FINITE ELEMENT APPROXIMATION OF THE
LINEARIZED CAHN-HILLIARD-COOK EQUATION

STIG LARSSON' AND ALI MESFORUSH

ABSTRACT. The linearized Cahn-Hilliard-Cook equation is discretized
in the spatial variables by a standard finite element method. Strong
convergence estimates are proved under suitable assumptions on the
covariance operator of the Wiener process, which is driving the equation.
The backward Euler time stepping is also studied. The analysis is set
in a framework based on analytic semigroups. The main effort is spent
on proving detailed error bounds for the corresponding deterministic
Cahn-Hilliard equation. The results should be interpreted as results
about approximation of the stochastic convolution, which is a part of
the mild solution of the nonlinear Cahn-Hilliard-Cook equation.

1. INTRODUCTION

When the Cahn-Hilliard equation (cf. [2, [3]) is perturbed by noise, we
obtain the so-called Cahn-Hilliard-Cook equation (cf. [IL [5])
du — Avdt =dW, forxeD,t >0,

v=—Au+ f(u), forzeD,t>0,

1.1

(L.1) Ou _o 92U ) forzc oD, t>0,
on on
U(,O) = uo,

where u = u(z,t), A = Z?Zl 6‘9—;2, and % denotes the outward normal deriv-

ative on 9D. We assume that D is a bounded domain in R? for d < 3 with
sufficiently smooth boundary. A typical f is f(s) = s> — s. The purpose of
this work is to study numerical approximation by the finite element method
of the linearized Cahn-Hilliard-Cook equation, where f = 0.

We use the semigroup framework of [I2] in order to give a rigorous
meaning. Let [|-|] and (-,-) denote the usual norm and inner product in the
Hilbert space H = La(D) and let H®* = H*(D) be the usual Sobolev space
with norm |-||s. We also let H be the subspace of H, which is orthogonal
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2 S. LARSSON AND A. MESFORUSH

to the constants, that is, H = {v € H : (v,1) = 0}, and we let P: H — H
be the orthogonal projector.
We define the linear operator A = —A with domain of definition

D(A):{UGHQ:@:OonaD}.

on

Then A is a selfadjoint, positive definite, unbounded linear operator on H
with compact inverse. When it is considered as an unbounded operator on
H, it is positive semidefinite with an orthonormal eigenbasis {goj};-”;o and
corresponding eigenvalues {\;}72, such that

0:/\0<)\1§)\2§--'<>\'<-", )\j—>OO.
The first eigenfunction is constant, pg = \D\ . We also define
2 s 2 1/2
(1.2) o], = || A3 Po|| = (ZAJ.(@,%) ) , sER,
j=1

and H* = {v € H : |v|, < oo} for s > 0. For s < 0 we define H*
to be the closure of H with respect to |-|s. Then H® = H and |jv||> =
]2 + (v, 0)?. Tt is well known that, for integer s > 0, H® is a subspace of
H*® N H characterized by certain boundary conditions and that the norms
| - |s and ||-||s are equivalent on H*. In particular, we have H' = H' N H
and the norm |v|; = HA%'UH = | V]| is equivalent to ||v]|; on H®.

For v € H we define

o0

—tA? —t)\2

e =" e (0, 05)05.
j=0

Then {E(t)}i50 = {e 4" };> is the analytic semigroup on H generated by
—A2. We note that

o = Ze (v,03)5 + (v, 90)00 = E())Pv + (I — P)o,

where (I — P)v = |D|™ [, vdz is the average of v.

Let (Q,F,P,{F:}+>0) be a filtered probability space, let @ be a selfad-
joint, positive semidefinite, bounded linear operator on H, and let {W () }+>0
be an H-valued Q-Wiener process adapted to the filtration {F;}+>0.

Now the Cahn-Hilliard-Cook equation (|1.1)) may be written formally

(1.3) dX(t) + A2X(t)dt + Af(X(t))dt =dW(t), t>0; X(0)=X,.

The semigroup framework of [12] gives a rigorous meaning to this in terms
of the mild solution, which satisfies the integral equation

X(t):E(t)Xo—/O E(t—s)Af(X(s))ds+/0 E(t —s)dW(s),
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where fot .-+ dW (s) denotes the H-valued It6 integral. Existence and unique-
ness of solutions is proved in [6]. This is based on the natural splitting of
the solution as X (t) = Y (¢) + Wa(t), where

/Et—s AT (s)

is a stochastic convolution, and where

Y(t) = E(t)Xo — /t E(t—s)Af(X(s))ds
0
satisfies the random evolution problem
V(t)+ A (1) + Af(Y(t) + Wa(t)) =0, ¢t>0; Y(0)=Xo.

The study of the stochastic convolution W4(t) is thus a first step towards
the study of the nonlinear problem.

In this work we therefore study numerical approximation of the linearized
Cahn-Hilliard-Cook equation
(1.4) dX + A°X dt=dW, t>0; X(0)= X,

with the mild solution
t
(1.5) X(t)=E{t)Xo+ / E(t —s)dW (s).
0

The nonlinear equation is studied in a forthcoming paper [II]. We remark
that a linearized equation of the form , but with A? replaced by 42+ A
is studied by numerical simulation in the physics literature [7), 9].

For the approximation of the Cahn-Hilliard equation we follow the frame-
work of [§]. We assume that we have a family {S}, }~¢ of finite-dimensional
approximating subspaces of H'. Let P,: H — S} denote the orthogonal
projector. We then define S, = {x € Sy : (x,1) = 0}. The operator
A Sy — S, (the “discrete Laplacian”) is defined by

(Ath 77) = (VX7V77)7 VX € Sh7 ne Sha
The operator Ay, is selfadjoint, positive definite on S}, positive semidefinite
on Sy, and Ay, has an orthonormal eigenbasis {¢p, ; }j-vzho with corresponding
eigenvalues {)\h,j}jy:ho. We have

0=Xpo0 <A1 << A < < Ay

and pp0 = @o = |D|_%. Moreover, we define Ep(t): S, — Sp by
Np,

2 _ .
Bp(tyvn = e "oy =Y e i (0, 015) @5 + (Vhs ©0) 0.
7j=1
Then {Ejp(t)}i>0 is the analytic semigroup generated by —A2. Clearly,
Ph: H — Sh and
Eh(t)PhU = Eh(t)PhPU + (I - P)v.
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The finite element approximation of the linearized Cahn-Hilliard-Cook
equation (|1.4) is: Find X (t) € Sp, such that,
(1.6) dXp + A3 Xy dt = P, dW, t>0; X3,(0) = P, Xo.
The mild solution of (|1.6]) is
t
(1.7) Xh(t) = Eh(t)PhX() + / Eh(t — S)Ph dW(S)
0
We note that
¢ t
/ Et—s)(I—-P)dW(s)=(I— P)/ dW(s) = (I — P)W(t),
0 0
so that (1.5)) can be written
X(t)=E(t)PXo+ (I — P)Xy
(1.8) t
+ / E(t—s)PdW(s)+ (I — P)W(t),
0

and similarly, for (L.7)),
Xh(t) = Eh(t)PhPXO + (I — P)XO

+ /t Ep(t — s)PyP AW (s) + (I — P)W(1).
0

Therefore, the error analysis can be based on the formula
Xn(t) = X(t) = (En(t)Pn — E(t)) PXo

(1.9) N / (Ea(t — )Py — E(t — ) PAW(s),

and it is sufficient to work in the spaces H and Sy, Note that the numerical

computations are carried out in Sj and that S}, is only used in the analysis.
Let k = 4t be a timestep, t, = nk, 60X, = Xnn — Xpp—1, W, =

W (tn) — W (tn—1), and apply Euler’s method to (1.6]) to get

(1.10) Xpp+ AL Xy 0t = P oW, n>1; Xpo= PyXo.

With Eyj, = (I + kA?)~! we obtain a discrete variant of the mild solution

n
Xnn = EpPuXo+ Y Ep 7t P oW,
j=1
In Section 2| we assume that {Sp},>0 admits an error estimate of order
O(h") as the mesh parameter h — 0 for some integer r > 2. Then we show

error estimates for the semigroup Ej,(t) with minimal regularity requirement.
More precisely, in Theorem we show, for § € [1,r] and all ¢t > 0,

| F(t)v|| < ChP vlg, ve HP,

t 1 .
([ 1Bl ar)” < Clloghiid ol-a, ve P2
0
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where F},(t) = Ej,(t)P, — E(t) is the error operator in (1.9).

Analogous estimates are obtained for the implicit Euler approximation in
Theorem [2.2]

In Section |3| we follow the technique developed in [14] 13] and use these
estimates to prove strong convergence estimates for approximation of the
linear Cahn-Hilliard-Cook equation. Let Lo(Q, H?) be the space of square
integrable HP-valued random variables with norm

) X = (BOXEY) = ([ @B dRw)

and let ||T||us denote the Hilbert-Schmidt norm of bounded linear operators
on H, |T||}s = > e | T'¢;%, where {¢;}52, is an arbitrary orthonormal
basis for H. In Theorem we study the spatial regularity of the mild

solution (|1.5)) and show
X (¢ )HLQ(Q HB) = C(HXOHL2 Qi)+ ”A Q HHS) for 5 > 0.

Moreover, in Theorem [3.2] we show strong convergence for the mild solution
Xy, in (1.7):
[ Xn(t) = X ()|l Lo (0,m)
-2 1
< ChB(HXOHLQ(Q,Hﬂ) + |loghl|A2 Q2 |us), € [Lr].

In Theorem [3.3] for the fully discrete case we obtain similarly, for 8 €
[1, min(r, 4)],

[ Xhn — X (o)l Lo0,m)
8 B8=2 1
< (Cllog hlh” + Cy 5k ) (1 Xoll i) + 147 Q7 |lms),

where C’gk— 5 for f <4 and Oy = Cllogk] for 5 = 4.
Note that these bounds are uniform with respect to t > 0 and ¢, > 0.
Our results require that HA%Q%HHS < oo. In order to see what this
means we compute two special cases. For Q = I (spatially uncorrelated
noise, or space-time white noise), by using the asymptotics A\; ~ j %, we
have

2
14T Q3 |3s = 1A"F ||HS*Z)\6 2~Z] )1 < o0,

7j=1
if B < 2—%. Hence, for example B <3 Lif d = 3. On the other hand, if Q

is of trace class, Tr(Q) = ||Q |3g < o0, then we may take 3 = 2.

There are few studies of numerical methods for the Cahn-Hilliard-Cook
equation. We are only aware of [4], in which convergence in probability
was proved for a difference scheme for the nonlinear equation in multiple
dimensions, and [I0], where strong convergence was proved for the finite
element method for the linear equation in 1-D.
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2. ERROR ESTIMATES FOR THE CAHN-HILLIARD SEMIGROUP

We start this section with some necessary inequalities. Let {E(¢)}i>0 =
{e74*} 50 and {Ej () }is0 = {e ™7 }4>0 be the semigroups generated by
—A? and —A,zl, respectively. By the smoothing property there exist positive
constants ¢, C', independent of h and t, such that

(2.1) 14 En(t) PuPo|| + [|A*° E(t)Po]| < Ct~Pe~ o], 8 >0,
t t

(2.2) / ||AhEh(s)Pth||2ds+/ |AE(s)Pv||?ds < C|lv]2.
0 0

Let Rj,: H' — S, be the Ritz projector defined by
(VRyw,Vx) = (Vo,VX), Vx € Sh.

It is clear that Ry, = A;lPhA. We assume that for some integer r > 2, we
have the error bound, with the norm defined in (1.2)),

(2.3) |Rpv — v §C’hﬁ|v|5, veHﬁ, 1<8<r.

This holds with » = 2 for the standard piecewise linear Lagrange finite
element method in a bounded convex polygonal domain D. For higher order
elements the situation is more complicated and we refer to standard texts
on the finite element method. In the next theorem we prove error estimates
for the Cahn-Hilliard semigroup in the semidiscrete case.

Theorem 2.1. Set F},(t) = Ey(t)Py, — E(t). Then there are hg and C, such
that for h < hg, 1 < B <r andt >0, we have

(2.4) | Fn(t)v| < ChP vlg, v e HP,
t 1 .
(2.5) (/ [Eu(ryel?dr)? < Clloghlh® olss, v e HI2.
0

Note that Fj(t)v = Fj,(t)Pv for v € H, so that it is sufficient to take
v € H. The reason why we assume 3 > 1 is that in we need at least
v e H™! for Ej,(t)Pyv to be defined. The bound can be found in [§],
but is new. We adapt the technique from [8] to provide a self-contained
proof.

Proof. Let u(t) = E(t)v, up(t) = Ex(t)Pyv be the solutions of
(2.6) ug+ A%u =0, t>0; wu(0)=o0,
(2.7) upt + Ajup =0, t>0; up(0) = Pyo.

Here u; denotes the time derivative. Set e(t) = wup(t) — u(t). We want to
prove that

le@®)|l < Ch% Jvls, v e HP,

t 1 .
(/ le(m)IPdr)* < Cllog hlh® folp, v € HP2
0
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Let G=A"'P and G, = A;lphP. Apply G to (2.6) to get Guy + Au =0,
and apply G% to (2.7) to get Gupt + up = 0. Hence,

Ger + e = —Grug — u + Gp(Guy + Au) = (GLA — Iu — G(GRLA — I)Guy,
that is,
(2.8) Ghei+e=p+ G,

where p = (R, — Iu,n = —(Rj, — I)Guy. Take the inner product of (12.8))
by e; to get

1d
IGhedl® + 5 3 llel” = (py e0) + (0, Grer),

Since (1, Gher) < [nll[Grell < Slnll? + 2Ghedl|?, we obtain

d
1Ghes) + &Ilell2 < 2(p,er) + [In]]*.
Multiply this inequality by ¢ to get
d
tGred® + taIIGIIQ < 2t(p, e) + t]nll*.
I?

For compactness of notation we write t||n||? instead of ¢||n(t)||?> and similarly

for the other terms. Note that
el = S (tel?) — lel2, tprer) = - (t(p,€)) — (pr€) — tlprre)
dt dr ) y &t dt ) ) ts )
so that
d d
t|Gred]* + &(tHeHz) < 25(’5(/), e)) +2|(p, e)| + 2[t(pe, €)| + tlnl|* + |le]>.
But
1 9 1, 19
(o, )l < llelllell < 5lloll” + 5llel,
1 1
t(pe,e)| < tlpelllell < §t2\|ptH2 + §||€||2-
Hence,
d d
t||Gred|® + a(tIIEIF) < 2&(75(@ e)) + Il + {lpcll* + tllnl* + 3]e]>.

Integrate over [0,t] and use Young’s inequality to get

t t t
1
| Ghenar+ el < 2ol + 5elel® + [ olPar+ [ 72l an

t t
+/7wm%h+3/\mﬁw:
0 0

t
(29)  tllel* < CltHPIIQJrC’/0 (ol + 72l pel® + 7llnl* + llel|*) dr.

Hence,



8 S. LARSSON AND A. MESFORUSH

We must bound fg lle||? dr. Multiply (2.8) by e to get

1d 1 1
5 o 1GRe P+l < Iolllel-+ Il 1Ghell < o>+ lel+lnl yma Grell
so that
(2.10) g||Gh€||2 + llell* < llpl” + 2/ln]| max [|Gel|.
dt - 0<r<t

Integrate (2.10)), note that Gje(0) = A, ' Py(P, — I)v = 0, to get

t t t 9
(Grell> + [ lelPar < [ Il dr + max [Grell* + ( [ Inlar)”
0 0 OsT<t 0

Hence, since t is arbitrary,

b b t 9
(211 [ etpar < [Coar+ ([ o)’
0 0 0

We insert (2.11)) in (2.9) and conclude

t
tllel> < Ctllpll* + C/O (Il + 72l pel® + 7lln]?) dr

+c(/0tunu ar)”

We compute the terms in the right hand side. With v € H?, recalling
p = (Rp — I)u and using ([2.3)), we have

(213)  [lp(0)]l < ChPJu(t)]s < CHP|E(R)AZv]| < CHP|AT o]l < ChPJu],
so that,

(2.12)

t
ol < CHtpufs, [ ol ar < CHPtpuf,

Similarly, by ,
loe )l < CRPlug(t)]5 < CR|AE(H) A% o] < CRPt ol
so that

t
(2.14) /O 2|pe|? dr < CR*Ptvl3.

Moreover, since n = —(Ry, — I)Guy = (R, — [)GA2E(t)v,
In(®ll < CHA|Gus(B)]s < CHIAE@R) AR o] < CHPE o],
so that
' 2 284,12 ! 2 264,12

(/0 Inllar)” < ch¥Pef?, /0 7lnl? dr < Ch¥tjof3,

By inserting these in (2.12)) we conclude
tllel® < Ch*tuf3,

which proves ([2.4]).
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To prove (2.5) we recall (2.11)) and let v € H?~2. By using (2.3) and ([2.2)

we obtain
t t t ~

| / HpHZdT<Ch2/B/ ]u\%dT:Chzﬁ/ IAE(r)A%2 |2 dr
0 0 0

< Ch2ﬁ|v\%_2.

(2.15

Now we compute fg |In|| d=. To this end we assume first 1 < 5 < r and let

1 <~ < (. By using (2.1) and ({2.3]) we get
t t t - B
/0 || dr < cm/o \Gutlﬁ,dT:Ciﬂ/o 14222 p(r) A% | dr

t
Q4B
<Ch7/ T T e dr |u]g_s,
0

where, since 0 < f—vy <r—1,
t 5 4 t% 4 C 0o 4
/ T e dr = / e %7 ds < / e 1 ds.
0 B=7Jo B=7Jo
Hence, with C' independent of g,

t ChY
2.16 / n|| dr < v|g_a.
(2.16) ; il ﬁ_7| -2

Now let ﬁ—iv: |logh| = —logh, soy — [ as h — 0, and
vlogh = (y— B+ () logh =1+ [logh.

Therefore we have

By
i | log hleY!°8" = |log hle* P18 < C|log h|hP.
-7
Put this in (2.16) to get, for 1 < g <r,
t
(217) | nliar < cnioghljels-s,
0

and hence also for 1 < @ < r, because C' is independent of 3. Finally, we

put @15) and (217) in (@11 to get
t 1
([ llelpar) < Clioghin®lels-s,
0

which is (2.5)). O

Now we turn to the fully discrete case. The backward Euler method
applied to

Upt + A%uh =0, t>0; wup(0)= Pyo,
defines U,, € S}, by
(2.18) OU, + A3U, =0, n>1; Uy= Py,
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where OU, = %(U, — Un—1). Denoting Ep, = (I + kA3)™", we have
U, = E,v. The next theorem provides error estimates for the Euler ap-
proximation of the Cahn-Hilliard semigroup.

Theorem 2.2. Set F,, = E};, P, — E(t,,). Then there are ho, ko and C, such
that for h < hg, k < ko, 1 < 8 < min(r,4), and n > 1, we have

(2.19)  ||Fwv| < C(h° + kD)ol v e HP,

n 1 .
(220) (KD IFI?)" < (Clloghlh® + Capk)lvlg-s, v e 1772,
j=1

where Cg 1, = & for B <4 and Cgj, = C|logk| for g = 4.

Proof. Let G and G}, be as in the proof of Theorem[2.1} With e,, = U,,—u,, =
Ep, Pyv — E(t,)v, we get

(2.21) G%@en + en = pn + Gt + Gpon,
where u, = u(t,), utn = w(ty) and

pn = (Rp—Dup, np=—(Ry—1)GOuyn, 6, =—G(Oup—usy).
Multiply by Oe, and note that

1 1
(11, Gden) < |lnall* + ZHGhaen!\z, (6n, GrOen) < [16a1* + ZHGhaensz

to get

(2.22) ’|Ghaen”2 + 2(en, Oen) < 2(pn, Oey) + 2H77n||2 + 2||5n||2~
We have the following identities

(2.23) (anby) = (0an)by, + an—1(0by,)

(2.24) = (Oan)by, + ay(0by,) — k(day)(0by,).

By using ([2.24) we have

2(en, Den) = Olenll? + k|Oen |,
(pns Oen) = O(pn, en) — (Opn, en) + k(Opn, Oey).
Put these in and cancel k||0e,||? to get
IGROenll* + Ollenll* < 20(pn, €n) = 2(0pn, en) + kl10pnll® + 2llmall* + 2[|6, .

Multiply this by ¢,_1, and note that k < t,_1 for n > 2, so that for n > 1
we have

tn-1|GnOen|® + tn-19]len|?
(2.25) < 2tn—10(pn, €n) — 2tn—1(0pn, €n) + t%—lnaanQ
+ 2t 1|71 + 2tn1[|8n 1.
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By ([2.23]) we have

tn—laHen”Q = a(tn||enH2) - HenHQ,

2tn—la(pna en) = Qa(tn(pm en)) - 2(pn7 en)‘
Put these in (2.25)) to get

tn-1]|Ghen|* + O(tnllen|®)
(2.26) < C(a(tn(pnv en)) + Han2 + tfHHaan + Hen”Q)
+ C(talnall® + ta1]16n]l?).

Note that

n

(227) kY 0(tlles?) = tallenl®, kZ@ (pjr€5)) = tu(pn, en)-

i=1

By summation in (2.26]) and using (2.27)) we get

n
kY tiallGroes|? + tallenl|* < Ctallpnl)?

j=1
n
(2.28) +CEY (s> + 6511100517 + lle; )
j=1
n
+CkY (Ll |” + -1 116501%).
j=1
Now we estimate k>, lej|I?. Multiply (2-21)) by e, to get
(220)  2(G20en,en) + leall® < lpnl + 20l + 1501 |Grenl.
By ([2.24]) we have

2.30 2(G2den, e) = 2(0Ghen, Ghen) = 0||Gren|* + k||0Ghen||*.
h

By summation in (2.29)) and using Greg = 0, we get

1Ghenll” + kz lel* < kz ol + 5 maXIIGheJH
7j=1 j=1

w263 (Il + 1551))’

Hence,

(2.31) kZ leslI? < kZ ol +2(6S (gl + 1510 )

7=1

11
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By putting (2.31) in (2.28) we get

tn||€nH2 SCthanQ

n
+ Ok Y (1ol + 1190512 + t-lns 12 + 51116511
(2.32) =1

(k}ij gl + 1350 )

We compute these terms. With v € H? we have by (2.13),

(2.33) lonll* < CRP[0f3, kY llogll* < CR*t|of3.
j=1

By using the Cauchy-Schwartz inequality we have

~ 5 2 oo |1 [ 2
kztjAHanH :kztlek:/t PthH
Jj=l1 Jj= e
n

j t; tn
Z(J 7 / r [C PlaPar) < [ Par
t 0

_ j—1

Hence, by (Z:14),

(2.34) thg_luapij < Ch*t,|vf3.

By using and (| . we have

Injl| < ChP|Gouyls < CZH/ ’ AB(r)ATudr|
tj—l

ChP [t . 5 ChP ChP
< — T 2dr||[A2v|| < —(/t; — /ti—1)|v|g < v|g.
. Az o] < — (Vi = Vti-1)lvls \/757! |8
So
n n 1
(2.35) By tialngl? < Ch*Ptalolz, kY Ingll < CROtE v,

j=1 j=1

By using ([2.1) we have, for j > 2,

1 t; t;
16;]] < Hk/ (T—tj_l)Gutt(T)dTH g/] 1433 E(r) A% v|| dr
tj—1

< c/ = drfols,
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so that, by Holder’s inequality with p = 5 and ¢ = %ﬁ 1 <8 <4,

t; t 15
/J T%w dTSC/{Zi(/] (T%M)ﬁdT> !
¢ ¢

-1 -1
B—4 250\ 2 8 -1
< owi (5= (6757 1 ) T < CRi

The same result is obtained with 6 = 4. For j = 1 we have

[ H;/k Gug(7) dTH <ol /OkT

|5
P B |ﬂ<0k4t12\v!ﬁ
So we have, for j > 1,
s -1
10;]] < Ckat; *[v]s.
Hence,
- B 1 - 8

(2.36) B 1650 < ckitdfvlg, kY tio1]l65]* < Ch2ta|of3.

j=1 j=1
Put (2.33), (2.34), (2.35)), andln- to get
leall < C(H? + k)]s

This completes the proof (2.19)).
To prove (2.20) we recall (2.31)) and let v € H5~2. For the first term we
wiite k3, Tios12 = Kllor|[2 + % 37y 5112, where by (&1)

B=2
Ellorll? < kORI AB(R) A o]} < Ch2Ju]_,
and
n ) ot tj 2
sl =Z/t + [Tty ar|as
=2 j=27ti-1 s
2
<2Z/ llp(s |]2ds+22/ / pt(T)dTH ds
tj—1 S
t
sz/ lo(s \|2ds+22/ (t —s/ loa() 2 dr ds
t -1

tn
<2 ["lplar o [ sl ar
0 t1

since t; —s < k < 7 and where, by (2.15),

tn
/0 lol?dr < CR o2,
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and

tn tn _
k/ T||pt||2d7'§0h26k:/ 7| A3 E(r) A% 0|2 dr

t1 t1

tn
< Chmk/ T 2dr o3, < CRPPR(ET =, )|v[F_y < CRP 3,
k
So

(2.37) EY lpll* < Ch¥jolf_s.
j=1

Now we compute k7, [[7;l|. Recall that n; = —(Rj, — I)GOu; and n =
—(Rp — I)Guy, so
1 [t 1 [t
Il = | (B = D6 [7 wdr| < [ IR = DG ar
tj—1 ti—1
1 /ta'
<< ]l d,
ki
and hence by (2.17) we have
n tn
(2.33) el < [ Il ar < OW log oo
j=1
For computing k‘Z?Zl 10;]| we use (2.1) and obtain for 1 < 8 < 4,
1 tj t]' 47@ -2
1< 5 [ - t)Guar)ldr < [ At EEmAT ] ar
ti—1 tj—1

t; 01 B
SC’/ T2 1 dr u|g_a.
tj—1

Hence,
- Y 4 _148 _ o14g
BNl < Ok |7 S drlols s < Ok (K75 — i Yol
j=2 F a
¢ s
S 4*Bk4’v|ﬂ_2

and

k k 3 52
Ello1]| < / T||Guge (7) || dr < / T”A475E(T)ATUH dr
0 0

8
kTlv|g—s.

F C
< C/ ril dr |v|g_2 <
0 4
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Therefore, for 1 < § < 4,

kZué I < okl

If we put ﬁ = |log k|, we also have
1-=F k
kZ 551 < kT bola-a = Cllog kfke™ 5 %
< Ck|log k||v|g—2 = C|log k||v|g—2.

Therefore, for 1 < 8 < 4, we have

g s
(2.39) B 61 < Caik|v]p—o.

j=1

where C’g k = ﬂ for ﬂ <4 and C’gk = C|logk| for = 4. Finally we put

2:37), @2:38) and in 231, to get
(kz Hejyy?f < (Chﬂuogm + Cak ) v]-a.
j=1
u

3. APPROXIMATION OF THE LINEAR CAHN-HILLIARD-COOK EQUATION

Consider the linear Cahn-Hilliard-Cook equation (|1.4])) with mild solution
t
(3.1) X(t)=E(t)Xo+ / E(t — s)dW (s).
0

We recall the isometry of the It6 integral,

2 B / Bs)aw(s)| } = / 1B(:)Q% s ds

where the Hilbert-Schmidt norm is defined by

(3.3) ITllfs = D 1Tl

=1

Here {¢;}°, is an arbitrary orthonormal basis for H. In the next theorem
we consider the regularity of the mild solution (3.1)). The Lo(£2, H?)-norm

is defined in ((1.11)).

Theorem 3.1. Let X(t) be the mild solution (3.1) with Xo € Lo(Q, H?)
and ||A?Q%||HS < oo for some 3> 0. Then

=2 1
IX(0) 1,000 < C(IX0ll g 0) + 14T Q2 lus), £ 0.
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Moreover, if 3 =0, then for the norm in H we have
11 1
1X0) o < € (1Xolaern + 147 Q¥ s +43), £ 20

Proof. Recall the definition of |-|3 in (1.2)). By using the isometry (3.2)), the
definition of the Hilbert-Schmidt norm (3.3), and (2.1), (2.2) we get, for
8> 0, see (T3),

IX@I2, 10, = E{‘E(t)Xo N /OtE(t —s) dW(s)‘Z}
c(e{laprxil’y + B{| [ a9 awe]'})
c HXOH%Q(Q’H,@)+/Ot||A§E(s)PQ;H2Hsds)

<<
<<
2 — [, LT
< C(IX0lE 0+ 3 [ 147 B () PQE 0 as)
=1
<<

>N A=2 1
CI1X0l2 010 + DA QEaul?)
=1

B=2 1
= C(I1X0l12, g 10y + 1477 Q¥ [
For 8 = 0 and the H-norm, there are additional terms

E{[[(I = P)Xo[*} = E{(X0, 0)*} < [ XolI7, (.m0
E{[|(I - YW ()|} = E{(W (). p0)*} < Ct.
[l

The finite element approximation of the linear Cahn-Hilliard-Cook equa-
tion is: Find X} (¢) € Si, such that

(3.4) dX, + A3 Xy dt = P, dW, t>0; X(0) = P,Xo,
with the mild solution

(3.5) X (1) = En(t)PaXo + /0 "Bt — 5P, AW (s).

Theorem 3.2. Let X} and X be the mild solutions (3.5) and (3.1) with

Xo € Lo(Q, HP) and ||A¥Q%||Hs < 00 for some B € [1,r]. Then there are
ho and C, such that, for h < hg and t > 0,

f=2 1

1Xn () = X ()| o011y < OB (I1Xoll 110y + Tog IIA™Z Q2 [[ns).
Proof. Use (3.1) and (3.5) and set Fy(t) = Ep(t)P, — E(t) to get
[ Xn(t) = X (Ol Lo.m) < llex@llzo,m) + le2(®ll Lo,y
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where, see ,
e1(t) = F(t) Xo = Fp(t)PXo,
ea(t) = /Ot Fp(t—s)dW(s) = /Ot Fp(t —s)PdW (s).
By using Theorem [2.1] we get
lex(®)lam = (BIF(D)Xol?)? < CH*(BIXo[3)? = CHP || Xoll (0,0

For the second term we use the isometry (3.2)), the definition of the Hilbert-
Schmidt norm (3.3]), and Theorem [2.1

le2 (113, .00 = E(| /0 At-9awe)|)
-/ HFhu—s)Q%H%{sds—g [ im@@talzas

[e’e] ) _ 1
< Cllog h|*h*? Y " 1Q2 i35 = C|log h|*h*? | AP=2/2Qz 3.
=1
O

Now we consider the fully discrete Cahn-Hilliard-Cook equation ([1.10))
with mild solution

n

(3.6) Xpn=EpPuXo+ Y Epn TP oW;, where Ep, = (I+kA7)™.
j=1

Theorem 3.3. Let X}, and X be given by (3.6) and (3.1) with Xo €

Lo(Q, HP) and ||A¥Q%HHS < oo for some (8 € [1,min(r,4)]. Then there
are hg, kg and C, such that, for h < hg, k < ko, andn > 1,

[ Xnn — X (&)l Lo,
B B=2 1
< (C|logh\hﬁ+Cg7kk4)(HXQHL2(Q7H5) + 1A Q2 |lns),
where Cg i, = & for B <4 and Cgj, = C|logk| for f = 4.

Proof. By using (3.1) and (3.6) we get, with F,, = E}, P, — E(t,),

n t;
en = Fr,Xo + Z/ Fn—j+1 dW(S)
j=17ti-1

Y /t (Etn —tj-1) — Bty — 5)) dW(5) = en1 + ens + ens.
j=1 7t

By using Theorem [2.2] we have

1 ]
(3.7) lenilla.m = (BIFXol?)? < O + k7)1 X0 1,0, 115)-
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By using the isometry (3.2)) and Theorem [2.2} ﬂ we get

Hz " Eaaw )
Jj—1
—Z / IFuese1@H s ds = £ 303 [Fac @l
=1 j=1

o

B 1
<37 (Cllog hlh’ + Cpik3)|Qdrl3
=1

B B=2 1
= (Cllog hlh® + Cpik3) | A7 Q2lis.
By using the isometry property (3.2)) again we have

tj

lensl13 ,0.m) < E ‘Z —tj_1) — E(tn — 5)) dW(s)Hz)

t]1

—Z / o — 1) — Bty — $)QF 3 ds
Yy / |A5 (B(s — tj—1) — DAE(t, — 5) AT Q3| ds.

=1 j=1

Using the well-known inequality
=L B8
IA7 (E(t) — Twl|| < Cta]|w],

with ¢t = s —tj,w = AE(t, — s)A¥ Qéqbl, together with (2.2)), we get

B > tn B—2 1
lenal o < OFF 3 /O JAB(t, — ) AT Qb r]* ds

< Ck* Z |4 Qa2 = k3 A5 Q3 s
Putting these together proves the desired result. ([

4. CONCLUSION

We have studied numerical approximation of the linearized Cahn-Hilliard-
Cook equation by a spatially semidiscrete finite element method and a com-
pletely discrete method based on the implicit Euler time-stepping. We have
proved strong convergence estimates of optimal order except for a logarith-
mic factor.

By means of the It6 isometry the proofs are reduced to proving error esti-
mates for the corresponding deterministic problem, that is, error estimates
for approximations of the Cahn-Hilliard semigroup e~tA*_ This is where the
main effort has been spent. Since the finite element method is based on
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(Ap)? rather than (A?); this analysis is more difficult than for the linear
heat equation in [13].

Our results should be interpreted as results about approximation of the
stochastic convolution fg o (t=5)A dW (s), which is a part of the mild so-
lution of the nonlinear Cahn-Hilliard-Cook equation. The remaining part,
which solves a nonlinear random evolution problem, is studied in the se-
quel [II], where strong convergence is proved for the spatially semidiscrete
approximation of the nonlinear Cahn-Hilliard-Cook equation, but without
known rate of convergence. To obtain the optimal rate of convergence re-
mains a challenge. Another open problem is to study weak convergence.
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