina et al., 2001). The production of Se-enriched yeast
endowed with the ability to synthesize beneficial methylated
Se-compounds—SeMCys in particular—was the aim of this work.

Fundamental aspects of yeast physiology in the presence of Se
sources were taken into consideration. We show that the effi-
ciency of selenate (SeO4

2�) uptake by yeast is strictly dependent
on the levels of the sulfate (SO4

2�) source. Regarding the balance
of glutathione species, the increase in GSSG levels along with the
increase in intracellular Se suggests that the reactions described
in Fig. 1A are likely to occur. In particular, as we demonstrate the
formation of SeMCys, the presence of SeCys is implied. Hereby,
the reaction of SeCys with water (Fig. 1) produces H2Se that
promptly reacts with two molecules of GSH in the presence of
oxygen forming GSSG, which can be formed via further reactions
(Tarze et al., 2007) and we hypothesize that excess of GSSG might
trigger the formation of SeO3

2� in an excess, subsequently
excreted, by favoring the reversal reaction of reaction 1. The
latter hypothesis has to be demonstrated; in fact such reaction
does not occur in vitro, but might happen in yeast, due to
particular intracellular redox environment (Charlotte Gabel-Jen-
sen, personal communication). GSSG increase leads to a dispro-
portionate GSH:GSSG ratio, compared to the physiological one,
thus generating an intracellular redox imbalance (Tarze et al.,
2007), which is further boosting under conditions favoring Se
uptake (i.e. S-shortage).

Higher levels of intracellular SeMCys were obtained after the
expression of OptSMT, the codon optimized smtA gene from
A. bisulcatus (Neuhierl and Bock, 1996; Neuhierl et al., 1999).
Nonetheless, the introduction of such heterologous enzymatic
activity alone is not sufficient to get a significant increase in
SeMCys biosynthesis in yeast, while higher levels of SAM obtained
with the expression of CHIMERA-1 (Roje et al., 2002) are essential
to improve the biosynthesis of SeMCys accounting for a 7.7- and
4.7-fold increase in VM.CS and VM.CSM, respectively. Although
the expression of MMT aimed to improve the efficiency of Smt

(Neuhierl et al., 1999), which has been shown to have higher
affinity for methyl-methionine (MeMet) than for SAM, we sur-
prisingly observe that VM.CS is the best performing strain in
terms of SeMCys levels. This phenomenon can be explained by the
fact that MeMet is a direct precursor of the highly volatile
dimethyl-selenide (DMSe) (Tagmount et al., 2002): the determi-
nant role of Mmt in facilitating Se volatilization has been
demonstrated in A. thaliana and in recombinant E. coli expressing
a heterologous MMT. Therefore, if such process also occurs in
yeast, it will result in an inexorable depletion of selenium source
and methyl donor for SeMCys biosynthesis. In order to prove this
hypothesis, it would be worth analyzing the volatile Se forms
generated throughout yeast fermentations and verifying the
presence of MeMet hydrolase activity, which is responsible for
DMSe formation in A. thaliana.

This work also shows that bioprocess design is extremely
important to tune Se metabolism in yeast. Se metabolism is



Fig. 8. Principal component analysis of intracellular Se-metabolite profiles at

different time points during fed-batch cultivations. PCA was performed according

to Hotelling T-square statistics using SIMCA-P v. 10.5.0.0 (Umetrics AB, Umeå,

Sweden). (A) Score plot. Each dot represents a single Se-metabolite profile from

VM.0, VM.CS, and VM.CSM. Gray dots correspond to early time points during the

fed-batch phase, black dots represent late time points during the fed-batch phase.

Colors have been assigned to better visualize the two different clusters.

(B) Loading plot. Each metabolite is identified by the specific retention time. The

plot shows the contribution of each Se-metabolite in determining the position of

the metabolite profiles in the score plot.
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greatly affected by the different phases of the bioprocess (Fig. 8)
that can be discriminated through analysis of metabolic profiles.
Such data assess the high potentiality of metabolomics for the
development and monitoring of laboratory and industrial biopro-
cesses (Chrysanthopoulos et al., 2010). The choice of a fed-batch
process is linked to the need to achieve high biomass levels,
according to an industrial production perspective, and to the
possibility that such process gives in terms of growth and feed
modulation. The range of Glc:SO4

2� ratio within which we can
play while keeping the two components at limiting concentration
is quite broad (Table 3), while the SO4

2�:SeO4
2� ratio is much more

critical when operating under SO4
2� limiting conditions. In fact,

at SO4
2�:SeO4

2� ratio equal to 5.1:1 (g/g) the toxicity of Se is
much more evident, compared to a SO4

2�:SeO4
2� ratio equal to 7.7:1

(g/g), such that cells cannot sustain the settled m¼0.1 h�1 and
undergo fermentation due to carbon overflow through the glycolytic
pathway (Table 4). Further optimization of the established biopro-
cess might be performed by testing the effect of Glc:SO4

2� ratios
lower than 320.5. Increasing SO4

2� levels within the limiting range
might further diminish the toxicity of Se by possibly buffering the
redox imbalance due to the affected GSH:GSSG ratio.

The comparison of our recombinant strains with SELM-1 Se-
enriched yeast (Mester et al., 2006) shows that we achieved a
�24-fold increase in SeMCys. The differences in non-protein-
bound Se-metabolites and in Se/g DCM between our control strain
VM.0 and the two selenized yeast references (Table 4) highlight
the drastic influence of genetic background and bioprocess para-
meter on yeast Se-metabolite profile. The low content of SeMet
obtained for SELM-1 and Se-PRECISE in this work (Table 5),
compared to the previously reported values (Larsen et al., 2004;
Mester et al., 2006), can be linked to different treatments of yeast
biomass prior to the analysis. Here we only take into considera-
tion the non-protein-bound Se-species, while in Larsen et al.
(2004) and Mester et al. (2006) yeast has been subjected to
digestion treatments that liberate protein-bound Se-species and
SeMet in particular. Avoiding the presence of inorganic Se forms is
carefully considered during the production of selenized yeast, as
it can cause accumulation of H2Se (Fig. 1C), which is associated
with a variety of genotoxic effects (Ip et al., 2000b). Our biopro-
cess results in Se-enriched yeast containing from 7% to a max-
imum of 10% inorganic Se out of the total eluted Se, which is
comparable with the content of inorganic Se found in commercial
selenized yeast. In spite of increased levels of SeMCys, SeMet
remains the main Se-organic species in our yeast, ranging from ca.
10 to 30 mg/g DCM. Although altering the biosynthesis of SeMet
represents a big challenge, as it cannot be modified without
affecting the essential metabolism of methionine, successful
strategies to limit the accumulation of SeMet and its non-specific
incorporation into proteins would further increase the beneficial
potential of Se-enriched yeast. Furthermore, a better understand-
ing of the molecular mechanisms triggering the excretion of
organic Se-compounds would be desirable with the aim of
maximizing their intracellular accumulation.

In conclusion, we report here a metabolic engineering strategy
that leads to significant improvement of the Se-metabolite profile
of Se-enriched yeast on the basis of the health-promoting effects
of methylated Se-compounds, such as SeMCys. The combination
of CHIMERA-1 and OptSMT heterologous expression was determi-
nant in order to achieve the biosynthesis of the target compound.
We also show that a fine tuned bioprocess, in particular a dual
C- and S-limitation, is necessary to maximize the desired meta-
bolic features and to minimize the toxic effects due to the
presence of Se. Furthermore, the controlled conditions realized
in the fed-batch cultivations helped in defining critical nodes in
the interplay between sulfur and selenium metabolism. There-
fore, we can now hypothesize that a redox imbalance due to the
affected intracellular GSH:GSSG ratio is at least one of the factors
connected to Se toxicity on yeast. A number of considerations
regarding the fundamental physiology of yeast in the presence of
Se are brought into light and such knowledge will help to further
optimize both the metabolic engineering strategies and the
bioprocess. Whether the beneficial properties of the obtained
Se-enriched yeast have been improved, compared to the existing
yeast-based Se supplements, has to be carefully tested. With this
aim, an animal study using our selenized recombinant yeast is
now ongoing.
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