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Abstract— This paper proposes a general method to synthe-
size a least restrictive supervisor for a large discrete event
system model, consisting of a large number of arbitrary
automata representing the plants and specifications. A new
type of abstraction, called synthesis abstraction is introduced
and three rules are proposed to calculate an abstraction of a
given automaton. Furthermore, a compositional algorithm for
synthesizing a supervisor for large-scale systems of composed
finite-state automata is proposed. In the proposed algorithm, the
synchronous composition is computed step by step and interme-
diate results are simplified according to synthesis abstraction.
Then a supervisor for the abstracted system is calculated,
which in combination with the original system gives the least
restrictive, nonblocking, and controllable behaviour.

I. I NTRODUCTION

Supervisory control theoryis a general framework for
designing a supervisor for discrete event systems [2], [9].
Synthesising a supervisor for systems with a large number
of components suffers from an inherent complexity problem
known as state-space explosion. In order to overcome the
problem, modular approaches to construct supervisors for
large-scale systems have been studied. Modular and hier-
archical approaches [11], [13] can produce well-designed
supervisors, yet they are based on structural information
provided by users and therefore are difficult to automate.
Other early methods such as [1] only consider the synthesis
of a least restrictive controllable supervisor, ignoring non-
blocking.

More recently, abstraction based onnatural projection
has been studied for compositional supervisor synthesis.
Natural projection with theobserver propertyis shown
in [3] to produce a nonblocking but not necessarily least
restrictive supervisor; ifoutput control consistencyis added
as an additional requirement, least restrictiveness can been-
sured [3]. In [10], it is furthermore shown that output control
consistency can be replaced by a weaker condition called
local control consistency. A drawback of the projection-
based methods is their strong connection to events, which
makes it difficult to treat different transitions labelled with
the same event in different ways.

Supervisor synthesis and abstractions have also been
studied in a nondeterministic setting. In [6], [12],conflict-
preservingabstractions andweak observation equivalence
are shown to be adequate for the synthesis of nonblocking
supervisors, but least restrictiveness is only guaranteedif all
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observable events are retained in the abstraction. The meth-
ods in [5], [7] also allow for the abstraction of observable
events throughhiding. In [5], a least monolithic restrictive
supervisor is constructed in symbolic form, after abstracting
automata according tosupervision equivalence. Yet, the
equivalence requires additionalstate labels, making some
desirable abstractions impossible. State labels are removed
in [7], where supervision equivalence is replaced bysynthesis
equivalence, and hiding is used to abstract all local events.
The authors propose a two-pass algorithm for compositional
synthesis, which produces an over-approximation of the
least restrictive solution; an additional nonblocking check is
necessary to guarantee correctness.

This paper combines the strengths of the previous work
in [5], [7], using three abstraction rules preserving an alter-
native abstraction relation calledsynthesis abstraction. Local
and global events are distinguished in each abstraction step,
avoiding both state labels and hiding, while still providing
more general simplification than natural projection. Due to
the avoidance of hiding, the two-pass procedure of [7] can
be replaced by a single pass, and the method is guaranteed
to produce a least restrictive modular supervisor in all cases.

This paper is organised as follows. Section II introduces
the required notation from supervisory control theory. The
proposed algorithm for finding the least restrictive supervisor
of a system and the rules to abstract a given automaton,
according to synthesis abstraction, are explained in Sec-
tion III. In Section IV, the proposed algorithm is applied
on an example. Finally, conclusions are drawn in Section V.

II. PRELIMINARIES AND NOTATION

A. Events and Languages

The main elements of discrete event system modeling are
statesand events. States represent situations under which
certain rules and conditions hold. Events represent incidents
that cause transitions from one state to another. A set of
events will be referred to as analphabet, denotedΣ. For
the purpose of supervisory control,Σ is partitioned into
two disjoint subsets, the setΣc of controllable events and
the setΣu of uncontrollable events. The set ofall finite
strings of elements ofΣ, including the empty stringε is
denoted byΣ∗. A subsetL ⊆ Σ∗, is called alanguage. The
concatenation of two stringss, t ∈ Σ∗ is written asst. L is
the prefix-closure of a languageL ⊆ Σ∗ and it is defined as
L = {s ∈ Σ∗|∃t ∈ Σ∗ andst ∈ L}.

B. Nondeterministic Automata

Finite-state automata are used to describe discrete event
systems behavior. We will assume that all given models are



deterministicand that non-determinism arises as a conse-
quence of manipulation of these automata.

Definition 1: A nondeterministic finite-state automaton is
a 5-tupleG =

〈

Σ, Q,→, Qi, Qm
〉

, whereΣ is a finite set
of events,Q is a finite set of states,→ ⊆ Q×Σ×Q is the
state transition relation, Qi ⊆ Q is the set ofinitial states,
andQm ⊆ Q is the set ofmarked states. G is deterministic
if |Qi| ≤ 1 andx

σ
→ y1 andx

σ
→ y2 always impliesy1 = y2.

The transition relation is written in infix notationx
σ
→ y,

and is extended to strings inΣ∗ by letting x
ε
→x for all

x ∈ Q, andx
sσ
→ z if x

s
→ y andy

σ
→ z for somey. For an

automatonG
s
→ means the existence ofx ∈ Qi andy ∈ Q,

such thatx
s
→ y and G → x means∃s ∈ Σ∗, such that

G
s
→ x, see [4].
Definition 2: Let G =

〈

Σ, Q,→, Qi, Qm
〉

be an automa-
ton. The subset of all the stringss such thatG

s
→ is the

language of the automaton denotedL(G). The subset of
L(G) that contains only the stringss such thatG

s
→ Qm, is

the marked language and is written asLm(G).
When automata are brought together to interact, the inter-

action occurs on shared events occurring synchronously or
not at all. This is modeled bysynchronous composition.

Definition 3: Let G1 =
〈

Σ1, Q1,→1, Q
i
1, Q

m
1

〉

andG2 =
〈

Σ2, Q2,→2, Q
i
2, Q

m
2

〉

be two automata. Thesynchronous
compositionof G1 andG2 is defined as

G1 ‖ G2 =
〈

Σ1 ∪ Σ2, Q1 × Q2,→, Qi
1 × Qi

2, Q
m
1 × Qm

2

〉

,
(1)

where

(x, y)
σ
→ (x′, y′) if σ ∈ (Σ1 ∩ Σ2), x

σ
→1 x′, y

σ
→2 y′ ;

(x, y)
σ
→ (x′, y) if σ ∈ (Σ1 \ Σ2), x

σ
→1 x′ ;

(x, y)
σ
→ (x, y′) if σ ∈ (Σ2 \ Σ1), y

σ
→2 y′ .

We define a relation between automata, we will say that
an automaton is asubautomatonof another if the structure of
the first is contained within the second, and they both have
the same alphabet.

Definition 4: Let G1 =
〈

Σ, Q1,→1, Q
i
1, Q

m
1

〉

and G2 =
〈

Σ, Q2,→2, Q
i
2, Q

m
2

〉

be two automata.G1 is a subautoma-
ton of G2, written G1 ⊆ G2, if Q1 ⊆ Q2, →1 ⊆ →2,
Qi

1 ⊆ Qi
2, andQm

1 ⊆ Qm
2 .

Another common automaton operation is thequotient
modulo an equivalence relation on the state set.

Definition 5: Let G =
〈

Σ, Q,→, Qi, Qm
〉

be an automa-
ton and let∼ ⊆ Q × Q be an equivalence relation. The
quotient automatonof G modulo∼ is

G/∼ =
〈

Σ, Q/∼,→/∼, Qi/∼, Qm/∼
〉

(2)

where→/∼ = { [x]
σ
→ [y] | x

σ
→ y }. Here, [x] = {x′ ∈

Q | x ∼ x′ } denotes theequivalence classof x ∈ Q, and
Q/∼ = { [x] | x ∈ Q } is the set of all equivalence classes
modulo∼.

C. Supervisory Control Theory

Considering plant and specification,supervisory control
theory provides a method to synthesise a supervisor that
restricts the behaviour of the plant such that the given
specification is always fulfilled. Two requirements for the
supervisor arecontrollability andnonblocking. Nonblocking

expresses the liveness requirements of the system, while
controllability captures safety.

Definition 6: [7] Let G =
〈

Σ, QG,→G, Qi
G, Qm

G

〉

and
K =

〈

Σ, QK ,→K , Qi
K , Qm

K

〉

be two automata such that
K ⊆ G. K is controllable in G if, for all statesx ∈ QK

andy ∈ QG and for every uncontrollable eventυ ∈ Σu such
that x

υ
→G y, it also holds thatx

υ
→K y.

Definition 7: [7] Let G be an automaton. A statex is
calledreachablein G if G → x, andcoreachablein G if x →
Qm. The automatonG is called reachable or coreachable if
every state inG has this property.G is callednonblocking
if every reachable state is coreachable.

The upper bound of controllable and nonblocking sub-
automata is again controllable and nonblocking, and this
implies the existence of a least restrictive synthesis result.

Definition 8: Let G be an automaton. The supremal con-
trollable and nonblocking subautomaton ofG is

supCN (G) = {G′ ⊆ G | G′ is controllable and
nonblocking forG andΣu }

(3)

Therefore,supCN (G) is the unique synthesis result for a
plant G. Synthesis is done by iteratively removing blocking
and uncontrollable states of a plant, until a fixed point is
reached, and restricting the automaton to these states.

Definition 9: [7] Let G =
〈

Σ, Q,→G, Qi, Qm
〉

be an
automaton. Therestriction of G to X ⊆ Q is

G|X =
〈

Σ,X,→|X , Qi ∩ X,Qm ∩ X
〉

, (4)

where→|X = { (x, σ, y) | x, y ∈ X }.
Definition 10: The function that does synthesis is denoted

asΘG(X) = Θnonb
G (X) ∩ Θcont

G (X) where

Θnonb
G (X) = {x ∈ X | ∃y ∈ Qm and t ∈ Σ∗, x

t
→|X y },

Θcont
G (X) = {x ∈ X | ∀σ ∈ Σu, x

σ
→ y implies y ∈ X }.

(5)
The first function captures nonblocking and the second one
controllability.

The synthesis result is a part ofG when the synthesis
function is restricted to the greatest fixed point, see [5].

Theorem 1: [7] Let G =
〈

Σ, Q,→G, Qi, Qm
〉

. The syn-
thesis step operatorΘG has a greatest fixed point gfpΘG =
Θ̂G ⊆ Q, such thatG|Θ̂G

is the unique greatest subautoma-
ton ofG that is both controllable inG and coreachable. If the
state setQ is finite, the sequenceX0 = Q, Xi+1 = ΘG(Xi)
reaches this fixed point in a finite number of steps, i.e.,
Θ̂G = Xn for somen ≥ 0.

D. Translation of Specifications into Plants

A traditional supervisory control problem, see [9], consists
of a plant G and aspecificationK, given as deterministic
automata.

Using the nonblocking condition, control problems can be
representedequivalentlyonly using plants. A specification
automaton is transformed into a plant by adding, for every
uncontrollable event that is not enabled in a state, a transition
to a new blocking state⊥. The following construction
from [5] essentially transforms all potential controllability
problems into potential blocking problems.



Definition 11: Let K =
〈

Σ, Q,→, Qi, Qm
〉

be a specifi-
cation. Thecomplete plant automatonK⊥ for K is

K⊥ =
〈

Σ, Q ∪ {⊥},→⊥, Qi, Qm
〉

(6)

where⊥/∈ Q is a new state and

→⊥ = → ∪ { (x, υ,⊥) | x ∈ Q, υ ∈ Σu, x 6
υ
→}. (7)

Proposition 1: Let G, K, andK ′ be deterministic auto-
mata over the same alphabetΣ, and letK ′ be reachable.
Then the following two statements are equivalent.

(i) K ′ ⊆ G ‖K⊥ is nonblocking and controllable inG ‖
K⊥,

(ii) K ′ ⊆ G ‖ K is nonblocking and controllable with
respect toG.

For the proof see [5]. According to this result, the least
restrictive, controllable and nonblocking supervisor forplant
G and specificationK, can be obtained by calculating
supCN (G ‖ K⊥).

III. C OMPOSITIONAL SYNTHESIS

In this section, the proposed compositional synthesis al-
gorithm is explained. The rules to calculate the abstracted
automaton according to synthesis abstraction are given an
proven.

A. Synthesis Abstraction

A modular supervisory control problem consists of a
modular specificationK = K1 ‖ · · · ‖ Km and a modular
plantG = G1 ‖· · ·‖Gn. As discussed in Section II-D all the
specifications can be translated to plants and therefore The
task is to find the least restrictive supervisorS for a set of
plants,

G ‖ K⊥ = G1 ‖ · · · ‖ Gn ‖ K⊥
1 ‖ · · · ‖ K⊥

m . (8)

In the proposed algorithm, the modular system (8) is ab-
stracted step by step, using the same strategies and heuristics
that are proposed in [4]. Therefore instead of finding the
supervisor forG ‖K, each automatonGi or K⊥

j in (8) may
be abstracted and replaced byGi/∼ or K⊥

j /∼. When no
more abstraction is possible, the synchronous composition
is computed step by step, and in each step the abstraction
rules are applied. Eventually this procedure leads to a single
automatonH which is the abstracted description of the
monolithic system (8). OnceH is found, the next step is
synthesise a supervisor forH, which is calledS′. Finally the
modular supervisorfor the system isS′ ‖K1 ‖K2 ‖· · ·‖Km,
which is the least restrictive controllable and nonblocking
supervisor forG. Note that since the supervisor is modular,
the potential state-space explosion problem can be avoided.
In practice the final supervisorS′ ‖ K never needs to be
calculated. The final supervisorS′ ‖ K can instead be im-
plemented keeping its modular structure and performing the
synchronization on-line. As the plant generates events under
control of the supervisor, the supervisor components accept
and transit on those events individually. This effectively
performs the synchronous composition on-line.

When abstracting an automatonGi, in an attempt to
replace it byGi/∼, there will typically be some events used
in Gi which do not be appear in any other componentK⊥

j or

G q0

q1
q2 q3

(α)

β γ

G/∼

q2 q3

q01

(α)

β γ

Fig. 1. No active event rule. AutomatonG and its abstracted automaton
G/∼. Local events are shown by parentheses around.

Gj , i 6= j. These are calledlocal eventsand will be denoted
by Υ in the following. Local events are helpful to find an
abstraction.

Definition 12: Let G and andG̃ be two deterministic
automata with alphabetΣG. Then automatonG̃, is a syn-
thesis abstractionof G with respect toΥ ⊆ ΣG, the set of
local event, writtenG .synth,Υ G̃ if for every deterministic
automatonT =

〈

ΣT , QT ,→, Qi
T , Qm

T

〉

such thatΣT ∩Υ =
∅ the following holds

L(G‖T ‖ supCN (G̃‖T )) = L(G‖T ‖ supCN (G‖T )) (9)

B. Abstraction Rules

In order to abstract the modular system, methods to find
an abstracted automaton, of a given automaton are needed.
Here some possible methods are discussed.

1) Bisimulation:
Definition 13: Assume G1 =

〈

Σ, Q1,→, qi
1, Q

m
1

〉

and
G2 =

〈

Σ, Q2,→, qi
2, Q

m
2

〉

are two automata. A relation
≈ ⊆ Q1 × Q2 is called a bisimulation betweenG1 andG2

if, for all x1 ∈ Q1 andx2 ∈ Q2 and for allσ ∈ Σ such that
x1 ≈ x2,

if x1
σ
→ y1 then∃y2 ∈ Q2 such thatx2

σ
→ y2 andy1 ≈ y2,

if x2
σ
→ y2 then∃y1 ∈ Q1 such thatx1

σ
→ y1 andy1 ≈ y2,

x1 ∈ Qm
1 if and only if x2 ∈ Qm

2 .

G1 and G2 are bisimular if there exists a bisimulation≈
betweenG1 andG2 such thatqi

1 ≈ qi
2.

Theorem 2:Let G1 and G2 be two automata such that
G1 ≈ G2. ThenG1 .synth,∅ G2.

Proof: It must be shown that for every test automaton
T =

〈

ΣT , QT ,→T , qi
T , Qm

T

〉

, (9) holds. SinceG1 ≈ G2,
it follows from the congruence result of [8] thatG1 ‖ T ≈
G2 ‖ T . By Lemma 2 in the appendix,

supCN (G1 ‖ T ) ≈ supCN (G2 ‖ T ).

By congruence

G1 ‖ T ‖ supCN (G1 ‖ T ) ≈ G1 ‖ T ‖ supCN (G2 ‖ T ),

which implies

L(G1 ‖T ‖ supCN (G1 ‖T )) = L(G1 ‖T ‖ supCN (G2 ‖T )).

2) No Active Event Rule:Two states that are connected
by a local event such that the target state has no un-
controllable active events and also has the same or more
outgoing transitions as the source state, can be merged. The
abstracted automaton is a synthesis abstraction of the original
automaton. Fig. 1 shows an example application of this rule.



G
q0 q1

q2 q3

(!α)

(!β)γ λ

G/∼

q2 q3

q01

γ λ

(!α, !β)

Fig. 2. Silent uncontrollable loop rule. AutomatonG and its abstracted
automatonG/∼. ! denotes uncontrollable events and local events are shown
by parentheses around.

Theorem 3:Let G =
〈

Σ, Q,→, Qi, Qm
〉

be an automa-
ton andΥ ⊆ Σ be the set of local events. Let∼ ⊆ Q × Q
be an equivalence relation such that, for allx1, x2 ∈ Q such
that x1 ∼ x2 it holds that, if x1

γ
→ x2 then γ ∈ Υ, if

x2
σ
→ x3 thenσ ∈ Σc and if x1

σ
→ x3 thenx2

σ
→ x3. Then

G .synth,Υ G/∼.
Proof: It must be shown that for any deterministic

automatonT =
〈

ΣT , QT ,→T , qi
T , Qm

T

〉

such thatΣT ∩Υ =
∅, (9) holds.

1) Let s ∈ L(G ‖ T ‖ supCN (G ‖ T )). This means that
G ‖ T ‖ supCN (G ‖ T )

s
→ (xG, xT , x′

G, x′
T ) and sinceG

and T are deterministicx′
G = xG and x′

T = xT . Let
s = σ1 · · ·σn, then (xG

0 , xT
0 )

σ1→|Θ̂G‖T
(xG

1 , xT
1 )

σ2→|Θ̂G‖T

· · ·
σn→|Θ̂G‖T

(xG
n , xT

n ) and (xG
k , xT

k ) ∈ gfp ΘG‖T for

k = 0, ..., n. By Lemma 3,([xG
k ], xT

k ) ∈ gfp ΘG/∼‖T for
k = 0, ..., n and([xG

0 ], xT
0 )

σ1→|Θ̂G/∼‖T
([xG

1 ], xT
1 )

σ2→|Θ̂G/∼‖T

· · ·
σn→|Θ̂G/∼‖T

([xG
n ], xT

n ). ThereforeG ‖ T ‖ supCN (G/∼ ‖

T )
s
→ (xG, xT , [xG], xT ) which means thats ∈ G ‖ T ‖

supCN (G/∼ ‖ T ).
(2) Let s ∈ L(G‖T ‖ supCN (G/∼‖T )). This means that

G ‖T ‖ supCN (G/∼‖T )
s
→ (xG, xT , [xG], x′

T ), wheres =
σ1 · · ·σn. SinceT is deterministic,xT = x′

T and therefore
G ‖ T ‖ supCN (G/∼ ‖ T )

σ1→ (xG
1 , xT

1 , [xG
1 ], xT

1 )
σ2→ · · ·

σn→
(xG

n , xT
n , [xG

n ], xT
n ). Since([xG

k ], xT
k ) ∈ gfp ΘG/∼‖T for k =

0, ..., n by Lemma 3,(xG
k , xT

k ) ∈ gfp ΘG‖T for k = 0, ..., n.
ThereforeG ‖ T ‖ supCN (G ‖ T )

σ1→ (xG
1 , xT

1 , xG
1 , xT

1 )
σ2→

· · ·
σn→ (xG

n , xT
n , xG

n , xT
n ) and thus it can be concluded that

s ∈ L(G ‖ T ‖ supCN (G ‖ T )).
3) Silent Uncontrollable Loop Rule:States in a local

uncontrollable loop can be merged, and the deterministic
abstracted automaton is a synthesis abstraction of the original
automaton. Fig. 2 shows an example application of this rule.

Theorem 4:Let G =
〈

Σ, Q,→, Qi, Qm
〉

be an automa-
ton and letΥ ⊆ Σu. Let ∼ ⊆ Q × Q be an equivalence
relation such that, for allx1, x2 ∈ Q such thatx1 ∼ x2 it
holds that, there existsυ ∈ Υ∗ such thatx1

υ
→ x2. Then

G .synth,Υ G/∼.
Proof: Same as the proof for Theorem 3, but using

Lemma 4 instead of Lemma 3 in the appendix.

IV. EXAMPLE

A simple manufacturing system [9] consists of two ma-
chines and a buffer. The first machine (M1) starts processing
workpieces(start1) and puts them into the buffer (B) when
it finishes (finish1). In the beginning the buffer is empty
and it becomes full afterM1 finishes. The second machine
(M2) removes the workpieces from the buffer(start2) and

Mi IDLE

WORKING DOWN
breaki

starti
repair

i

finishi

W
RUNNING

SUSPENDED

start1

suspend resume

B EMPTY

FULL
finish1

finish1 start2

⊥

R
M1

M2

repair
1

break2

break2 repair
2

⊥

Fig. 3. Automata of small factory example.

W̃
q0

start1
suspend
resume MR2

q0

q1

q2

repair
1

repair
1

finish2

break2

start2
repair

2

˜MR2

q1

q02

repair
1

repair
1

finish2break2
start2

repair
2

MB1

q0

q1

q2

q3
q4

q5 finish1

finish1

break1

break1

start1

start1

repair
1

repair
1

start2

start2
start2

⊥

˜MB1

q1

q5

q02

q34
finish1

finish1

break1

break1
start1

start1

repair
1

repair
1

start2

start2

⊥

Fig. 4. Abstracted automata of small factory example.

completes the task(finish2). Using a switch (W ) can suspend
(suspend) and resume (resume) production, andM1 must
not start if the switch is in suspend mode. The starting and
repairing of machines are controllable events, while finishing,
breakdown, suspend and resume are uncontrollable. In the
case that both machinesM1 andM2 are brokenM2 must be
repaired first (R). Fig. 3 shows the automata of plants and
the plantified specifications.

First two events suspend and resume inW are uncontrol-
lable local events therefore silent uncontrollable loop rule can
be applied onW resulting inW̃ which is shown in Fig. 4.
Since no more abstraction is possible some automata should
be composed.

The composition ofM2 and R results in MR2. Now
controllable event repair2 is a local event and no active event
rule becomes applicable onMR2. Merging q0 and q2 in
MR2 results in ˜MR2 which is shown in Fig. 4.

By composingB and M1, automatonMB1 can be ob-
tained and repair1 becomes a local event. Now no active
event rule can be used to replaceMB1 by an abstracted
automaton. By mergingq0 and q2 first no active event rule
can be applied one more time andq3 andq4 can be merged
and the abstracted automatoñMB1 can be obtained. Fig. 4
showsMB1 and also ˜MB1.

The last stage is to synthesise a supervisor for̃MB1 and
˜MR2, which is S′ and consists of6 states. The modular

supervisor for the system isS′ ‖B ‖R. Composing the mod-



ular supervisor with the system results in the least restrictive
monolithic supervisor for the system which consists of24
states and is larger thanS′ which is the largest component
of the modular supervisor.

V. CONCLUSIONS AND FUTURE WORKS

A new type of abstraction called synthesis abstraction
is introduced and three rules are proposed to calculate the
abstracted automaton of a given automaton. Using these
rules, an algorithm for synthesizing a modular supervisor for
large discrete event systems is proposed. This supervisor,in
combination with the original specifications, produces the
least restrictive controllable and nonblocking solution of the
original control problem.

The proposed algorithm overcomes weaknesses of previ-
ous approaches to compositional synthesis. It results in the
least restrictive supervisor for the system, without the need
of an additional nonblocking check as in [7], or state labels
as in [5].

In future work, the authors would like to develop more
reduction rules. Presently, the abstraction rules apply only
if the produced abstracted automata are deterministic. It
would be an interesting research to consider nondeterminism
after abstraction, which is likely to make more minimization
possible.
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APPENDIX

To simplify the proofs for the presented rules in III-B the
following lemmas are used.

Lemma 1:Let ≈ be a bisimulation betweenG1 and G2

and let x1 ≈ x2, states ofG1 and G2 respectively. Then
for all n ≥ 0, x1 ∈ Θn

G1
(Q1) = Xn

1 if and only if x2 ∈
Θn

G2
(Q2) = Xn

2 .
Proof: This can be proven by induction onn.

Base case. The base case holds sincex1 ∈ Q1 = Θ0
G1

(Q1)
andx2 ∈ Q2 = Θ0

G2
(Q2).

Inductive step. Assume the statement holds forn ∈ N,
i.e., for all x1 ≈ x2, x1 ∈ Xn

1 if and only if x2 ∈ Xn
2 .

Now let x1 ∈ Θn+1

G1
(Q1). This impliesx1 ∈ ΘG1

(Xn
1 ) =

Θnonb
G1

(Xn
1 ) ∩ Θcont

G1
(Xn

1 ).
x1 ∈ Θnonb

G1
(Xn

1 ) means there existss = σ1σ2 · · ·σk ∈

Σ∗ such thatx1 = x0
1

σ1→|Xn
1

x1
1

σ2→|Xn
1
· · ·

σk→|Xn
1

xk
1 ∈ Qm

1 .
Sincex1 ≈ x2, there existsx1

2 such thatx2 = x0
2

σ1→ x1
2 and

x1
1 ≈ x1

2, and by inductive assumptionx2 = x0
2

σ1→|Xn
2

x1
2.

By induction onk, it follows that x2 = x0
2

σ1→|Xn
2

x1
2

σ2→|Xn
2

· · ·
σk→|Xn

2
xk

2 ∈ Qm
2 . Therefore it can be concluded that

x2 ∈ Θnonb
G2

(Xn
2 ).

Now assumex1 ∈ Θcont
G1

(Xn
1 ). Let σ ∈ Σu andx2

σ
→ y2.

Sincex1 ≈ x2, thus there existsy1 ∈ Q1 such thatx1
σ
→ y1

and y1 ≈ y2. Sincex1 ∈ Θcont
G1

(Xn
1 ) therefore∀σ ∈ Σu,

x1
σ
→ y1 implies y1 ∈ Xn

1 . Since y1 ≈ y2 by inductive
assumptiony2 ∈ Xn

2 . This impliesx2 ∈ Θcont
G2

(Xn
2 ). Thus

x2 ∈ Θnonb
G2

(Xn
2 ) ∩ Θcont

G2
(Xn

2 ) = Θn+1

G2
(Q2).

The second implication is analogous to the first one.
Lemma 2:Let G1 and G2 be two finite-state automata

such thatG1 ≈ G2. ThensupCN (G1) ≈ supCN (G2).
Proof: Assume≈, be bisimulation betweenG1 andG2.

Let x1
σ
→ y1 in supCN (G1), thenx1, y1 ∈ Θn

G1
(Q1) for all

n ≥ 0 and x1
σ
→ y1. SinceG1 ≈ G2 there existsy2 ∈ Q2

such thaty1 ≈ y2 and x2
σ
→ y2. Sincey1 ∈ Θn

G1
(Q1) for

all n ≥ 0, by Lemma 1,y2 ∈ Θn
G2

(Q2) for all n ≥ 0, thus
x2

σ
→ y2 in supCN (G2).

The proof for the second condition of bisimulation is
analogous to the first one.

The proof for the third condition of bisimulation follows
immediately since≈ is a bisimulation betweenG1 andG2,
and marking insupCN (G1) andsupCN (G2) is the same as
marking in andG1 andG2.

Lemma 3:Let G =
〈

Σ, Q,→, Qi, Qm
〉

and T =
〈

ΣT , QT ,→T , Qi
T , Qm

T

〉

be two automata. LetΥ ⊆ Σ be
a set of local events forG, i.e. ΣT ∩Υ = ∅. Let ∼ ⊆ Q×Q
be an equivalence relation such that, for allp, q ∈ Q such
that p ∼ q it holds that, ifp

γ
→ q thenγ ∈ Υ, if q

σ
→ r then

σ ∈ Σc and if p
σ
→ r then q

σ
→ r. Then for allx ∈ Q and

for all [x] ∈ Q/∼ the following two conditions hold
(i) if (x, xT ) ∈ gfp ΘG‖T , then([x], xT ) ∈ gfp ΘG/∼‖T ,

(ii) if ([x], xT ) ∈ gfp ΘG/∼‖T , then(x, xT ) ∈ gfp ΘG‖T ,
Proof: 1) Let (x, xT ) ∈ gfp ΘG‖T , it must be shown

that ([x], xT ) ∈ Θn
G/∼‖T (Q/∼ × QT ) = X̃n for all n ≥ 0.

This can be proven by induction onn.
Base case. ([x], xT ) ∈ Q/∼× QT ∈ X̃0.
Inductive step. Assume the statement holds forn ∈ N,

i.e., if (x, yT ) ∈ gfp ΘG‖T then, ([x], xT ) ∈ X̃n. Now it



must be shown that([x], xT ) ∈ Θn+1

G/∼‖T (Q/∼ × QT ) =

Θcont
G/∼‖T (X̃n) ∩ Θnonb

G/∼‖T (X̃n).

Let σ ∈ Σu and ([x], xT )
σ
→ ([y], yT ). Then [x]

σ
→

[y] and xT
σ
→ yT . This implies thatx′ σ

→ y′ for some
x′ ∈ [x], y′ ∈ [y] and x′, y′ ∈ Q. Since according
to assumption the active events of states in[p] are all
controllable events, it can be concluded thatx = x′. Thus
x

σ
→ y′ and (x, xT )

σ
→ (y′, yT ). If x = p and σ ∈ Υ

then sinceσ /∈ ΣT we have([x], xT ) = ([y], yT ). Since
(x, xT ) ∈ gfp ΘG‖T it follows that(y′, yT ) ∈ gfp ΘG‖T . By
inductive assumption([y], yT ) = ([y′], yT ) ∈ X̃n. Therefore
([x], xT ) ∈ Θcont

G/∼‖T (X̃n).
Since(x, xT ) ∈ gfp ΘG‖T , there exists a path(x, xT ) =

(x0, x
T
0 )

σ1→
Θ̂G‖T

(x1, x
T
1 )

σ2→
Θ̂G‖T

· · ·
σk→

Θ̂G‖T
(xk, xT

k ) ∈

Qm × Qm
T . Then (xl, x

T
l ) ∈ gfp ΘG‖T for l = 0, ..., k.

By inductive assumption([xl], x
T
l ) ∈ X̃n for l = 0, ..., k.

Thus ([x], xT ) = ([x0], x
T
0 )

σ1→|X̃n · · ·
σk→|X̃n ([xk], xT

k ) ∈

Qm/∼× Qm
T . Therefore([x], xT ) ∈ Θnonb

G/∼‖T (X̃n).

Therefore([x], xT ) ∈ Θn+1

G/∼‖T (Q/∼× QT ).
2) Let ([x], xT ) ∈ gfp ΘG/∼‖T , it must be shown that

(x, xT ) ∈ Θn
G‖T (Q×QT ) = Xn for all n ≥ 0. This can be

proven by induction.
Base case. (x, xT ) ∈ Q × QT = X0.
Inductive step. Assume the statement holds forn ∈ N,

i.e, if ([x], yT ) ∈ gfp ΘG/∼‖T then (x, xT ) ∈ Xn. Now
it must be shown that(x, xT ) ∈ Θn+1

G‖T (Q × QT ) =

Θcont
G‖T (Xn) ∩ Θnonb

G‖T (Xn).

Let σ ∈ Σu and (x, xT )
σ
→ (y, yT ). Then x

σ
→ y and

xT
σ
→ yT . This implies that[x]

σ
→ [y] and ([x], xT )

σ
→

([y], yT ). Since ([x], xT ) ∈ gfp ΘG/∼‖T and σ ∈ Σu,
therefore([y], yT ) ∈ gfp ΘG/∼‖T . By inductive assumption
(y, yT ) ∈ Xn and thus(x, xT ) ∈ Θcont

G‖T (Xn).
Since ([x], xT ) ∈ gfp ΘG/∼‖T , there exists a path

([x], xT ) = ([x0], x
T
0 )

σ1→
Θ̂G/∼‖T

([x1], x
T
1 )

σ2→
Θ̂G/∼‖T

· · ·
σk→

Θ̂G/∼‖T
([xk], xT

k ) ∈ Qm/∼ × Qm
T and without loss

of generality the selfloop[p]
γ
→ [p] = [q] is not in the

path. Clearly([xl], x
T
l ) ∈ gfp ΘG/∼‖T for l = 0, ..., k. By

inductive assumption(x′
l, x

T
l ) ∈ Xn for l = 0, ..., k and for

all x′
l ∈ [xl]. Since[x0]

σ1→ [x1], there existsx′
0 ∈ [x0] and

x′′
1 ∈ [x1] such thatx′

0

σ1→ x′′
1 . Since[x1]

σ2→ [x2], there exists
x′

1 ∈ [x1] andx′′
2 ∈ [x2] such thatx′

1

σ2→ x′′
2 , and so on. Since

x′
1, x

′′
1 ∈ [x1], there are three possibilities,

(i) x′
1 = x′′

1 , thenx′
0

σ1→ x′′
1 = x′

1

σ2→ x′′
2 ,

(ii) x′′
1 = p and x′

1 = q. Sincep
β
→ q, also x′

0

σ1→ x′′
1 =

p
β
→ q = x′

1

σ2→ x′′
2 ,

(iii) x′
1 = p andx′′

1 = q. Sincep = x′
1

σ2→ x′′
2 , according to

the assumptionq = x′′
1

σ2→ x′′
2 . Thusx′

0

σ1→ x′′
1

σ2→ x′′
2 .

Also since([xk], xT ) ∈ Qm/∼ × Qm
T then x′

k = x′′
k . By

induction, it can be shown that

(i) (x′
0, x

T
0 )

σ1→ (x′′
1 , xT

1 ) = (x′
1, x

T
1 )

σ2→ (x′′
2 , xT

2 ) · · ·
σk→

(x′
k, xT

k ), and(x′
k, xT

k ) ∈ Qm × Qm
T ,

(ii) (x′
0, x

T
0 )

σ1→ (x′′
1 , xT

1 )
β
→ (x′

1, x
T
1 )

σ2→ (x′′
2 , xT

2 ) · · ·
σk→

(x′
k, xT

k ), and(x′
k, xT

k ) ∈ Qm × Qm
T ,

(iii) (x′
0, x

T
0 )

σ1→ (x′′
1 , xT

1 )
σ2→ (x′′

2 , xT
2 ) · · ·

σk→ (x′
k, xT

k ), and
(x′

k, xT
k ) ∈ Qm × Qm

T .
Thus (x, xT ) ∈ Θnonb

G‖T (Xn) and therefore(x, xT ) ∈

Θn+1

G‖T (Q × QT ).
Lemma 4:Let G =

〈

Σ, Q,→, Qi, Qm
〉

be an automaton
and letΥ ⊆ Σu. Let ∼ ⊆ Q×Q be an equivalence relation
such that, for allx1, x2 ∈ Q such thatx1 ∼ x2 it holds that,
there existsυ ∈ Υ∗ such thatx1

υ
→ x2. Then the following

two conditions hold,
(i) if (x, xT ) ∈ gfp ΘG‖T , then([x], xT ) ∈ gfp ΘG/∼‖T ,

(ii) if ([x], xT ) ∈ gfp ΘG/∼‖T , then(x, xT ) ∈ gfp ΘG‖T .
Proof: 1) Let (x, xT ) ∈ gfp ΘG‖T , it must be shown

that ([x], xT ) ∈ Θn
G/∼‖T (Q/∼ × QT ) = X̃n for all n ≥ 0.

This can be proven by induction onn.
Base case. ([x], xT ) ∈ Q/∼× QT ∈ X̃0.
Inductive step. Assume the statement holds forn ∈ N,

i.e., if (x, yT ) ∈ gfp ΘG‖T then ([x], xT ) ∈ X̃n. Now it
must be shown that([x], xT ) ∈ Θn+1

G/∼‖T (Q/∼ × QT ) =

Θcont
G/∼‖T (X̃n) ∩ Θnonb

G/∼‖T (X̃n).

Let σ ∈ Σu and ([x], xT )
σ
→ ([y], yT ). Then [x]

σ
→ [y]

andxT
σ
→ yT . This implies thatx′ σ

→ y′ for somex′ ∈ [x],
y′ ∈ [y] andx′, y′ ∈ Q. Sincex′ ∈ [x], it holds thatx

u
→ x′

for someu ∈ Υ. Therefore(x, xT )
u
→ (x′, xT )

σ
→ (y′, yT ).

Since (x, xT ) ∈ gfp ΘG‖T and uσ ∈ Σ∗
u it follows that

(y′, yT ) ∈ gfp ΘG‖T . By inductive assumption([y], yT ) =

([y′], yT ) ∈ X̃n. Therefore([x], xT ) ∈ Θcont
G/∼‖T (X̃n).

For blocking the same proof as in Lemma 3 holds here.
Therefore it can be concluded that([x], xT ) ∈

Θcont
G/∼‖T (X̃n) ∩ Θnonb

G/∼‖T (X̃n).
2) Let ([x], xT ) ∈ gfp ΘG/∼‖T , it must be shown that

(x, xT ) ∈ Θn
G‖T (Q×QT ) = Xn for all n ≥ 0. This can be

proven by induction.
Base case. (x, xT ) ∈ Q × QT ∈ X0.
Inductive step. Assume the statement holds forn ∈ N,

i.e., if ([x], yT ) ∈ gfp ΘG/∼‖T then (x, xT ) ∈ Xn. Now
it must be shown that(x, xT ) ∈ Θn+1

G‖T (Q × QT ) =

Θcont
G‖T (Xn) ∩ Θnonb

G‖T (Xn).
For controllability the same proof as in 3 holds here.
Since ([x], xT ) ∈ gfp ΘG/∼‖T , there exists a

path ([x], xT )= ([x0], x
T
0 )

σ1→|Θ̂G/∼‖T
([x1], x

T
1 )

σ2→|Θ̂G/∼‖T

· · ·
σk→|Θ̂G/∼‖T

([xk], xT
k ) ∈ Qm/∼× Qm

T . Then([xl], x
T
l ) ∈

gfp ΘG/∼‖T for l = 0, ..., k. By inductive assumption
(x′

l, x
T
l ) ∈ Xn for l = 0, ..., k and for all x′

l ∈ [xl]. Since
[x0]

σ1→ [x1], there existsx′
0 ∈ [x0] and x′′

1 ∈ [x1] such
that x′

0

σ1→ x′′
1 . Since[x1]

σ2→ [x2], there existsx′
1 ∈ [x1] and

x′′
2 ∈ [x2] such thatx′

1

σ2→ x′′
2 , and so on. Sincex′

1, x
′′
1 ∈ [x1]

there existsu1 ∈ Υ such thatx′′
1

u1→|Xn x′
1. Also since

x, x′
0 ∈ [x0] there existsu0 ∈ Υ such thatx

u0→|Xn x′
0. Also

sincex′′
k ∈ [xk] and [xk] ∈ Qm/∼ there existsx′

k ∈ [xk]

such thatx′
k ∈ Qm/∼ and x′′

k
uk→|Xn x′

k for someuk ∈

Υ. Therefore(x, xT ) = (x0, x
T
0 )

u0→|Xn (x′
0, x

T
0 )

σ1→|Xn

(x′′
1 , xT

1 ))
u1→|Xn (x′

1, x
T
1 )

σ2→|Xn · · ·
σk→|Xn (x′′

k , xT
k )

uk→|Xn

(x′
k, xT

k ) ∈ Qm × Qm
T . Therefore(x, xT ) ∈ Θnonb

G‖T (Xn).
Therefore the claim is proven.


