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Abstract. The linearized Cahn-Hilliard-Cook equation is discretized
in the spatial variables by a standard finite element method. Strong
convergence estimates are proved under suitable assumptions on the
covariance operator of the Wiener process, which is driving the equation.
The backward Euler time stepping is also studied. The analysis is set
in a framework based on analytic semigroups. The main effort is spent
on proving detailed error bounds for the corresponding deterministic
Cahn-Hilliard equation. The results should be interpreted as results
about approximation of the stochastic convolution, which is a part of
the mild solution of the nonlinear Cahn-Hilliard-Cook equation.

1. Introduction

When the Cahn-Hilliard equation (cf. [2, 3]) is perturbed by noise, we
obtain the so-called Cahn-Hilliard-Cook equation (cf. [1, 5])

(1.1)

du−∆v dt = dW, for x ∈ D, t > 0,

v = −∆u+ f(u), for x ∈ D, t > 0,
∂u

∂n
= 0,

∂∆u
∂n

= 0, for x ∈ ∂D, t > 0,

u(·, 0) = u0,

where u = u(x, t), ∆ =
∑d

i=1
∂2

∂x2
i
, and ∂

∂n denotes the outward normal deriv-

ative on ∂D. We assume that D is a bounded domain in Rd for d ≤ 3 with
sufficiently smooth boundary. A typical f is f(s) = s3 − s. The purpose of
this work is to study numerical approximation by the finite element method
of the linearized Cahn-Hilliard-Cook equation, where f = 0.

We use the semigroup framework of [12] in order to give (1.1) a rigorous
meaning. Let ‖·‖ and (·, ·) denote the usual norm and inner product in the
Hilbert space H = L2(D) and let Hs = Hs(D) be the usual Sobolev space
with norm ‖·‖s. We also let Ḣ be the subspace of H, which is orthogonal

1991 Mathematics Subject Classification. 65M60, 60H15, 60H35, 65C30.
Key words and phrases. Cahn-Hilliard-Cook equation, stochastic convolution, Wiener

process, finite element method, backward Euler method, mean square, error estimate,
strong convergence.

1Supported by the Swedish Research Council (VR) and by the Swedish Foundation
for Strategic Research (SSF) through GMMC, the Gothenburg Mathematical Modelling
Centre.

1



2 S. LARSSON AND A. MESFORUSH

to the constants, that is, Ḣ = {v ∈ H : (v, 1) = 0}, and we let P : H → Ḣ
be the orthogonal projector.

We define the linear operator A = −∆ with domain of definition

D(A) =
{
v ∈ H2 :

∂v

∂n
= 0 on ∂D

}
.

Then A is a selfadjoint, positive definite, unbounded linear operator on Ḣ
with compact inverse. When it is considered as an unbounded operator on
H, it is positive semidefinite with an orthonormal eigenbasis {ϕj}∞j=0 and
corresponding eigenvalues {λj}∞j=0 such that

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · , λj →∞.

The first eigenfunction is constant, ϕ0 = |D|−
1
2 . We also define

|v|s = ‖A
s
2Pv‖ =

( ∞∑
j=1

λsj(v, ϕj)
2
)1/2

, s ∈ R,(1.2)

and Ḣs = {v ∈ Ḣ : |v|s < ∞} for s ≥ 0. For s < 0 we define Ḣs

to be the closure of Ḣ with respect to |·|s. Then Ḣ0 = Ḣ and ‖v‖2 =
|v|20 + (v, ϕ0)2. It is well known that, for integer s ≥ 0, Ḣs is a subspace of
Hs ∩ Ḣ characterized by certain boundary conditions and that the norms
| · |s and ‖·‖s are equivalent on Ḣs. In particular, we have Ḣ1 = H1 ∩ Ḣ
and the norm |v|1 = ‖A

1
2 v‖ = ‖∇v‖ is equivalent to ‖v‖1 on Ḣ1.

For v ∈ H we define

e−tA
2
v =

∞∑
j=0

e−tλ
2
j (v, ϕj)ϕj .

Then {E(t)}t≥0 = {e−tA2}t≥0 is the analytic semigroup on H generated by
−A2. We note that

E(t)v =
∞∑
j=1

e−tλ
2
j (v, ϕj)ϕj + (v, ϕ0)ϕ0 = E(t)Pv + (I − P )v,

where (I − P )v = |D|−1
∫
D v dx is the average of v.

Let (Ω,F ,P, {Ft}t≥0) be a filtered probability space, let Q be a selfad-
joint, positive semidefinite, bounded linear operator onH, and let {W (t)}t≥0

be an H-valued Q-Wiener process adapted to the filtration {Ft}t≥0.
Now the Cahn-Hilliard-Cook equation (1.1) may be written formally

(1.3) dX(t) +A2X(t) dt+Af(X(t)) dt = dW (t), t > 0; X(0) = X0.

The semigroup framework of [12] gives a rigorous meaning to this in terms
of the mild solution, which satisfies the integral equation

X(t) = E(t)X0 −
∫ t

0
E(t− s)Af(X(s)) ds+

∫ t

0
E(t− s) dW (s),
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where
∫ t

0 · · · dW (s) denotes theH-valued Itô integral. Existence and unique-
ness of solutions is proved in [6]. This is based on the natural splitting of
the solution as X(t) = Y (t) +WA(t), where

WA(t) =
∫ t

0
E(t− s) dW (s)

is a stochastic convolution, and where

Y (t) = E(t)X0 −
∫ t

0
E(t− s)Af(X(s)) ds

satisfies the random evolution problem

Ẏ (t) +A2Y (t) +Af
(
Y (t) +WA(t)

)
= 0, t > 0; Y (0) = X0.

The study of the stochastic convolution WA(t) is thus a first step towards
the study of the nonlinear problem.

In this work we therefore study numerical approximation of the linearized
Cahn-Hilliard-Cook equation

(1.4) dX +A2X dt = dW, t > 0; X(0) = X0,

with the mild solution

(1.5) X(t) = E(t)X0 +
∫ t

0
E(t− s) dW (s).

The nonlinear equation is studied in a forthcoming paper [11]. We remark
that a linearized equation of the form (1.4), but with A2 replaced by A2 +A
is studied by numerical simulation in the physics literature [7, 9].

For the approximation of the Cahn-Hilliard equation we follow the frame-
work of [8]. We assume that we have a family {Sh}h>0 of finite-dimensional
approximating subspaces of H1. Let Ph : H → Sh denote the orthogonal
projector. We then define Ṡh = {χ ∈ Sh : (χ, 1) = 0}. The operator
Ah : Sh → Ṡh (the “discrete Laplacian”) is defined by

(Ahχ, η) = (∇χ,∇η), ∀χ ∈ Sh, η ∈ Ṡh,

The operator Ah is selfadjoint, positive definite on Ṡh, positive semidefinite
on Sh, and Ah has an orthonormal eigenbasis {ϕh,j}Nhj=0 with corresponding
eigenvalues {λh,j}Nhj=0. We have

0 = λh,0 < λh,1 ≤ · · · ≤ λh,j ≤ · · · ≤ λh,Nh ,

and ϕh,0 = ϕ0 = |D|−
1
2 . Moreover, we define Eh(t) : Sh → Sh by

Eh(t)vh = e−tA
2
hvh =

Nh∑
j=1

e−tλh,j (vh, ϕh,j)ϕh,j + (vh, ϕ0)ϕ0.

Then {Eh(t)}t≥0 is the analytic semigroup generated by −A2
h. Clearly,

Ph : Ḣ → Ṡh and

Eh(t)Phv = Eh(t)PhPv + (I − P )v.
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The finite element approximation of the linearized Cahn-Hilliard-Cook
equation (1.4) is: Find Xh(t) ∈ Sh such that,

(1.6) dXh +A2
hXh dt = Ph dW, t > 0; Xh(0) = PhX0.

The mild solution of (1.6) is

(1.7) Xh(t) = Eh(t)PhX0 +
∫ t

0
Eh(t− s)Ph dW (s).

We note that∫ t

0
E(t− s)(I − P ) dW (s) = (I − P )

∫ t

0
dW (s) = (I − P )W (t),

so that (1.5) can be written

X(t) = E(t)PX0 + (I − P )X0

+
∫ t

0
E(t− s)P dW (s) + (I − P )W (t),

(1.8)

and similarly, for (1.7),

Xh(t) = Eh(t)PhPX0 + (I − P )X0

+
∫ t

0
Eh(t− s)PhP dW (s) + (I − P )W (t).

Therefore, the error analysis can be based on the formula

Xh(t)−X(t) =
(
Eh(t)Ph − E(t)

)
PX0

+
∫ t

0

(
Eh(t− s)Ph − E(t− s)

)
P dW (s),

(1.9)

and it is sufficient to work in the spaces Ḣ and Ṡh. Note that the numerical
computations are carried out in Sh and that Ṡh is only used in the analysis.

Let k = δt be a timestep, tn = nk, δXh,n = Xh,n − Xh,n−1, δWn =
W (tn)−W (tn−1), and apply Euler’s method to (1.6) to get

(1.10) δXh,n +A2
hXh,n δt = Ph δWn, n ≥ 1; Xh,0 = PhX0.

With Ekh = (I + kA2
h)−1 we obtain a discrete variant of the mild solution

Xh,n = EnkhPhX0 +
n∑
j=1

En−j+1
kh Ph δWj .

In Section 2 we assume that {Sh}h>0 admits an error estimate of order
O(hr) as the mesh parameter h→ 0 for some integer r ≥ 2. Then we show
error estimates for the semigroup Eh(t) with minimal regularity requirement.
More precisely, in Theorem 2.1 we show, for β ∈ [1, r] and all t ≥ 0,

‖Fh(t)v‖ ≤ Chβ |v|β, v ∈ Ḣβ,(∫ t

0
‖Fh(τ)v‖2 dτ

) 1
2 ≤ C| log h|hβ |v|β−2, v ∈ Ḣβ−2,
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where Fh(t) = Eh(t)Ph − E(t) is the error operator in (1.9).
Analogous estimates are obtained for the implicit Euler approximation in

Theorem 2.2.
In Section 3 we follow the technique developed in [14, 13] and use these

estimates to prove strong convergence estimates for approximation of the
linear Cahn-Hilliard-Cook equation. Let L2(Ω, Ḣβ) be the space of square
integrable Ḣβ-valued random variables with norm

(1.11) ‖X‖L2(Ω,Ḣβ) =
(
E
{
|X|2β

}) 1
2 =

(∫
Ω
|X(ω)|2β dP(ω)

) 1
2
,

and let ‖T‖HS denote the Hilbert-Schmidt norm of bounded linear operators
on H, ‖T‖2HS =

∑∞
j=1 ‖Tφj‖2, where {φj}∞j=1 is an arbitrary orthonormal

basis for H. In Theorem 3.1 we study the spatial regularity of the mild
solution (1.5) and show

‖X(t)‖L2(Ω,Ḣβ) ≤ C
(
‖X0‖L2(Ω,Ḣβ) + ‖A

β−2
2 Q

1
2 ‖HS

)
for β ≥ 0.

Moreover, in Theorem 3.2 we show strong convergence for the mild solution
Xh in (1.7):

‖Xh(t)−X(t)‖L2(Ω,H)

≤ Chβ
(
‖X0‖L2(Ω,Ḣβ) + | log h|‖A

β−2
2 Q

1
2 ‖HS

)
, β ∈ [1, r].

In Theorem 3.3 for the fully discrete case we obtain similarly, for β ∈
[1,min(r, 4)],

‖Xh,n −X(tn)‖L2(Ω,H)

≤
(
C| log h|hβ + Ck,βk

β
4
)(
‖X0‖L2(Ω,Ḣβ) + ‖A

β−2
2 Q

1
2 ‖HS

)
,

where Cβ,k = C
4−β for β < 4 and Cβ,k = C| log k| for β = 4.

Note that these bounds are uniform with respect to t ≥ 0 and tn ≥ 0.
Our results require that ‖A

β−2
2 Q

1
2 ‖HS < ∞. In order to see what this

means we compute two special cases. For Q = I (spatially uncorrelated
noise, or space-time white noise), by using the asymptotics λj ∼ j

2
d , we

have

‖A
β−2

2 Q
1
2 ‖2HS = ‖A

β−2
2 ‖2HS =

∞∑
j=1

λβ−2
j ∼

∞∑
j=1

j(β−2) 2
d <∞,

if β < 2 − d
2 . Hence, for example, β < 1

2 if d = 3. On the other hand, if Q
is of trace class, Tr(Q) = ‖Q

1
2 ‖2HS <∞, then we may take β = 2.

There are few studies of numerical methods for the Cahn-Hilliard-Cook
equation. We are only aware of [4], in which convergence in probability
was proved for a difference scheme for the nonlinear equation in multiple
dimensions, and [10], where strong convergence was proved for the finite
element method for the linear equation in 1-D.
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2. Error estimates for the Cahn-Hilliard semigroup

We start this section with some necessary inequalities. Let {E(t)}t≥0 =
{e−tA2}t≥0 and {Eh(t)}t≥0 = {e−tA2

h}t≥0 be the semigroups generated by
−A2 and −A2

h, respectively. By the smoothing property there exist positive
constants c, C, independent of h and t, such that

‖A2β
h Eh(t)PhPv‖ + ‖A2βE(t)Pv‖ ≤ Ct−βe−ct‖v‖, β ≥ 0,(2.1) ∫ t

0
‖AhEh(s)PhPv‖2 ds+

∫ t

0
‖AE(s)Pv‖2 ds ≤ C‖v‖2.(2.2)

Let Rh : Ḣ1 → Ṡh be the Ritz projector defined by

(∇Rhv,∇χ) = (∇v,∇χ), ∀χ ∈ Ṡh.

It is clear that Rh = A−1
h PhA. We assume that for some integer r ≥ 2, we

have the error bound, with the norm defined in (1.2),

(2.3) ‖Rhv − v‖ ≤ Chβ|v|β, v ∈ Ḣβ, 1 ≤ β ≤ r.

This holds with r = 2 for the standard piecewise linear Lagrange finite
element method in a bounded convex polygonal domain D. For higher order
elements the situation is more complicated and we refer to standard texts
on the finite element method. In the next theorem we prove error estimates
for the Cahn-Hilliard semigroup in the semidiscrete case.

Theorem 2.1. Set Fh(t) = Eh(t)Ph−E(t). Then there are h0 and C, such
that for h ≤ h0, 1 ≤ β ≤ r and t ≥ 0, we have

‖Fh(t)v‖ ≤ Chβ |v|β, v ∈ Ḣβ,(2.4) (∫ t

0
‖Fh(τ)v‖2 dτ

) 1
2 ≤ C| log h|hβ |v|β−2, v ∈ Ḣβ−2.(2.5)

Note that Fh(t)v = Fh(t)Pv for v ∈ H, so that it is sufficient to take
v ∈ Ḣ. The reason why we assume β ≥ 1 is that in (2.5) we need at least
v ∈ Ḣ−1 for Eh(t)Phv to be defined. The bound (2.4) can be found in [8],
but (2.5) is new. We adapt the technique from [8] to provide a self-contained
proof.

Proof. Let u(t) = E(t)v, uh(t) = Eh(t)Phv be the solutions of

ut +A2u = 0, t > 0; u(0) = v,(2.6)

uh,t +A2
huh = 0, t > 0; uh(0) = Phv.(2.7)

Here ut denotes the time derivative. Set e(t) = uh(t) − u(t). We want to
prove that

‖e(t)‖ ≤ Chβ |v|β, v ∈ Ḣβ,(∫ t

0
‖e(τ)‖2 dτ

) 1
2 ≤ C| log h|hβ |v|β−2, v ∈ Ḣβ−2.
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Let G = A−1P and Gh = A−1
h PhP . Apply G to (2.6) to get Gut + Au = 0,

and apply G2
h to (2.7) to get G2

huh,t + uh = 0. Hence,

G2
het + e = −G2

hut − u+Gh(Gut +Au) = (GhA− I)u−Gh(GhA− I)Gut,

that is,

(2.8) G2
het + e = ρ+Ghη,

where ρ = (Rh − I)u, η = −(Rh − I)Gut. Take the inner product of (2.8)
by et to get

‖Ghet‖2 +
1
2

d
dt
‖e‖2 = (ρ, et) + (η,Ghet),

Since (η,Ghet) ≤ ‖η‖‖Ghet‖ ≤ 1
2‖η‖

2 + 1
2‖Ghet‖

2, we obtain

‖Ghet‖2 +
d
dt
‖e‖2 ≤ 2(ρ, et) + ‖η‖2.

Multiply this inequality by t to get

t‖Ghet‖2 + t
d
dt
‖e‖2 ≤ 2t(ρ, et) + t‖η‖2.

For compactness of notation we write t‖η‖2 instead of t‖η(t)‖2 and similarly
for the other terms. Note that

t
d
dt
‖e‖2 =

d
dt
(
t‖e‖2

)
− ‖e‖2, t(ρ, et) =

d
dt
(
t(ρ, e)

)
− (ρ, e)− t(ρt, e),

so that

t‖Ghet‖2 +
d
dt
(
t‖e‖2

)
≤ 2

d
dt
(
t(ρ, e)

)
+ 2|(ρ, e)|+ 2|t(ρt, e)|+ t‖η‖2 + ‖e‖2.

But

|(ρ, e)| ≤ ‖ρ‖‖e‖ ≤ 1
2
‖ρ‖2 +

1
2
‖e‖2,

|t(ρt, e)| ≤ t‖ρt‖‖e‖ ≤
1
2
t2‖ρt‖2 +

1
2
‖e‖2.

Hence,

t‖Ghet‖2 +
d
dt
(
t‖e‖2

)
≤ 2

d
dt
(
t(ρ, e)

)
+ ‖ρ‖2 + t2‖ρt‖2 + t‖η‖2 + 3‖e‖2.

Integrate over [0, t] and use Young’s inequality to get∫ t

0
τ‖Ghet‖2 dτ + t‖e‖2 ≤ 2t‖ρ‖2 +

1
2
t‖e‖2 +

∫ t

0
‖ρ‖2 dτ +

∫ t

0
τ2‖ρt‖2 dτ

+
∫ t

0
τ‖η‖2 dτ + 3

∫ t

0
‖e‖2 dτ.

Hence,

(2.9) t‖e‖2 ≤ Ct‖ρ‖2 + C

∫ t

0

(
‖ρ‖2 + τ2‖ρt‖2 + τ‖η‖2 + ‖e‖2

)
dτ.
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We must bound
∫ t

0 ‖e‖
2 dτ . Multiply (2.8) by e to get

1
2

d
dt
‖Ghe‖2+‖e‖2 ≤ ‖ρ‖‖e‖+‖η‖‖Ghe‖ ≤

1
2
‖ρ‖2+

1
2
‖e‖2+‖η‖ max

0≤τ≤t
‖Ghe‖,

so that

(2.10)
d
dt
‖Ghe‖2 + ‖e‖2 ≤ ‖ρ‖2 + 2‖η‖ max

0≤τ≤t
‖Ghe‖.

Integrate (2.10), note that Ghe(0) = A−1
h Ph(Ph − I)v = 0, to get

‖Ghe‖2 +
∫ t

0
‖e‖2 dτ ≤

∫ t

0
‖ρ‖2 dτ + max

0≤τ≤t
‖Ghe‖2 +

(∫ t

0
‖η‖ dτ

)2
.

Hence, since t is arbitrary,

(2.11)
∫ t

0
‖e‖2 dτ ≤

∫ t

0
‖ρ‖2 dτ +

(∫ t

0
‖η‖ dτ

)2
.

We insert (2.11) in (2.9) and conclude

t‖e‖2 ≤ Ct‖ρ‖2 + C

∫ t

0

(
‖ρ‖2 + τ2‖ρt‖2 + τ‖η‖2

)
dτ

+ C
(∫ t

0
‖η‖ dτ

)2
.

(2.12)

We compute the terms in the right hand side. With v ∈ Ḣβ, recalling
ρ = (Rh − I)u and using (2.3), we have

(2.13) ‖ρ(t)‖ ≤ Chβ|u(t)|β ≤ Chβ‖E(t)A
β
2 v‖ ≤ Chβ‖A

β
2 v‖ ≤ Chβ|v|β,

so that,

t‖ρ‖2 ≤ Ch2βt|v|2β,
∫ t

0
‖ρ‖2 dτ ≤ Ch2βt|v|2β.

Similarly, by (2.1),

‖ρt(t)‖ ≤ Chβ|ut(t)|β ≤ Chβ‖A2E(t)A
β
2 v‖ ≤ Chβt−1|v|β,

so that

(2.14)
∫ t

0
τ2‖ρt‖2 dτ ≤ Ch2βt|v|2β.

Moreover, since η = −(Rh − I)Gut = (Rh − I)GA2E(t)v,

‖η(t)‖ ≤ Chβ|Gut(t)|β ≤ Chβ‖AE(t)A
β
2 v‖ ≤ Chβt−

1
2 |v|β,

so that (∫ t

0
‖η‖ dτ

)2
≤ Ch2βt|v|2β,

∫ t

0
τ‖η‖2 dτ ≤ Ch2βt|v|2β.

By inserting these in (2.12) we conclude

t‖e‖2 ≤ Ch2βt|v|2β,
which proves (2.4).
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To prove (2.5) we recall (2.11) and let v ∈ Ḣβ−2. By using (2.3) and (2.2)
we obtain ∫ t

0
‖ρ‖2 dτ ≤ Ch2β

∫ t

0
|u|2β dτ = Ch2β

∫ t

0
‖AE(τ)A

β−2
2 v‖2 dτ

≤ Ch2β|v|2β−2.

(2.15)

Now we compute
∫ t

0 ‖η‖ dτ . To this end we assume first 1 < β ≤ r and let
1 ≤ γ < β. By using (2.1) and (2.3) we get∫ t

0
‖η‖ dτ ≤ Chγ

∫ t

0
|Gut|γ dτ = Chγ

∫ t

0
‖A2−β−γ

2 E(τ)A
β−2

2 v‖ dτ

≤ Chγ
∫ t

0
τ−1+β−γ

4 e−cτ dτ |v|β−2,

where, since 0 < β − γ ≤ r − 1,∫ t

0
τ−1+β−γ

4 e−cτ dτ =
4

β − γ

∫ t
β−γ

4

0
e−cs

4
β−γ ds ≤ C

β − γ

∫ ∞
0

e−cs
4
r−1 ds.

Hence, with C independent of β,

(2.16)
∫ t

0
‖η‖ dτ ≤ Chγ

β − γ
|v|β−2.

Now let 1
β−γ = | log h| = − log h, so γ → β as h→ 0, and

γ log h = (γ − β + β) log h = 1 + β log h.

Therefore we have
hγ

β − γ
= | log h|eγ log h = | log h|e1+β log h ≤ C| log h|hβ.

Put this in (2.16) to get, for 1 < β ≤ r,

(2.17)
∫ t

0
‖η‖ dτ ≤ Chβ| log h||v|β−2,

and hence also for 1 ≤ β ≤ r, because C is independent of β. Finally, we
put (2.15) and (2.17) in (2.11) to get(∫ t

0
‖e‖2 dτ

) 1
2 ≤ C| log h|hβ|v|β−2,

which is (2.5). �

Now we turn to the fully discrete case. The backward Euler method
applied to

uh,t +A2
huh = 0, t > 0; uh(0) = Phv,

defines Un ∈ Sh by

(2.18) ∂Un +A2
hUn = 0, n ≥ 1; U0 = Phv,
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where ∂Un = 1
k (Un − Un−1). Denoting Enkh = (I + kA2

h)−n, we have
Un = Enkhv. The next theorem provides error estimates for the Euler ap-
proximation of the Cahn-Hilliard semigroup.

Theorem 2.2. Set Fn = EnkhPh−E(tn). Then there are h0, k0 and C, such
that for h ≤ h0, k ≤ k0, 1 ≤ β ≤ min(r, 4), and n ≥ 1, we have

‖Fnv‖ ≤ C(hβ + k
β
4 )|v|β, v ∈ Ḣβ,(2.19) (

k
n∑
j=1

‖Fjv‖2
) 1

2 ≤
(
C| log h|hβ + Cβ,kk

β
4
)
|v|β−2, v ∈ Ḣβ−2,(2.20)

where Cβ,k = C
4−β for β < 4 and Cβ,k = C| log k| for β = 4.

Proof. Let G and Gh be as in the proof of Theorem 2.1. With en = Un−un =
EnkhPhv − E(tn)v, we get

(2.21) G2
h∂en + en = ρn +Ghηn +Ghδn,

where un = u(tn), ut,n = ut(tn) and

ρn = (Rh − I)un, ηn = −(Rh − I)G∂un, δn = −G(∂un − ut,n).

Multiply (2.21) by ∂en and note that

(ηn, Gh∂en) ≤ ‖ηn‖2 +
1
4
‖Gh∂en‖2, (δn, Gh∂en) ≤ ‖δn‖2 +

1
4
‖Gh∂en‖2,

to get

(2.22) ‖Gh∂en‖2 + 2(en, ∂en) ≤ 2(ρn, ∂en) + 2‖ηn‖2 + 2‖δn‖2.

We have the following identities

∂(anbn) = (∂an)bn + an−1(∂bn)(2.23)

= (∂an)bn + an(∂bn)− k(∂an)(∂bn).(2.24)

By using (2.24) we have

2(en, ∂en) = ∂‖en‖2 + k‖∂en‖2,
(ρn, ∂en) = ∂(ρn, en)− (∂ρn, en) + k(∂ρn, ∂en).

Put these in (2.22) and cancel k‖∂en‖2 to get

‖Gh∂en‖2 + ∂‖en‖2 ≤ 2∂(ρn, en)− 2(∂ρn, en) + k‖∂ρn‖2 + 2‖ηn‖2 + 2‖δn‖2.

Multiply this by tn−1, and note that k ≤ tn−1 for n ≥ 2, so that for n ≥ 1
we have

tn−1‖Gh∂en‖2 + tn−1∂‖en‖2

≤ 2tn−1∂(ρn, en)− 2tn−1(∂ρn, en) + t2n−1‖∂ρn‖2

+ 2tn−1‖ηn‖2 + 2tn−1‖δn‖2.
(2.25)
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By (2.23) we have

tn−1∂‖en‖2 = ∂(tn‖en‖2)− ‖en‖2,
2tn−1∂(ρn, en) = 2∂(tn(ρn, en))− 2(ρn, en).

Put these in (2.25) to get

tn−1‖Gh∂en‖2 + ∂(tn‖en‖2)

≤ C
(
∂(tn(ρn, en)) + ‖ρn‖2 + t2n−1‖∂ρn‖2 + ‖en‖2

)
+ C

(
tn−1‖ηn‖2 + tn−1‖δn‖2

)
.

(2.26)

Note that

k

n∑
j=1

∂
(
tj‖ej‖2

)
= tn‖en‖2, k

n∑
j=1

∂
(
tj(ρj , ej)

)
= tn(ρn, en).(2.27)

By summation in (2.26) and using (2.27) we get

k
n∑
j=1

tj−1‖Gh∂ej‖2 + tn‖en‖2 ≤ Ctn‖ρn‖2

+ Ck

n∑
j=1

(
‖ρj‖2 + t2j−1‖∂ρj‖2 + ‖ej‖2

)
+ Ck

n∑
j=1

(
tj−1‖ηj‖2 + tj−1‖δj‖2

)
.

(2.28)

Now we estimate k
∑n

j=1 ‖ej‖2. Multiply (2.21) by en to get

(2.29) 2(G2
h∂en, en) + ‖en‖2 ≤ ‖ρn‖2 + 2

(
‖ηn‖ + ‖δn‖

)
‖Ghen‖.

By (2.24) we have

(2.30) 2(G2
h∂en, en) = 2(∂Ghen, Ghen) = ∂‖Ghen‖2 + k‖∂Ghen‖2.

By summation in (2.29) and using Ghe0 = 0, we get

‖Ghen‖2 + k
n∑
j=1

‖ej‖2 ≤ k
n∑
j=1

‖ρj‖2 +
1
2

max
j≤n
‖Ghej‖2

+ 2
(
k

n∑
j=1

(
‖ηj‖ + ‖δj‖

))2
.

Hence,

(2.31) k
n∑
j=1

‖ej‖2 ≤ k
n∑
j=1

‖ρj‖2 + 2
(
k

n∑
j=1

(
‖ηj‖ + ‖δj‖

))2
.
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By putting (2.31) in (2.28) we get

tn‖en‖2 ≤Ctn‖ρn‖2

+ Ck

n∑
j=1

(
‖ρj‖2 + t2j−1‖∂ρj‖2 + tj−1‖ηj‖2 + tj−1‖δj‖2

)
+ C

(
k

n∑
j=1

(
‖ηj‖ + ‖δj‖

))2
.

(2.32)

We compute these terms. With v ∈ Ḣβ we have by (2.13),

(2.33) ‖ρn‖2 ≤ Ch2β|v|2β, k
n∑
j=1

‖ρj‖2 ≤ Ch2βtn|v|2β.

By using the Cauchy-Schwartz inequality we have

k

n∑
j=1

t2j−1‖∂ρj‖2 = k

n∑
j=2

t2j−1

∥∥∥1
k

∫ tj

tj−1

ρt dτ
∥∥∥2

≤
n∑
j=2

(
t2j−1

1
k

∫ tj

tj−1

τ−2dτ
∫ tj

tj−1

τ2‖ρt(τ)‖2 dτ
)
≤
∫ tn

0
τ2‖ρt‖2dτ.

Hence, by (2.14),

(2.34) k

n∑
j=1

t2j−1‖∂ρj‖2 ≤ Ch2βtn|v|2β.

By using (2.3) and (2.1) we have

‖ηj‖ ≤ Chβ|G∂uj |β ≤
Chβ

k

∥∥∥∫ tj

tj−1

AE(τ)A
β
2 v dτ

∥∥∥
≤ Chβ

k

∫ tj

tj−1

τ−
1
2 dτ‖A

β
2 v‖ ≤ Chβ

k
(
√
tj −

√
tj−1)|v|β ≤

Chβ
√
tj
|v|β.

So

(2.35) k

n∑
j=1

tj−1‖ηj‖2 ≤ Ch2βtn|v|2β, k

n∑
j=1

‖ηj‖ ≤ Chβt
1
2
n |v|β.

By using (2.1) we have, for j ≥ 2,

‖δj‖ ≤
∥∥∥1
k

∫ tj

tj−1

(τ − tj−1)Gutt(τ)dτ
∥∥∥ ≤ ∫ tj

tj−1

‖A3−β
2E(τ)A

β
2 v‖ dτ

≤ C
∫ tj

tj−1

τ
−6+β

4 dτ |v|β,
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so that, by Hölder’s inequality with p = 4
β and q = 4

4−β , 1 ≤ β < 4,∫ tj

tj−1

τ
−6+β

4 dτ ≤ Ck
β
4

(∫ tj

tj−1

(
τ
−6+β

4
) 4

4−β dτ
) 4−β

4

≤ Ck
β
4

(β − 4
2
(
t
− 2

4−β
j−1 − t

− 2
4−β

j

)) 4−β
4 ≤ Ck

β
4 t
− 1

2
j−1.

The same result is obtained with β = 4. For j = 1 we have

‖δ1‖ ≤
∥∥∥1
k

∫ k

0
τGutt(τ) dτ

∥∥∥ ≤ C 1
k

∫ k

0
τ
−2+β

4 dτ |v|β

≤ C 4
2 + β

k
−2+β

4 |v|β ≤ Ck
β
4 t
− 1

2
1 |v|β.

So we have, for j ≥ 1,

‖δj‖ ≤ Ck
β
4 t
− 1

2
j |v|β.

Hence,

(2.36) k

n∑
j=1

‖δj‖ ≤ ck
β
4 t

1
2
n |v|β, k

n∑
j=1

tj−1‖δj‖2 ≤ Ck
β
2 tn|v|2β.

Put (2.33), (2.34), (2.35), and (2.36) in (2.32), to get

‖en‖ ≤ C(hβ + k
β
4 )|v|β.

This completes the proof (2.19).
To prove (2.20) we recall (2.31) and let v ∈ Ḣβ−2. For the first term we

write k
∑n

j=1 ‖ρj‖2 = k‖ρ1‖2 + k
∑n

j=2 ‖ρj‖2, where by (2.1)

k‖ρ1‖2 ≤ kCh2β‖AE(k)A
β−2

2 v‖2 ≤ Ch2β|v|β−2,

and

k

n∑
j=2

‖ρj‖2 =
n∑
j=2

∫ tj

tj−1

∥∥∥ρ(s) +
∫ tj

s
ρt(τ) dτ

∥∥∥2
ds

≤ 2
n∑
j=2

∫ tj

tj−1

‖ρ(s)‖2 ds+ 2
n∑
j=2

∫ tj

tj−1

∥∥∥∫ tj

s
ρt(τ) dτ

∥∥∥2
ds

≤ 2
∫ tn

t1

‖ρ(s)‖2 ds+ 2
n∑
j=2

∫ tj

tj−1

(tj − s)
∫ tj

tj−1

‖ρt(τ)‖2 dτ ds

≤ 2
∫ tn

0
‖ρ‖2 dτ + 2k

∫ tn

t1

τ‖ρt‖2 dτ,

since tj − s ≤ k ≤ τ and where, by (2.15),∫ tn

0
‖ρ‖2 dτ ≤ Ch2β|v|2β−2,
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and

k

∫ tn

t1

τ‖ρt‖2 dτ ≤ Ch2βk

∫ tn

t1

τ‖A3E(τ)A
β−2

2 v‖2 dτ

≤ Ch2βk

∫ tn

k
τ−2 dτ |v|2β−2 ≤ Ch2βk(k−1 − t−1

n )|v|2β−2 ≤ Ch2β|v|2β−2.

So

(2.37) k
n∑
j=1

‖ρj‖2 ≤ Ch2β|v|2β−2.

Now we compute k
∑n

j=1 ‖ηj‖. Recall that ηj = −(Rh − I)G∂uj and η =
−(Rh − I)Gut, so

‖ηj‖ =
∥∥∥(Rh − I)G

1
k

∫ tj

tj−1

ut dτ
∥∥∥ ≤ 1

k

∫ tj

tj−1

‖(Rh − I)Gut‖ dτ

≤ 1
k

∫ tj

tj−1

‖η‖ dτ,

and hence by (2.17) we have

(2.38) k

n∑
j=1

‖ηj‖ ≤
∫ tn

0
‖η‖ dτ ≤ Chβ| log h||v|β−2.

For computing k
∑n

j=1 ‖δj‖ we use (2.1) and obtain for 1 ≤ β < 4,

‖δj‖ ≤
1
k

∫ tj

tj−1

(τ − tj−1)‖Gutt(τ)‖ dτ ≤
∫ tj

tj−1

‖A4−β
2E(τ)A

β−2
2 v‖ dτ

≤ C
∫ tj

tj−1

τ−2+β
4 dτ |v|β−2.

Hence,

k

n∑
j=2

‖δj‖ ≤ Ck
∫ tn

k
τ−2+β

4 dτ |v|β−2 ≤ Ck
4

4− β

(
k−1+β

4 − t−1+β
4

n

)
|v|β−2

≤ C

4− β
k
β
4 |v|β−2

and

k‖δ1‖ ≤
∫ k

0
τ‖Gutt(τ)‖ dτ ≤

∫ k

0
τ‖A4−β

2E(τ)A
β−2

2 v‖ dτ

≤ C
∫ k

0
τ
β
4
−1 dτ |v|β−2 ≤

C

4− β
k
β
4 |v|β−2.
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Therefore, for 1 ≤ β < 4,

k

n∑
j=1

‖δj‖ ≤
C

4− β
k
β
4 |v|β−2.

If we put 1
4−β = | log k|, we also have

k

n∑
j=1

‖δj‖ ≤
C

4− β
k1− 4−β

4 |v|β−2 = C| log k|ke−
4−β

4
log k|v|β−2

≤ Ck| log k||v|β−2 = C| log k||v|β−2.

Therefore, for 1 ≤ β ≤ 4, we have

(2.39) k

n∑
j=1

‖δj‖ ≤ Cβ,kk
β
4 |v|β−2.

where Cβ,k = C
4−β for β < 4 and Cβ,k = C| log k| for β = 4. Finally we put

(2.37), (2.38) and (2.39) in (2.31), to get(
k

n∑
j=1

‖ej‖2
) 1

2 ≤
(
Chβ| log h|+ Cβ,kk

β
4

)
|v|β−2.

�

3. Approximation of the linear Cahn-Hilliard-Cook equation

Consider the linear Cahn-Hilliard-Cook equation (1.4) with mild solution

(3.1) X(t) = E(t)X0 +
∫ t

0
E(t− s) dW (s).

We recall the isometry of the Itô integral,

(3.2) E
{∥∥∥∫ t

0
B(s) dW (s)

∥∥∥2}
= E

{∫ t

0
‖B(s)Q

1
2 ‖2HS ds

}
,

where the Hilbert-Schmidt norm is defined by

(3.3) ‖T‖2HS =
∞∑
l=1

‖Tφl‖2.

Here {φl}∞l=1 is an arbitrary orthonormal basis for H. In the next theorem
we consider the regularity of the mild solution (3.1). The L2(Ω, Ḣβ)-norm
is defined in (1.11).

Theorem 3.1. Let X(t) be the mild solution (3.1) with X0 ∈ L2(Ω, Ḣβ)
and ‖A

β−2
2 Q

1
2 ‖HS <∞ for some β ≥ 0. Then

‖X(t)‖L2(Ω,Ḣβ) ≤ C
(
‖X0‖L2(Ω,Ḣβ) + ‖A

β−2
2 Q

1
2 ‖HS

)
, t ≥ 0.
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Moreover, if β = 0, then for the norm in H we have

‖X(t)‖L2(Ω,H) ≤ C
(
‖X0‖L2(Ω,H) + ‖A−1Q

1
2 ‖HS + t

1
2

)
, t ≥ 0.

Proof. Recall the definition of |·|β in (1.2). By using the isometry (3.2), the
definition of the Hilbert-Schmidt norm (3.3), and (2.1), (2.2) we get, for
β ≥ 0, see (1.8),

‖X(t)‖2
L2(Ω,Ḣβ)

= E
{∣∣∣E(t)X0 +

∫ t

0
E(t− s) dW (s)

∣∣∣2
β

}
≤ C

(
E
{∥∥Aβ

2 PE(t)X0

∥∥2}+ E
{∥∥∥∫ t

0
A
β
2 PE(t− s) dW (s)

∥∥∥2})
≤ C

(
‖X0‖2L2(Ω,Ḣβ)

+
∫ t

0
‖A

β
2E(s)PQ

1
2 ‖2HS ds

)
≤ C

(
‖X0‖2L2(Ω,Ḣβ)

+
∞∑
l=1

∫ t

0
‖A

β
2E(s)PQ

1
2φl‖2 ds

)
≤ C

(
‖X0‖2L2(Ω,Ḣβ)

+
∞∑
l=1

‖A
β−2

2 Q
1
2φl‖2

)
= C

(
‖X0‖2L2(Ω,Ḣβ)

+ ‖A
β−2

2 Q
1
2 ‖2HS

)
.

For β = 0 and the H-norm, there are additional terms

E{‖(I − P )X0‖2} = E{(X0, ϕ0)2} ≤ ‖X0‖2L2(Ω,H),

E{‖(I − P )W (t)‖2} = E{(W (t), ϕ0)2} ≤ Ct.

�

The finite element approximation of the linear Cahn-Hilliard-Cook equa-
tion is: Find Xh(t) ∈ Sh such that

(3.4) dXh +A2
hXh dt = Ph dW, t > 0; Xh(0) = PhX0,

with the mild solution

(3.5) Xh(t) = Eh(t)PhX0 +
∫ t

0
Eh(t− s)Ph dW (s).

Theorem 3.2. Let Xh and X be the mild solutions (3.5) and (3.1) with
X0 ∈ L2(Ω, Ḣβ) and ‖A

β−2
2 Q

1
2 ‖HS <∞ for some β ∈ [1, r]. Then there are

h0 and C, such that, for h ≤ h0 and t ≥ 0,

‖Xh(t)−X(t)‖L2(Ω,H) ≤ Chβ
(
‖X0‖L2(Ω,Ḣβ) + | log h|‖A

β−2
2 Q

1
2 ‖HS

)
.

Proof. Use (3.1) and (3.5) and set Fh(t) = Eh(t)Ph − E(t) to get

‖Xh(t)−X(t)‖L2(Ω,H) ≤ ‖e1(t)‖L2(Ω,H) + ‖e2(t)‖L2(Ω,H),
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where, see (1.9),

e1(t) = Fh(t)X0 = Fh(t)PX0,

e2(t) =
∫ t

0
Fh(t− s) dW (s) =

∫ t

0
Fh(t− s)P dW (s).

By using Theorem 2.1 we get

‖e1(t)‖L2(Ω,H) =
(
E‖Fh(t)X0‖2

) 1
2 ≤ Chβ

(
E|X0|2β

) 1
2 = Chβ‖X0‖L2(Ω,Ḣβ).

For the second term we use the isometry (3.2), the definition of the Hilbert-
Schmidt norm (3.3), and Theorem 2.1,

‖e2(t)‖2L2(Ω,H) = E
(∥∥∥∫ t

0
Fh(t− s) dW (s)

∥∥∥2)
=
∫ t

0
‖Fh(t− s)Q

1
2 ‖2HS ds =

∞∑
l=1

∫ t

0
‖Fh(s)Q

1
2φl‖2 ds

≤ C| log h|2h2β
∞∑
l=1

|Q
1
2φl|2β−2 = C| log h|2h2β‖A(β−2)/2Q

1
2 ‖2HS.

�

Now we consider the fully discrete Cahn-Hilliard-Cook equation (1.10)
with mild solution

(3.6) Xh,n = EnkhPhX0 +
n∑
j=1

En−j+1
kh Ph δWj , where Ekh = (I + kA2

h)−1.

Theorem 3.3. Let Xh,n and X be given by (3.6) and (3.1) with X0 ∈
L2(Ω, Ḣβ) and ‖A

β−2
2 Q

1
2 ‖HS < ∞ for some β ∈ [1,min(r, 4)]. Then there

are h0, k0 and C, such that, for h ≤ h0, k ≤ k0, and n ≥ 1,

‖Xh,n −X(tn)‖L2(Ω,H)

≤
(
C| log h|hβ + Cβ,kk

β
4
)(
‖X0‖L2(Ω,Ḣβ) + ‖A

β−2
2 Q

1
2 ‖HS

)
,

where Cβ,k = C
4−β for β < 4 and Cβ,k = C| log k| for β = 4.

Proof. By using (3.1) and (3.6) we get, with Fn = EnkhPh − E(tn),

en = FnX0 +
n∑
j=1

∫ tj

tj−1

Fn−j+1 dW (s)

+
n∑
j=1

∫ tj

tj−1

(
E(tn − tj−1)− E(tn − s)

)
dW (s) = en,1 + en,2 + en,3.

By using Theorem 2.2 we have

(3.7) ‖en,1‖L2(Ω,H) =
(
E‖FnX0‖2

) 1
2 ≤ C(hβ + k

β
4 )‖X0‖L2(Ω,Ḣβ).
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By using the isometry (3.2) and Theorem 2.2 we get

‖en,2‖2L2(Ω,H) = E
(∥∥∥ n∑

j=1

∫ tj

tj−1

Fn−j+1 dW (s)
∥∥∥2)

=
n∑
j=1

∫ tj

tj−1

‖Fn−j+1Q
1
2 ‖2HS ds = k

∞∑
l=1

n∑
j=1

‖Fn−j+1Q
1
2φl‖2

≤
∞∑
l=1

(
C| log h|hβ + Cβ,kk

β
4
)2|Q 1

2φl|2β−2

=
(
C| log h|hβ + Cβ,kk

β
4
)2‖Aβ−2

2 Q
1
2 ‖2HS.

By using the isometry property (3.2) again we have

‖en,3‖2L2(Ω,H) ≤ E
(∥∥∥ n∑

j=1

∫ tj

tj−1

(E(tn − tj−1)− E(tn − s)) dW (s)
∥∥∥2)

=
n∑
j=1

∫ tj

tj−1

‖(E(tn − tj−1)− E(tn − s))Q
1
2 ‖2HS ds

=
∞∑
l=1

n∑
j=1

∫ tj

tj−1

‖A−
β
2 (E(s− tj−1)− I)AE(tn − s)A

β−2
2 Q

1
2φl‖2 ds.

Using the well-known inequality

‖A
−β
2
(
E(t)− I

)
w‖ ≤ Ct

β
4 ‖w‖,

with t = s− tj , w = AE(tn − s)A
β−2

2 Q
1
2φl, together with (2.2), we get

‖en,3‖2L2(Ω,H) ≤ Ck
β
2

∞∑
l=1

∫ tn

0
‖AE(tn − s)A

β−2
2 Q

1
2φl‖2 ds

≤ Ck
β
2

∞∑
l=1

‖A
β−2

2 Q
1
2φl‖2 = Ck

β
2 ‖A

β−2
2 Q

1
2 ‖2HS.

Putting these together proves the desired result. �

4. Conclusion

We have studied numerical approximation of the linearized Cahn-Hilliard-
Cook equation by a spatially semidiscrete finite element method and a com-
pletely discrete method based on the implicit Euler time-stepping. We have
proved strong convergence estimates of optimal order except for a logarith-
mic factor.

By means of the Itô isometry the proofs are reduced to proving error esti-
mates for the corresponding deterministic problem, that is, error estimates
for approximations of the Cahn-Hilliard semigroup e−tA

2
. This is where the

main effort has been spent. Since the finite element method is based on
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(Ah)2 rather than (A2)h this analysis is more difficult than for the linear
heat equation in [13].

Our results should be interpreted as results about approximation of the
stochastic convolution

∫ t
0 e−(t−s)A2

dW (s), which is a part of the mild so-
lution of the nonlinear Cahn-Hilliard-Cook equation. The remaining part,
which solves a nonlinear random evolution problem, is studied in the se-
quel [11], where strong convergence is proved for the spatially semidiscrete
approximation of the nonlinear Cahn-Hilliard-Cook equation, but without
known rate of convergence. To obtain the optimal rate of convergence re-
mains a challenge. Another open problem is to study weak convergence.

References

[1] D. Blömker, S. Maier-Paape, and T. Wanner, Second phase spinodal decomposition
for the Cahn-Hilliard-Cook equation, Trans. Amer. Math. Soc. 360 (2008), 449–489.

[2] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free
energy, J. Chem. Phys. 28 (1958), 258–267.

[3] , Free energy of a nonuniform system II. Thermodynamic basis, J. Chem.
Phys. 30 (1959), 1121–1124.

[4] C. Cardon-Weber, Implicit approximation scheme for the Cahn-Hilliard stochastic
equation, Preprint, Laboratoire des Probabilités et Modelèles Aléatoires, Université
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