OPTIMIZATION OF GROUNDSTORAGE HEAT PUMP SYSTEMS FOR SPACE CONDITIONING OF BUILDINGS

Per Fahlén

Chalmers University of Technology

PARTICIPANTS

A: Akademiska Hus
Tomas Hallén

B: IVT AB
Jim Fredin, Urban Kronström

C: Nibe AB
David Kroon, Holger Svensson

D: Thermia Värme AB
Patrik Albinsson

E: York Refrigeration AB

Jakob Granström

F: Wilo AB
Rolf Jonasson

G: Grundfos AB
Patrik Petersson

H: Pipetech
Anders Sirkiä

I: NCC

Magdalena Kvernes

J: SWECO Theorells AB
Lars Olof Matsson

K: ÅF-Infrastruktur ABJörgen Eriksson, Nils Dafgård

L: Borrentreprenörerna → Geotec

Jan Olof Arnbom

M: Carrier AB

Ib Hagsten

N: ICA Fastigheter Sverige AB
Per-Erik Jansson, Ulf Hägglund

O: Fastighetsägarna Stockholm Per Forsling

P: Huurre
Anders Ek

Q: TAC
Per-Göran Persson

Chalmers: P Fahlén, Saqib Javed, J Claesson, T Lindholm Lund University: Göran Hellström Donghua University: Yasu Zhou

TARGETS

- Targets for the research:
 - A calculation tool for complete system optimization
 - Identification of key efficiency factors (for optimization)
 - Identification of energy efficient system designs for a few (to be specified) applications
- Target levels for market penetration (conditions to be decided):
 - Space conditioning of office buildings with
 - < 20 kWh_{el}/m²/year and < 5 kWh_{heat}/m²/year
 - Space conditioning of apartment buildings with
 - < 40 kWh_{el}/m²/year

WORK PLAN (1)

Previous work

- Data bases (Fridoc, compendex ...), personal contacts (project group)

State-of-the-art review (analysis and synthesis)

- Practical experience, measured results, estimate of future potential
- Modelling tools, identification of the need for development and measurements for validation; suitable ways to proceed

Overview and classification of current system designs

 Inventory of review, classification and selection of systems for further investigations (modelling and measurement)

Field tests

 Inventory of existing and need for new tests, planning and start of measuring program, analysis and synthesis

WORK PLAN (2)

Theoretical analysis

- Development of component models
 (e.g. collector, heat pump, heat exchangers, pumps, fans etc.)
- Comparison of calculations and measurements
- Simulation of selected system solutions with variation of design values (sensitivity analysis: how critical is the system design for the technical and economic result?)
- Identification of strengths and weaknesses of different designs

Reporting, presentation and dissemination of results

- Intermediate work reports for each sub-task
- International conferences: IEA, IIR, ASHRAE
- National conferences: Effsys Annual Meeting, Energitinget
- Scientific articles: Journal of the IIR, Energy and buildings, ASHRAE
- Popular articles: ScanRef, Energi och Miljö, VVS-Forum
- LICENTIATE THESIS

TIME PLAN

Period: YEAR	2007				2008				2009			
Activity / quarter	1	2	3	4	1	2	3	4	1	2	3	4
Project planning												
1 Literature survey												
2 State-of-the-art report												
3 Current systems: inventory												
4 Field tests												
5.1 Theory: Modelling												
5.2 Theory: Simulation												
5.3 Theory: Analysis and synthesis												
6 Presentation of results (lic., conferences, articles)												

RELATED PROJECTS (1)

- Optimized operation of heat pump systems (VSD)
 - Fredrik Karlsson, SP/CTH Building Services Engineering
- Efficiency of building related pump and fan operation (VSD)
 - Caroline Markusson, CTH Building Services Engineering
 - Johan Åström, CTH Electric Power Engineering
- Energy efficient cooling coils and brine systems (laminar flow)
 - Caroline Haglund Stignor, SP/LTH/CTH Building Services Eng.
- Control-on-demand ventilation Intelligent supply-air devices (VAV)
 - Mari-Liis Maripuu, CTH Building Services Engineering
- Environmental assessment of air-conditioning systems
 - Katarina Heikkilä, CTH Building Services Engineering
- Free-cooling (general, air, sorptive, desiccant, cooling towers)
 - Torbjörn Lindholm, CTH Building Services Engineering

RELATED PROJECTS (2)

- Recharging of boreholes using ventilation air
 - Per Fahlén, CTH Building Services Engineering
- GSHP with integrated liquid-loop HRV
 - Per Fahlén, CTH Building Services Engineering
- Dynamic thermal networks
 - Johan Claesson, CTH Building Physics
- Control-on-demand heating, cooling and ventilation
 - Per Fahlén, CTH Building Services Engineering
- Energy efficient shopping centres
 - Sofia Stensson, SP/CTH Building Services Engineering
- Supermarkets
 - Ulla Lindberg, SP/CTH Building Services Engineering
- Integrated, intelligent control-on-demand
 - Mohsen Soleimani Mohseni, CTH Building Services Engineering

APPLICATION

Ground-source with heating cooling and storage (free cooling)

- Heat source
- Heat sink
- Heat storage

BOREHOLE SYSTEM

Important design factors

- Building load profile
- Relation between heating and cooling
- Borehole load
- Specific heat uptake in winter [kWh/m/year]
- Specific heat input in summer [kWh/m/year]
- Bore hole system geometry
- Number of holes and their depth
- Borehole pitch
- Ratio of length/width (rectangular or linear configuration)

Antai hai N = mxn Rektangulär geometri

Linjär geometri, antal hål N = mxn

INFLUENCE OF LOAD PROFILE ON TEMPERATURE

 Rectangular systems with storage require more careful sizing than linear

EXAMPLE OF TEMPERATURE VARIATION

Three different borehole loads with the same ratio between heat uptake and heat rejection in the borehole (rectangular geometry)

HEATING – COOLING - VENTILATION

• Recharging:

- exhaust-air coil ON
- supply-air coil OFF

Cooling

- exhaust-air coil OFF
- supply-air coil ON

Heat recovery

- exhaust-air coil ON
- supply-air coil ON

DEMAND FOR HEATING AND COOLING

Building level

Balance between surplus and deficit of heat within the building (own supply unit)

Block level

Balance between adjacent buildings (block centrals)

Community level

Balance between groups of buildings (district heating, district cooling)

SUMMARY

- Non-residential buildings with large heat surplus
 ⇒ demand for cooling
- Heat pumps can handle heating and cooling simultaneously (natural relation approx. 3:2)
- Borehole system provides stable temperature and possibility of storage (free cooling)
- GSHP systems may achieve very high efficiency but require careful analysis of real heating and cooling demand
- Design and sizing of heat pump, heating and cooling system (temperature!) and borehole system important for efficiency and economy

KEY FACTORS FOR EFFICIENCY

- Temperature level (COP changes by 2-3 % per °C!)
- Heat exchangers (temperature difference, pressure drop, material, pressure level)
- Compressor (type, sizing, capacity control)
- Refrigerant (efficiency, long-term acceptability, cost, safety)
- Brine (efficiency, corrosivity, stability, cost, safety, environment)

TEMPERATURE LEVEL AND PARASITIC POWERS

- Influence on COP
- Drive units and temperature levels:

$$\frac{\Delta COP_{1}}{COP_{1}} = -\frac{\Delta \dot{W}_{e,vp}}{\dot{W}_{e,vp}} = \left[\frac{\Delta T_{kb}}{T_{1} - T_{2}} - \frac{T_{2}}{T_{1}} \cdot \frac{\Delta T_{vb}}{T_{1} - T_{2}} - \frac{\dot{W}_{e,p}}{\dot{W}_{e,vp}} \right]$$

- Example with recharging
- $\Delta T_{\rm kb}$ = +4 K should give $\Delta COP/COP \approx$ +10 %
- But $\Delta T_{\rm vb}$ >+4 K, $\Delta w_{\rm e,p}/w_{\rm e,vp}$ = -9-10-24 \approx -43 %
- Total reduction by 40 60 %!

EXAMPLE: FAN COIL

- Control
- Coil fan on
- Heat pump on-off
- Temperature
- On-temperature > mean temperature
- Example: t_{out} = 4,4 °C

$$\bar{t}_{w1,on} - \bar{t}_{w1,cycle} = 5.7 \,^{\circ}C$$

$$\triangle$$
 $\triangle COP \approx -10 \, till - 15 \%$

PARASITIC POWERS

- Heat gain ("cooling loss")
- Heat transfer resistance
- Heat transfer pressure drop Heat transport pressure drop $\dot{W}_{ep} = \frac{\dot{V} \cdot \Delta p}{\eta_p}$

TEMPERATURE DISTRIBUTION

- Two transfer differences
- One transport difference

CONTROL OF AIR FLOW

Thermal comfort: E.g. t_{room}

$$t_{room} = t_{sa} + \frac{\dot{Q}_{\text{int}}}{K_{tot}}$$

$$K_t = -\frac{\dot{Q}_{\text{int}}}{C_a \cdot (U \cdot A / C_a + \dot{V}_{nom})^2}$$

$$\Delta t_{room} = \Delta t_{sa} + K_t \cdot \Delta \dot{V}_{vent}$$

Air Quality: E.g. CO₂

$$K_{CO2} = \frac{\dot{V}_{CO2}}{\left|\dot{V}_{nom}^{2}\right|}$$

$$c_{room} = c_{sa} + \frac{\dot{V}_{CO2}}{\dot{V}_{vent}}$$

$$\Delta c_{room} = \Delta c_{sa} + K_{CO2} \cdot \Delta \dot{V}_{vent}$$

SUPPLY AIR COOLING CAPACITY

- Depends directly on
 - air flow rate
 - supply-air temperature
 - room temperature

$$\dot{Q}_{sa} = K_{sa} \cdot (t_{sa} - t_{room})$$

$$\frac{\Delta \dot{Q}_{sa}}{\dot{Q}_{sa}} = \frac{\Delta \dot{V}_{sa}}{\dot{V}_{sa}} + \frac{\Delta t_{sa}}{(t_{sa} - t_{room})} - \frac{\Delta t_{room}}{(t_{sa} - t_{room})}$$

LOWER TEMPERATURE OR MORE FLOW?

- Lower temperature → higher compressor drive power
- Higher flow rate → higher fan power

$$\begin{split} \Delta \dot{W_e} &= \Delta \dot{W}_{hp} + \Delta \dot{W}_{e,f} = \\ &= (k_{hp} \cdot \dot{W}_{hp} + k_f \cdot \dot{W}_{e,f}) \cdot \Delta t_{sa} \end{split}$$

$$\frac{\Delta \dot{W_e}}{\Delta t_{sa}} = k_{hp} \cdot \dot{W_{hp}} \cdot (1 + \frac{k_f}{k_{hp}} \cdot \frac{\dot{W}_{e,f}}{W_{hp}})$$

$$\frac{\Delta \dot{W_e}}{\Delta t_{sa}} = 0.03 \cdot \dot{W}_{hp} \cdot (1 - 25 \cdot \frac{\dot{W}_{e,f}}{\dot{W}_{hp}})$$

EXTERNAL OR INTERNAL ROOM COOLING

 Requirement on SFP to make TC-controlled air flow more electricity efficient than a chiller (n = 1,5 to 2):

$$SFP_{nom} < \left(\frac{\dot{q}_V}{COP_c}\right) \cdot \left(\frac{\dot{Q}_{sa}}{\dot{Q}_{nom}} - 1\right) \cdot \left(\left(\frac{\dot{Q}_{sa}}{\dot{Q}_{nom}}\right)^{n+1} - 1\right)^{-1}$$

Volumetric fan power:

$$SFP = \frac{\dot{W}_{e,f}}{\dot{V}_{a}} \text{ [kW/m}^3/\text{s]}$$

Volumetric cooling capacity:

$$\dot{q}_V = \frac{\dot{Q}_{sa,nom}}{\dot{V}_{sa,nom}} \text{ [kW/m}^3/\text{s]}$$

$$(\dot{q}_V \approx 1.2 \cdot (t_{sa} - t_{room}))$$

Relative cooling capacity:

$$\frac{\dot{Q}_c}{\dot{Q}_{nom}}$$
 [kW/kW]

FAN POWER

Reduce SFP

- Raise fan efficiency
- Reduce distribution pressure drop
- Reduce AHU pressure drop (FI, HR, AH, AC)

$$SFP = \frac{\dot{W}_{e,f}}{\dot{V}_a} = \frac{\Delta p \cdot 10^{-3}}{\eta_f}$$

$$SFP = SFP_{nom} \cdot \left(\frac{\dot{V}_a}{\dot{V}_{a,nom}}\right)^n$$

Typical pressure drop Pa]

$$\Delta p_{01} = -150$$
 $\Delta p_{78} = -150$

$$\Delta p_{12} = -100$$
 $\Delta p_{89} = -100$

$$\Delta p_{23} = -30$$
 $\Delta p_{90} = 500$

$$\Delta p_{34} = -50$$
 plus ducts,

$$\Delta p_{45} = 600$$
 dampers, terminals units

CONTROL OF AIR CONDITIONING

- Air flow based on AQ-requirement (e.g. c_{CO2}<1000 ppm)
- Room temperature based on TC-requirement (e.g. 21 °C)
- Keep t_{room} at the comfort minimum (e.g. 21 °C)
- Reduce heat recovery until $t_S = t_{S.min}$ (e.g. 17 °C)
- Use deadband; $t_{room,min} < t_{room} < t_{room,max}$ (e.g. 21-25 °C)
- Raise air flow based on max. of AQ- or TC-demand
- Use night cooling but watch the fan energy
- Start chiller when the marginal increase of fan power is larger than the chiller drive power

OFFICE ECONOMY?

- Staff cost: 100 000 SEK/m²/year
- Rent: 2 000 SEK/m²/year
- Capital cost of HVAC: 200 1 000 SEK/m²/year
- Energy cost: 100 500 SEK/m²/year

GROUND STORAGE – PHASE II

Connecting the developed models

- Optimized design and size
- Optimized control
 - Short-term: Feedback feed-forward
 - Medium-term: Predictive (day-night cooling-heating)
 - Long-term: Predictive (summer-winter balancing)
- Case-studies

