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Abstract: With the topic of plug-in HEV city buses, this paper studies the highly coupled
optimization problem of finding the most cost efficient compromise between investing in onboard
electric powertrain components and installing a charging infrastructure along the bus line. The
paper describes how convex optimization can be used to find the optimal battery sizing for a
series HEV with fixed engine and generator unit and a fixed charging infrastructure along the bus
line. The novelty of the proposed optimization approach is that both the battery sizing and the
energy management strategy are optimized simultaneously by solving a convex problem. In the
optimization approach the power characteristics of the engine-generator unit are approximated
by a convex, second order polynomial, and the convex battery model assumes quadratic losses.
The paper also presents an example for a specific bus line, showing the dependence between the
optimal battery sizing and the number of charging stations on the bus line.
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1. INTRODUCTION

Hybrid Electric Vehicles (HEVs) are widely regarded as
one of the most promising means of achieving a near-
term reduction of emissions and energy consumption from
the transportation sector. An HEV powertrain typically
includes an internal combustion engine (ICE), one or
more electric machines (EMs), and an energy buffer,
which is usually a battery or a super capacitor. For a
detailed overview on hybrid vehicles, see, eg, Guzzella and
Sciarretta (2007).

The so-called plug-in HEVs (PHEVs) are equipped with a
charging connector (typically an on-board charger), which
allows the PHEVs to charge the electric buffer from the
grid. PHEVs are designed to be charged either by the
standard household electric power infrastructure or at
stations installed on, eg parking lots, shopping malls, or
other locations.

In recent years, PHEVs have been considered for use in
public transportation by equipping high traffic bus lines
with a charging infrastructure, KAIST (2009), AutoTram
(2010), offering a flexible crossbreed between an HEV city
bus and a tram. In KAIST (2009) the PHEV city bus
is, while driving, inductively charged from underground
cables that have been buried along sections of the bus
line. In AutoTram (2010) the PHEV is equipped with a
super capacitor which is charged at the bus stops through
a docking station. Since the PHEVs are to be charged at
relatively high power, the energy buffer makes it possibly
to drive a significant part of the bus line on electric power

even though the charging infrastructure might be sparsely
distributed.

The cost optimal sizing of the energy buffer, ie power
rating and energy capacity, of these PHEVs will be heavily
dependent on the drive pattern and topography along
the bus line as well as the charging infrastructure. In
order to optimize the total cost efficiency of a PHEV
public transportation system, it will therefore be crucial
to find the best compromise between investing in onboard
electric powertrain components and installing charging
infrastructure along the bus line.

The solution to this optimization problem, however, de-
pends not only on the city bus system configuration, the
cost of the onboard electric components and the charging
infrastructure, but also on changing factors such as fuel
and electricity prices. Moreover, a complicating issue when
evaluating HEV city buses is that the energy efficiency
of the powertrain depends on how well adapted the en-
ergy management strategy is to the bus line, Johannes-
son (2009). For PHEV city buses the energy manage-
ment strategy will decide the operating point of the ICE
and thereby when and at what rate the energy buffer
is to be discharged. When optimizing the PHEV public
transportation system based on a dynamic model of the
powertrain, a badly tuned energy management strategy
might lead to a non-optimal sizing of the energy buffer
and thereby a non-optimal charging infrastructure.

The conclusion is that there is a strong need to develop a
systematic method that can optimize the cost efficiency of
a PHEV public transportation system taking the energy
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management strategy as well as the powertrain component
sizing and charging infrastructure into consideration. In
the general case this optimization problem is a nonconvex,
mixed integer problem, which means that there is little or
no hope of finding a global optimum.

Nevertheless, in this paper it will be shown that if the
PHEV is based on the so called series architecture, see
Guzzella and Sciarretta (2007), and has a battery as
energy buffer, the PHEV public transportation problem
can be divided into smaller convex subproblems. These
convex subproblems can be efficiently solved for a global
optimum using generally available solvers, SeDuMi (Labit
et al., 2002), SDPT3 (Toh et al., 2006). More specifically,
the paper describes how convex optimization can be used
to solve the subproblems of finding the optimal battery
sizing for a series HEV with a fixed engine and generator
unit and fixed charging infrastructure along the bus line.
In the optimization approach the power characteristics of
the engine-generator unit are approximated by a convex,
second order polynomial, and the convex battery model
assumes quadratic losses. The only heuristic choice in the
optimization is the engine on/off operation.

Finally, the solution to the PHEV public transportation
problem is found by solving the convex subproblems in
two nested loops for: 1) all different sizes of the engine and
generator unit, and 2) all possible distributions of charging
stations on the bus line.

The paper is outlined as follows: the studied bus line
and charging infrastructure are discussed in Section 2;
the PHEV powertrain model is described in Section 3;
the optimization problem is formulated in Section 4; the
method for solving the problem is presented in Section 5;
the convex modeling of the problem is given in Section 6;
an example of battery sizing is given in Section 7 and the
paper is ended with conslusion in Section 8.

2. BUS LINE AND CHARGING INFRASTRUCTURE

The studied bus line, see Fig. 1, is completely described
by the reference velocity vdem(t) and the road slope α(t)
(Fig. 1 illustrates the road altitude instead of the slope).
At each of the nbs bus stops along the line, it is possible
to place a charging station to which the bus can dock on,
or pick up electric power inductively, to charge its battery.

In the paper the number of charging stations along the
line, ncs, will be varied to study the effects on the optimal
battery sizing. For each ncs the charging stations are
distributed along the line with as equal distance to each
other as possible.

At the jth charging station the bus can be charged at
Pj,max maximum power for the duration of the stop
lasting tj seconds. Hence, the electric power that the whole
charging infrastructure provides, can be expressed as

Pcs(t, ncs) =

{

Pj,max for t ∈ [tcs,j , tcs,j + tj ]

0 otherwise
,

j = 0, ..., ncs, ncs ≤ nbs

(1)

where tcs,j is the time when the bus arrives at the jth
charging station.
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Fig. 1. Driving cycle. The top plot shows demanded
velocity and position of the bus stops. The bottom
plot shows the road altitude.
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Fig. 2. Series PHEV powertrain model.

3. PHEV POWERTRAIN MODEL

The system architecture for the studied PHEV is shown
in Fig. 2. The series powertrain includes an internal
combustion engine (ICE), two electric machines (EMs)
and a battery. The ICE together with the first electric
machine (EM1), also known as the engine-generator unit
(EGU), are used to supply electric energy to the second
electric machine (EM2) and the battery. The vehicle is
propelled entirely by EM2, which is mechanically coupled
to the wheels.

The powertrain is modeled as a nonlinear inverse simula-
tion model that satisfies the power balance equation

Pdem(t) = ηEM2
(t)PEM2

(t) + Pbrk(t)

PEM2
(t) = Pbat(t) + Pgrid(t) + PEM1

(t)

PEM1
(t) = ηEGU (t)Pf (t)

(2)

where Pdem(t), detailed below in (5), is the power re-
quired to exactly follow the driving profile, Pbrk(t) is
braking power corresponding to the energy dissipated in
the friction brakes, PEM2

(t) and ηEM2
(t) are power and

efficiency of EM2, Pbat(t) is the battery power, PEM1
(t)

is the electric power delivered by EM1 and ηEGU (t) is the
EGU efficiency for a given fuel power Pf (t). The electric
power, Pgrid(t), that the PHEV takes from the grid can
be expressed as

Pgrid(t) = xcs(t)Pcs(t, ncs), xcs(t) ∈ [0, 1] (3)
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Fig. 3. Model of the battery open circuit voltage, as can be
found in, eg, Guzzella and Sciarretta (2007). The solid
line represents the original function, while the dashed
line is the approximation. Good fit is expected in the
shaded region.

where xcs(t) is a decision variable that determines at which
rate the battery is to be charged when docked to a charging
station.

The powertrain components are physically limited by

PEM2
(t) ∈ [PEM2,min, PEM2,max]

PEM1
(t) ∈ [0, PEM1,max], Pbrk(t) ≤ 0.

(4)

The demanded power, Pdem(t), is uniquely determined by
the driving cycle and the longitudinal dynamics of the
vehicle, modeled as point mass, as,

Pdem(t) = (mv̇dem(t) +
ρair
2

Afcdv
2
dem(t)

+mgcr cosα(t) +mg sinα(t))vdem(t)
(5)

wherem is the vehicle mass, Af is the frontal area, cd is the
drag coefficient, cr is the rolling resistance coefficient, ρair
is the air density and g is the gravitational acceleration.

The EM2 efficiency is given by

ηEM2
(t) =

{

ηd if Pdem(t) > 0

1/ηc otherwise
(6)

where ηc is the charging and ηd is the discharging efficiency.

The battery system consists of np strings connected in
parallel, where each string consists of ns identical battery
cells in series. The power of the battery pack, modeling the
cells as simple resistive circuits, Guzzella and Sciarretta
(2007), can be computed as

Pbat(t) = (Voc −R i(t))i(t)nbc, nbc = nsnp (7)

where i(t) is the current in each of the strings, Voc is
the open circuit voltage of the battery cell, R is the cell
resistance and nbc is the total number of cells.

The state of charge (SOC) of the battery cell is defined as

soc(t) = soc0 −
1

Q

∫ t

t0

i(t)dt (8)

where Q denotes the battery cell capacity and soc0 is the
SOC at the initial time t0. The SOC and cell current are
limited according to

soc(t) ∈ [socmin, socmax], i(t) ∈ [imin, imax] (9)

where the limit on the allowed SOC values is imposed
to avoid excessive wear of the battery. The parameters
Voc and R are independent of soc(t), which is a valid
assumption as long as soc(t) is kept within 35 to 80 percent
charge, see Fig. 3.

A simple static model is used for the EGU, Neuman et al.
(2008), where ηEGU is efficiency curve modeled as

ηEGU = η1(1− e−β1(Pf−Pidle)) + η2e
−β2(Pf−P∗

f )2 . (10)

Due to internal friction, the efficiency approaches zero
at the low power region Pidle. Then, as Pf increases,
the efficiency increases with rate β1 to a value η1. The
maximum EGU efficiency is η1 + η2 centered around P ∗

f .
The parameter β2 determines the protuberance of the
efficiency peak. Low β2 value gives flatter curve around
P ∗

f , while higher β2 gives a prominent peak, see the
bottom row of Fig. 4. This modeling approach captures
the essential EGU characteristics and compares reasonably
well to manufacturer data.

4. PROBLEM FORMULATION

The objective of this study is to develop an efficient
tool for solving the general PHEV public transportation
problem of optimal tradeoff between investing in charging
infrastructure and powertrain components. In this section,
the general problem is formulated, although later, in
Section 7, an example is given for a simpler problem where
the optimization of the charging infrastructure has been
removed from the problem.

The general cost function consists of cost for the consumed
fuel and electricity plus additional costs Ψ1 and Ψ2

J = w1

∫ tf

t0

Pf (t)dt+ w2

∫ tf

t0

Pgrid(t)dt+Ψ1 +Ψ2

Ψ1 = w3mp + w4nbc

Ψ2 = w5(ncs) + w6(PEM1,max) + w7(PEM2,max)

(11)

where tf is the final time and w1, ..., w7 transform the
respective cost terms into money. The cost Ψ2 is, in
general, a nonlinear, non-convex function of the number of
charging stations, ncs, and the maximum EGU and EM2
power, PEM1,max, PEM2,max.

The cost Ψ1 can be any convex function of the number
of battery cells nbc and the maximum payload (passengers
onboard) mp, but here, for simplicity, it is assumed to be
linear. These variables affect the vehicle mass, ie the power
demand which can be expressed as

Pdem(t) = Pb(t) + C(t)(nbcmbc +mp)

C(t) = (v̇dem(t) + gcr cosα(t) + g sinα(t))vdem(t)
(12)

where Pb(t) is baseline demanded power for the powertrain
with fixed EGU and EM2 and no battery and passengers
onboard.

The penalty coefficients for fuel, electricity and payload
are computed as

w1 =
c1
Qf

, w2 =
c2

3600
, w3 = −

c3
mp,avg

(13)

where Qf is the energy content of the fuel, c1 is the fuel
price, c2 is the electricity price in [currency/kWh] and c3
and mp,avg are the typical total income and passengers’
mass on the bus line. The costs for the charging stations
and the powertrain components are computed by assuming
that the payment for the components’ cost is equally
divided in nj years with pj percent yearly interest rate.
This yields

wj =
cj

njsavg

(

1 +
pj
100

nj + 1

2

)
∫ tf

t0

vdem(t)dt

j = 4, ..., 7

(14)

where savg is the average distance traveled by the vehicle
in one year, c4 and c5(ncs) are the costs, in [currency],
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for the battery cell and the charging infrastructure and
c6(PEM1,max) and c7(PEM2,max) are the costs, in [cur-
rency/kW] for the EGU and EM2.

The optimization is subject to the constraints (1)-(10).
Additional possible constraints are starting at desired SOC
value and preserving charge sustain operation

soc(t0) = soc0, soc(t0) = soc(tf ). (15)

The problem consists of six time varying optimization vari-
ables, PEM1

(t), PEM2
(t), Pbat(t), soc(t), i(t) and xcs(t),

and five time invariant variables, nbc, ncs, PEM1,max,
PEM2,max and mp.

5. OPTIMIZATION METHODOLOGY

The problem described in Section 4 is both nonlinear and
non-convex, containing a mix of integer and continuous
variables. Often the best strategy of attacking such prob-
lem is to split it, if possible, in convex and non-convex
part (”divide and conquer”), Boyd and Vandenberghe
(2004). In Section 6 it is shown that with some reasonable
approximations, part of the problem can be represented
as convex. The global optimum is then found by solving
several convex problems in each iteration of two nested
loops:

(1) Define desired vehicle performance by deciding the
driving cycle, as in Fig. 1.

(2) Loop through all given sizes of EGU and EM2.
(3) For each EGU and EM2, loop through all possible

distributions of charging stations on the bus line.
(4) In each iteration solve the convex problem that will

be explained later in Section 6.

The convex problem is solved using CVX, a package for
specifying and solving convex programs, Grant and Boyd
(2010).

6. DISCIPLINED CONVEX MODELING

In this section the problem formulated in Section 4 is
approximated as convex by using the methodology of
disciplined convex programming as proposed by Boyd and
Vandenberghe (2004).

6.1 Convex battery model

The battery constraint (7) is not convex, since it involves a
product of two variables, nbc and i(t). The constraint can
however be reformulated as convex in two steps. First, by
performing the following variable changes

ĩ(t) = nbci(t), ˜soc(t) = nbcsoc(t) (16)

the constraints (7), (8), (9) and (15) can be rewritten as

Pbat(t) = Vocĩ(t)− Ploss(t) (17)

Ploss(t) = R
ĩ2(t)

nbc

(18)

˜soc(t) = nbcsoc0 −
1

Q

∫ t

t0

ĩ(t)dt

˜soc(t) ∈ [socmin, socmax]nbc

ĩ(t) ∈ [imin, imax]nbc

˜soc(t0) = soc0nbc, ˜soc(t0) = ˜soc(tf )

(19)

where (17) is still not convex, since it is an equality
constraint involving the nonlinear power loss function (18).

The second step that makes the problem convex is to relax
(18) to

Ploss(t) ≥ R
ĩ2(t)

nbc

(20)

where ĩ2(t)/nbc is a quadratic-over-linear function which
is convex since nbc ≥ 0. The relaxation (20) changes
the original problem by increasing its domain with the
epigraph of the power loss function. Intuitively, this re-
laxation looks like a bad idea, since it means that there
is a possibility of throwing electric energy away, which
consequently will decrease the overall system efficiency.
It is easy to see, however, that the optimal solution will
satisfy the constraint with equality, hence it is optimal
solution to the not-relaxed problem as well. For example,
suppose that the optimal solution of the relaxed problem
does throw energy away at some time instant. Next, a
new trajectory can be constructed where at the exact time
instant the extra energy is not thrown away, and instead,
it is used to power the wheels and hence reduces the ICE
power. This decreases fuel consumption, which shows that
the solution could not have been optimal.

The number of battery cells is relaxed, for simplicity, to a
real number.

6.2 Convex approximation of the EGU efficiency

The fuel power Pf (t) in (10) and also penalized in the
objective (11) is not convex. In order to find a con-
vex approximation, a specific region is observed Pf (t) ∈

[Pf,low, Pf,high], shaded in the top row of Fig. 4, in which
the function is convex. An approximation that gives a good
fit can be obtained by a second order polynomial

P̄f (t) = a0 + a1PEM1
(t) + a2P

2
EM1

(t) (21)

where the coefficients a0, a1 and a2 ≥ 0 are found by
least squares. Note that this function is convex since a2 is
positive. EGU models without prominent efficiency peak,
see the right column of Fig. 4, can be accurately approx-
imated as convex within the whole operating range. As
the efficiency peak becomes bulgier, see the left column of
Fig. 4, the region in which the function is convex decreases
and the approximation is not as good for high fuel powers.
However, this is not a major problem, due to the nature
of the objective. Namely, since the fuel consumption is
to be minimized, it is expected that the optimal solution
will run the EGU mostly with high efficiency. Thus, a
bulgier efficiency peak is expected to result in operating
points placed closer to P ∗

f . As can be seen in Fig. 4, the
approximation increases the descent from high fuel power
toward P ∗

f , hence the optimal operating points will be
scattered mostly in the convex region, which also motivates
(21) as a reasonable approximation.

6.3 ICE on/off operation

The EGU model (21) does not allow the option of turning
the ICE off, since for PEM1

(t) ≥ 0 the minimum fuel power
is Pidle = a0. This option can be included by introducing
additional variable eon(t) and transforming (21) to
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Fig. 4. Model of two different EGUs. The first EGU in
the two left plots has high β2 value, while the second
EGU in the two right plots has low β2 value. The solid
line represents the original function, while the dashed
line is the approximation. The shaded region shows
the interval Pf ∈ [Pf,low, Pf,high] in which good fit is
to be expected.

P̄f (t) = (a0 + a1P̃EM1
(t) + a2P̃

2
EM1

(t))eon(t)

PEM1
(t) = P̃EM1

(t)eon(t)
(22)

where eon(t) is a binary variable, 0 or 1, that governs
the ICE on/off operation and ensures that no electric
power is generated by EM1 when the ICE is off. However,
(22) is not convex, which is obviously visible in the top
row of Fig. 4, when the operating point at the origin is
included. Convexity can be preserved by using a heuristic
decision on the value of eon(t). The heuristics may define
eon(t) along the bus line as any function of the speed
profile, topography, distance to a charging station, time
etc, but the parameters governing the heuristics must be
kept constant during the convex optimization.

6.4 Convex EM2 model

The EM2 model (6) can be represented as convex by
relaxing (6) in two inequality constraints

PEM2(t) ≥
1

ηd
Pdem(t) (23)

PEM2(t) ≥ ηcPdem(t) (24)

where Pdem(t) is an affine function of the vehicle mass, ie
the number of battery cells and payload. Then, from (2),
the braking power of the friction brakes can be expressed
as

Pbrk(t) =

{

0 if Pdem(t) ≥ 0

Pdem(t)− PEM2
(t)/ηc otherwise.

(25)

With similar reasoning as in Section 6.1 it can be con-
cluded that the optimal solution of the relaxed problem
will satisfy one of the constraints (23) and (24) with
equality at each time instant. Hence, it will be optimal
solution to the original problem as well.

Table 1. Convex problem.

variables the number in the brackets is the vector length

P̃EM1
(N), PEM2

(N), Pbat(N), ˜soc(N + 1), ĩ(N),

xcs(N), nbc,mp

expressions P̄f (k) = (a0 + a1P̃EM1
(k) + a2P̃

2
EM1

(k))eon(k)

PEM1
(k) = P̃EM1

(k)eon(k)

Pdem(k) = Pb(k) + C(k)(nbcmbc +mp)

Pgrid(k) = xcs(k)Pcs(k, ncs)

minimize w1h
∑N

k=0
P̄f (k) + w2h

∑N

k=0
Pgrid(k)

+w3mp + w4nbc + w5(ncs)

+w6(PEM1,max) + w7(PEM2,max)

subject to PEM2
(k) = Pbat(k) + Pgrid(k) + PEM1

(k)

PEM2
(k) ≥ 1

ηd
Pdem(k)

PEM2
(k) ≥ ηcPdem(k)

Pbat(k) ≤ Voc ĩ(k)−R
ĩ2(k)
nbc

˜soc(k + 1) = ˜soc(k)− 1
Q
ĩ(k)h

PEM2,min ≤ PEM2
(k) ≤ PEM2,max

0 ≤ P̃EM1
(k) ≤ PEM1,max

iminnbc ≤ ĩ(k) ≤ imaxnbc

socminnbc ≤ ˜soc(k) ≤ socmaxnbc

˜soc(0) = soc0nbc

˜soc(0) = ˜soc(N + 1)

0 ≤ xcs(k) ≤ 1

mp ≥ 0

nbc > 0

6.5 The convex problem

Using the convex models of the powertrain components,
the final convex problem can be summarized as in Table
1. The convex problem is solved in each iteration of the two
nested loops, as explained in Section 5, after it has been
rescaled and discretized with zero order hold. For a chosen
sampling time h, the discretization will give k = 1, ..., N
time instances. Hence each time dependent variable in the
convex problem is actually a vector of N = tf/h + 1
variables. Note that the same variable notation, see Table
1, is used for the discrete variables as was used for the
corresponding continuous variables.

7. EXAMPLE: BATTERY SIZING

This section gives an example of optimal battery sizing
of a series PHEV bus for a fixed Level 2 and Level 3
infrastructure, Wiederer and Philip (2010). The charging
stations on the bus line, see Fig. 1, are all assumed to
provide the same magnitude of power, which is 10 kW
for Level 2 and 100 kW for Level 3 stations. It is also
assumed, for simplicity, that the vehicle charging interval is
equal at each station and two cases for the interval length
are considered, 10 s and 20 s. The power of the EGU is
100 kW and the efficiency curve is as in the right plot
of Fig. 4. The battery type is Lithium-ion with energy
density of 41Wh/kg and power density of 1.2 kW/kg. The
initial battery state is free, but charge sustaining operation
is maintained, assuming that immediately after the final
stop, the bus may start the route in opposite direction.
The battery cost of 235e/kWh ought to be paid in 2 years
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Table 2. Parameter values.

Parameter Value Parameter Value

mb 11 800 kg PEM2,max 170 kW

Af 8.05m2 PEM2,min −170 kW

cd 0.79 ηd 0.9

cr 0.009 ηc 0.5

Voc 3.6V ρair 1.293 kg/m3

R 1mΩ g 9.82m/s2

mbc 0.85 kg socmin 0.4

h 2 s socmax 0.6

c1 1.34e/l savg 50 000 km

c2 0.1e/kWh T 6 s

with 5% yearly interest rate. The values for the rest of the
parameters are given in Table 2, where the vehicle mass
mb = m − nbcmbc − mp corresponds to the powertrain
without the battery and passengers onboard. The costs
for the EGU, EM2, the charging infrastructure, the power
electronics and the payload are excluded from the problem,
ie w3 = w5 = w6 = w7 = 0.

7.1 Heuristic ICE on/off decision

The ICE on/off decision is based on the demanded vehicle
power

eon(t) =

{

1 if 1
T

∫ t+T

t
Pb(t)dt ≥ P ∗

on

0 otherwise
(26)

where the ICE is turned on when the mean of the de-
manded power from the baseline powertrain in the next T
seconds is higher than P ∗

on. The power P ∗

on is the optimal
threshold that results in a feasible solution and minimizes
the cost (11). It is obtained by exhaustive search, ie, by

first gridding the power, P̃on,i ∈ [0; ηdPEM2,max], and then

solving the convex problem for each gridded value P̃on,i as
a switching threshold. This will insert an additional nested
loop in the algorithm described in Section 5.

7.2 Optimization results

The optimization results, given in Fig. 5, show the optimal
number of battery cells as a function of the number of
charging stations on the bus line. In the case of Level 2
charging stations, see the left plot of Fig. 5, the optimal
battery size increases with the number of stations. This is
because the total cost for battery and the used electricity
is lower than the cost for the used diesel fuel, hence it is
optimal to increase the battery size with the number of
charging stations to make room for storing the relatively
cheap electric energy from the grid. The optimal solution,
in this case, resulted in charging the battery with full rate
during the whole charging interval for all distributions of
charging stations.

Similar results are obtained for the case of Level 3 charging
stations with 10 s charging interval per station, see the
right plot of Fig. 5. However, after the charging interval
had been increased to 20 s, it was found that with 19
stations, the quantity of electric energy taken from the grid
is large enough for the bus to drive the route entirely as
electric vehicle (EV). As the number of charging stations
increases even further, the optimal battery size starts to
decrease, as smaller battery can still achieve EV operation.

0 10 20 30
200

220

240

260

280

300
Level 2

ncs

n
b
c

 

 

tj =10 s

tj =20 s

0 10 20 30
300

400

500

600

700

800

900
Level 3

ncs

n
b
c

 

 

tj =10 s

tj =20 s

Fig. 5. Optimal battery size per number of charging
stations.

8. CONCLUSION

This paper presented a method for optimal sizing of series
PHEV powertrains and charging infrastructure. The opti-
mization problem is approximated as a nonlinear convex
problem, using heuristics only for the ICE on/off oper-
ation. This study also showed an example of powertrain
sizing for which the complete code was provided as it can
be implemented in CVX.

Further developments can be made by using smarter
decision on then ICE on/off heuristics, improved cost
function that accounts for battery wear and possibility
to work with more detailed models of the powertrain
components, eg nonliner, non-convex EM2 model.
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