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Abstract— This paper proposes a general method to synthe- observable events are retained in the abstraction. The-meth
size a least restrictive supervisor for a large discrete event ods in [5], [7] also allow for the abstraction of observable
system model, consisting of a large number of arbitrary gyents througthiding. In [5], a least monolithic restrictive

automata representing the plants and specifications. A new . . tructed i bolic f ft b t
type of abstraction, called synthesis abstraction is introduced supervisor is constructed in symbolic form, after absingc

and three rules are proposed to calculate an abstraction of a automata according teupervision equivalenceYet, the
given automaton. Furthermore, a compositional algorithm for ~ equivalence requires additionatate labels making some

synthesizing a supervisor for large-scale systems of composed desirable abstractions impossible. State labels are rednov
finite-state automata is proposed. In the proposed algorithm, ta [7], where supervision equivalence is replacedsipythesis

synchronous composition is computed step by step and interme- ival d hiding i d to abstract all | | t
diate results are simplified according to synthesis abstraction. equivalenceand hiding 1s used to abstract all local events.

Then a supervisor for the abstracted system is calculated, The authors propose a two-pass algorithm for compositional
which in combination with the original system gives the least synthesis, which produces an over-approximation of the
restrictive, nonblocking, and controllable behaviour. least restrictive solution; an additional nonblocking chés
necessary to guarantee correctness.
_ _ This paper combines the strengths of the previous work
Supervisory control theorys a general framework for iy [5] [7], using three abstraction rules preserving aeralt
designing a supervisor for discrete event systems [2], [Shative abstraction relation calleynthesis abstraction.ocal
Synthesising a supervisor for systems with a large numbggq global events are distinguished in each abstractiqn ste
of components suffers from an inherent complexity problemygiding both state labels and hiding, while still proviglin
known as state-space explosion. In order to overcome thgore general simplification than natural projection. Due to
problem, modular approaches to corjstruct supervisors Tﬂ{e avoidance of hiding, the two-pass procedure of [7] can
large-scale systems have been studied. Modular and higg repjaced by a single pass, and the method is guaranteed
archical approaches [11], [13] can produce well-designeg produce a least restrictive modular supervisor in alesas
supervisors, yet they are based on structural information This paper is organised as follows. Section Il introduces

provided by users and therefore are difficult to automatgne required notation from supervisory control theory. The

Other early methods such as [1] only consider the synthesizonosed algorithm for finding the least restrictive sujsav

of a I_east restrictive controllable supervisor, ignoringnn o 4 system and the rules to abstract a given automaton,

blocking. _ o according to synthesis abstraction, are explained in Sec-
More recently, abstraction based emtural projection (o 1. In Section IV, the proposed algorithm is applied

has been studied for compositional supervisor synthesig, an example. Finally, conclusions are drawn in Section V.
Natural projection with theobserver propertyis shown

in [3] to produce a nonblocking but not necessarily least 1. PRELIMINARIES AND NOTATION
restrictive supervisor; ibutput control consistencig added
as an additional requirement, least restrictiveness canbe
sured [3]. In [10], it is furthermore shown that output cahtr ~ The main elements of discrete event system modeling are
consistency can be replaced by a weaker condition calletiatesand events States represent situations under which
local control consistencyA drawback of the projection- certain rules and conditions hold. Events represent imt&de
based methods is their strong connection to events, whithat cause transitions from one state to another. A set of
makes it difficult to treat different transitions labelledthv events will be referred to as amphabet denotedX. For
the same event in different ways. the purpose of supervisory contral; is partitioned into
Supervisor synthesis and abstractions have also bewwvo disjoint subsets, the sét. of controllable events and
studied in a nondeterministic setting. In [6], [1Zenflict- the setX, of uncontrollable events. The set oéll finite
preserving abstractions andveak observation equivalence strings of elements ok, including the empty string is
are shown to be adequate for the synthesis of nonblockimtgnoted by>*. A subsetl. C >*, is called alanguage The
supervisors, but least restrictiveness is only guararnifestl concatenation of two strings, ¢t € ¥* is written asst. L is

A ) b th dich ) | the prefix-closure of a languageC >* and it is defined as
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I. INTRODUCTION

A. Events and Languages

fabi an}@hal ners. se B. Nondeterministic Automata
R. Malk and S.Warg Department of Computer Science, L . .
Un{iversity of Waikato, éHamﬁton, New Zea|£nd {r obi , Finite-state automata are used to describe discrete event
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deterministicand that non-determinism arises as a consexpresses the liveness requirements of the system, while
guence of manipulation of these automata. controllability captures safety.
Definition 1: A nondeterministic finite-state automaton is Definition 6: [7] Let G = (%, Qq, —¢, @k, Q%) and
a 5-tupleG = (,Q,—,Q",Q™), whereX is a finite set K = (3, QK. — K, Ql%, Q%) be two automata such that
of events, is a finite set of states» CQ x X x Q isthe K C G. K is controllablein G if, for all statesz € Qg
state transition relation@* C Q is the set ofinitial states andy € Q¢ and for every uncontrollable eventc ¥, such
and@Q™ C Q is the set ofmarked statesG is deterministic thatz > v, it also holds that: > v.
if |Q'| <1andz 2 y; andz % y, always impliesy; = yo. Definition 7: [7] Let G be an automaton. A state is
The transition relation is written in infix notatian > y,  calledreachablen G if G — x, andcoreachablen G if x —
and is extended to strings iB* by letting = —z for all Q™. The automator@ is called reachable or coreachable if
z €@, andz > z if > y andy > z for somey. For an every state in’ has this property( is callednonblocking
automatonG > means the existence efc Q' andy € Q, if every reachable state is coreachable.
such thatr % y and G — x means3s € X*, such that The upper bound of controllable and nonblocking sub-

G i>:'c,'s'ee [4]. _ automata is again controllable and nonblocking, and this
Definition 2: Let G = (¥,Q, —,Q", Q™) be an automa- implies the existence of a least restrictive synthesislresu
ton. The subset of all the strings such thatG = is the Definition 8: Let G be an automaton. The supremal con-

language of the automaton denotédG). The subset of trollable and nonblocking subautomaton @fis

L(G) that contains only the stringssuch thatG' % Q™, is )

the marked language and is written &g, (G). supCN(G) = {G" € G | G’ is controllable and (3)
When automata are brought together to interact, the inter- nonblocking forG and X, }

action occurs on shared events occurring synchronously or 1 "erefore;supCA/(G) is the unique synthesis result for a

not at all. This is modeled bgynchronous composition  Plant G. Synthesis is done by iteratively removing blocking
Definition 3: Let G, = <21,Q1,—>1, §,Q71"> andG, — and uncontrollable. s_tates of a plant, until a fixed point is

reached, and restricting the automaton to these states.

Definition 9: [7] Let G = (%,Q, —¢,Q", Q™) be an

automaton. Theestrictionof G to X C Q is

<22,Q2,—>2, g,Q§”> be two automata. Theynchronous
compositionof G; andGs, is defined as

G1 || G2 = (31U, Q1 X Q2,—,Q x Q5, QT x Q)

where
e s o e . o where—y = {(z,0,y) | z,y € X }.
(2,y) i (@, y') !f o€ (X1Nky), x AR ARCE A Definition 10: The function that does synthesis is denoted
(z,y) = (@ y) if 0 € (E1\E2), =123 asOg(X) = O (X) N OY™(X) where

(z,y) > (z,y) if o€ (Z2\ 1), y 229 -

nonb _ m * t
We define a relation between automata, we will say that2¢ (X)={reX[IyecQmandtc ¥z~ xy},

an automaton is aubautomatoif another if the structure of OF™(X)={r € X |Vo €y, v - yimpliesy € X }5
the first is contained within the second, and they both ha\LFh . . . )
e first function captures nonblocking and the second one
the same alphabet. A trollabili
Definition 4: Let Gy = (5, Q1,—1, Q1, Q) and G, =  controliability.

(3, Q2,—2,Q%, Q%) be two automatal; is asubautoma- f Tr}[.e synthest|_s tredSl;["t t'ﬁ’ a partt ‘ff_Whg” thet synthgﬂs
ton of Gy, Written Gy C G, if Q1 C Qo —; C —p, function is restricted to the greatest fixed point, see [5].

Qi C Qi, andQ™ C QI Theorem 1: [7] Let G = (%, Q, —>0,Q1,Qm>: The Syil-
Another common automaton operation is theotient 11€SIS Step operat@¢ has a greatest fixed point gip; =
modulo an equivalence relation on the state set. O¢ C @, such thati ¢, is the unique greatest subautoma-
Definition 5: Let G = (%, Q, —, Q%, Q™) be an automa- ton of G that is both controllable ng} and coreachable. If the
state set) is finite, the sequenc&’ = @, X! = O4(X?)
reaches this fixed point in a finite number of steps, i.e.,
Oq = X™ for somen > 0.

ton and let~ C @ x @ be an equivalence relation. The
quotient automatomf G modulo ~ is

G/~ =(2,Q/~—/~Q' [~ Q"/~) )

where —/~ = {[z] = [y] | & = y}. Here, [2] = {2’ € N . .
Q | = ~ 2’} denotes theequivalence classf = € @, and A traditional supervisory control problem, see [9], cotsis
Q/~={[z] | x € Q} is the set of all equivalence classesOf @ plant G and aspecificationk’, given as deterministic

D. Translation of Specifications into Plants

modulo ~. automata.
) Using the nonblocking condition, control problems can be
C. Supervisory Control Theory representecequivalentlyonly using plants. A specification

Considering plant and specificatioaupervisory control automaton is transformed into a plant by adding, for every
theory provides a method to synthesise a supervisor thaincontrollable event that is not enabled in a state, a tiansi
restricts the behaviour of the plant such that the giveto a new blocking statel. The following construction
specification is always fulfilled. Two requirements for thefrom [5] essentially transforms all potential controllityi
supervisor areontrollability and nonblocking Nonblocking  problems into potential blocking problems.



Definition 11: Let K = (X, Q,—,Q%,Q™) be a specifi-
cation. Thecomplete plant automatoR - for K is

K+ =(2,Qu{L},—-*+qQ.Q™) (6)

where L ¢ @ is a new state and

Fig. 1. No active event rule. Automatad and its abstracted automaton
LU {(x,v, J_) | TEQ,UE T, 72) } (7) G/~. Local events are shown by parentheses around.
Proposition 1: Let G, K, and K’ be deterministic auto-
mata over the same alphabBt and let K’ be reachable.
Then the following two statements are equivalent.

() K' C G| K+ is nonblocking and controllable i ||

Gj, i # j. These are calletbcal eventsand will be denoted
by T in the following. Local events are helpful to find an
abstraction.

K . e = - . B

" ! . . . Definition 12: Let G and andG be two deterministic
/ e

(i) fgSpCCth || K is nonblocking and controllable with ut ta with alphabe. Then automatord, is a syn-

. . thesis abstractiorof GG with respect toY C ¢, the set of
For the proof see [5]. According to this result, the leasfycg) event, writtern’ <., G if for every deterministic

~

restrictive, controllable and nonblocking supervisorftant 5 iomaton” = <ET Qr, —, Q! Qm> such that, NT =
G and specificationk, can be obtained by calculating j the following holds T

supCN (G || K+). ~
L(G||T||supCN(G||T)) = L(G||T||supCN (G| T)) (9
I1l. COMPOSITIONAL SYNTHESIS (GIT llsupCMEIT)) (G T llsapCMEIT)) (9
In this section, the proposed compositional synthesis a- Abstraction Rules
gorithm is explained. The rules to calculate the abstracted In order to abstract the modular system, methods to find
automaton according to synthesis abstraction are given an abstracted automaton, of a given automaton are needed.
proven. Here some possible methods are discussed.
. . 1) Bisimulation:
A. Synthesis Abstracfuon _ Definition 13: Assume G = (%,Q1,—,q},QT") and
A modular_;upt_—:-rwsory control problem consists of &, = <E,Q2,H,q§,Q§"> are two automata. A relation
modular specificationk” = K || --- || Ky, and a modular ~ c 9, x , is called a bisimulation betweef; and G

plantG' = G ||-- - || G- As discussed in Section II-D all the it for all 2, € Q; andx» € Q, and for allo € £ such that
specifications can be translated to plants and therefore The . ;.

task is to find the least restrictive supervispifor a set of Y "
plants, if ©1 — y1 then3dy, € Q2 such thatzy — y2 andy; = yo,
if 2o % yp then3y; € Q; such thatr; % y; andy; ~ ys,
x1 € Q7 if and only if z2 € Q7.

In the proposed algorithm, the modular system (8) is 8y, and i3, are bisimular if there exists a bisimulatics
stracted step by step, using the same strategies and m‘risﬁetweenGl and G such thatg! ~ gi.

that are proposed in [4]. Therefore instead of finding the Thagrem 2:Let G, and G, be two automata such that

GIE-=Gi|-|Gu| Ki |- Ko (8)

supervisor forG || K, each automatoty; or KjL in (8) may Gy ~ Go. ThenGy <,pming Go
~ Gs. Ssynth, .
be abstracted and replaced b/~ or K;-/~. When no Proof: It must be shown that for every test automaton

more abstraction is possible, the synchronous compositign _ S, Qr, =7, ¢4, QF), (9) holds. SinceGy ~ Go,

is computed step by step, and in each step the abstractipio|iows from the congruence result of [8] that, || T ~

rules are applied. Eventually this procedure leads to desingg, || 7. By Lemma 2 in the appendix,

automaton H which is the abstracted description of the

monolithic system (8). Oncél is found, the next step is supCN (G || T) = supCN (G || T).

synthesise a supervisor féf, which is calledS’. Finally the

modular supervisofor the system isS’ || K1 || Kz ||« - - || Kom,

which is the least restrictive controllable and nonblogkin G, | T || supCN (G1 || T) = Gy | T || supCN (G || T),

supervisor forG. Note that since the supervisor is modular,

the potential state-space explosion problem can be avoidd¥ich implies

In practice the final supervisa$’ | K never needs to be . _ .

calculated. The final supervisdt’ || K can instead be im- L(G1 || T||supCN(G1 | T)) = L(G1 | T ||supCN (G2 || T)).

plemented keeping its modular structure and performing the ]

synchronization on-line. As the plant generates eventerund 2) No Active Event RuleTwo states that are connected

control of the supervisor, the supervisor components dccepy a local event such that the target state has no un-

and transit on those events individually. This effectivelycontrollable active events and also has the same or more

performs the synchronous composition on-line. outgoing transitions as the source state, can be merged. The
When abstracting an automatad;, in an attempt to abstracted automaton is a synthesis abstraction of thimakig

replace it byG;/~, there will typically be some events usedautomaton. Fig. 1 shows an example application of this rule.

in G; which do not be appear in any other componh’rj‘t or

By congruence



G (la) G/N (la,18) IDLE starg

qo ¢ qo1 finish; con RUNNING
r |r
vy (B | A v A P suspend( | resume

p) g3 q2 q3 WORKING O— 0 DOWN SUSPENDED
Fig. 2.  Silent uncontrollable loop rule. Automat@# and its abstracted B repair,
automaton/~. ! denotes uncontrollable events and local events are shown EMPTY !
by parentheses around. finishy stark breal@ repait,

FULL
‘ finishy break
Theorem 3:Let G = <E,Q7—>,Q2Qm> be an automa- 1
ton andY C X be the set of local events. Let C Q x @
be an equivalence relation such that, forall 2> € @ such Fig. 3. Automata of small factory example.
that 2y ~ o it holds that, ifz; % x5 theny € T, if ) ,
ry 5 x5 theno € X, and ifz; 2 23 thenzs < z3. Then W @ E?Ss“med MRs repait, MR, repaly
star

G Ssynth,'r G/N

Proof: It must be shown that for any deterministic gpe'%hlé
automatoril’ = (X7, Qr, —r, ¢r, Q) such thatrNYT =
@, (9) holds.

1) Lets € L(G || T || supCN (G || T)). This means that
G| T | supCN(G || T) > (zg,z7, 7, v4) and sinceG
and T' are deterministicz, = z¢ and 2/, = xp. Let

s = oy---0p, then (xg,xg) UllécHT (mlG’m{) UzléG”T
Uﬂ\eG”T (x5, xl) and (zf,2f) € gfp Ogr for

k =0,..,n. By Lemma 3, ([ ¢ 2L € gfp @G/ ~|r for
k::0,...,n and([z§],28) & 667 ([z§],2T) B 10z
. ﬁ’\éc/ww ([z&], zL). ThereforeG || T || supCN (G/~ ||

T) > (zq,rr,[rc],rr) which means thas € G || T ||
supCN (G/~ || T).

(2) Lets € L(G|| T ||supCN (G/~]|T)). This means that
G| T | supCN(G/~|T) > (zq,zT, [x6], oly), Wheres =
o1+ 0,. SinceT is deterTllnlstlc ZTr = Tl andatzherefgre completes the taskinish, ). Using a switch (") can suspend
G|T| SUPCN(G/N 1T) = (33?’$1T7 2], a1) = = (suspend) and resume (resume) production, &fdmust

Fig. 4. Abstracted automata of small factory example.

(xg’l%» (5], 2]). 5'”06([93k] z}) € gfp O yr fork = not start if the switch is in suspend mode. The starting and
,n by Lemma 3,(zf/,z) € gfp Oz for k= 0,....n.  repairing of machines are controllable events, while finigh

ThereforeG | T | supCN(G | T) & (x?,xlT,x?,wl) 2 breakdown, suspend and resume are uncontrollable. In the

- (28, 2T 2% 2T) and thus it can be concluded thatcase that both machindd; and M, are broken/, must be

s € L(G|| T | supCN (G| T)). B repaired first R). Fig. 3 shows the automata of plants and
3) Silent Uncontrollable Loop RuleStates in a local the plantified specifications.

uncontrollable loop can be merged, and the deterministic First two events suspend and resuméiinare uncontrol-

abstracted automaton is a synthesis abstraction of thimalig lable local events therefore silent uncontrollable lodp nan

automaton. Fig. 2 shows an example application of this rul&e applied onl¥ resulting inT which is shown in Fig. 4.

Since no more abstraction is possible some automata should

Theorem 4:Let G = (¥,Q,—,Q",Q™) be an automa- be composed.

ton and letY C ¥,. Let ~ C @ x @ be an equivalence  The composition ofM, and R results in M R,. Now

relation such that, for ally, z2 € Q such thatr; ~ x3 it controllable event repajris a local event and no active event

holds that, there exists € YT* such thatz; — z. Then rule becomes applicable off/ Ry;. Merging ¢o and g in

G Ssyntn,y G/~. M R, results inM R, which is shown in Fig. 4.
Proof:_ Same as the prooyc for Theorem. 3, but using By composingB and M;, automaton}M B; can be ob-
Lemma 4 instead of Lemma 3 in the appendix. B tained and repajr becomes a local event. Now no active

event rule can be used to repladéB; by an abstracted
automaton. By merging, and ¢- first no active event rule
A simple manufacturing system [9] consists of two macan be applied one more time agglandg, can be merged
chines and a buffer. The first machink/{) starts processing and the abstracted automatMBl can be obtained. Fig. 4
workpieces(start ) and puts them into the buffe3) when showsM/ B; and alsoM B;. .
it finishes (finishy). In the beginning the buffer is empty  The last stage is to synthesise a supervisorMaB, and
and it becomes full aftef/; finishes. The second machine M R, which is S’ and consists of; states. The modular
(Ms) removes the workpieces from the buffestart) and  supervisor for the system &' || B || R. Composing the mod-

IV. EXAMPLE



ular supervisor with the system results in the least rditeic APPENDIX

monolithic §upervisor for the_ system which consists2df To simplify the proofs for the presented rules in I1I-B the
states and is larger tha$/ which is the largest component fo|jowing lemmas are used.

of the modular supervisor. Lemma 1:Let ~ be a bisimulation betwee6; and G5
V. CONCLUSIONS AND FUTURE WORKS and |et£E1 ~ x,, States 0fG1 and Go respectively. Then
forall n > 0, x; € ©¢ (Q1) = X7 if and only if 2, €

A new type of abstraction called synthesis abstractiop,,,
is introduced and three rules are proposed to calculate thé" Proof: This can be proven by induction on

abstracted automaton of a given automaton. Using theseg,ca caseThe base case holds sincee Q1 = 0% (Q1)
. A h .
rules, an algorithm for synthesizing a modular supervisor f andzy € Qg — @%2@2).

large discrete event systems is proposed. This SUPEVISOL, gy ctive step Assume the statement holds for e N,
combmatlc_)n_wnh the original speC|f|cat|o_ns, proc_luces thﬁe_, for all z; ~ x5, z; € X7 if and only if 25 € X2
Ieggt restrictive controllable and nonblocking solutidrtt@ o Jet I, € @réJrl(Ql)_ This impliesz; € Og, (X7
original control problem. Qnonb(xn) A @Coﬁt(Xn)

The proposed algorithm overcomes weaknesses of previ<: ! Gy V1
ous approaches to compositional synthesis. It resultsen th 0 o1 1 o2 o A "
least restrictive supervisor for the system, without theche > SUCh thate: = z7 = xp 1 =ixp -+ = xp 21 € QF"
of an additional nonblocking check as in [7], or state label§incexz; ~ xs, there existsey such thatr, = 2§ = 23 and
as in [5]. z{ ~ x3, and by inductive assumption, = 2§ = xp 3.

In future work, the authors would like to develop moreBy induction onk, it follows thatz, = 29 S|X; x3 B|X;

reduction rules. Presently, the abstraction rules app_ly.on_,. ﬂg‘Xg 2k € Qu. Therefore it can be concluded that
if the produced abstracted automata are deterministic. }tz € ORmb (X1,
2

would be an interesting research to consider nondeterminis

cont n g
after abstraction, which is likely to make more minimizatio ,NOW assumer; € O] (X.l ). Leto € X, anda v
possible. incex; ~ x, thus there existg; € @, such thatr; — y;

andy; = yo. Sincex; € Gg’ft(){{l) thereforevVo € X,
P . . "o . .
r1 — yp impliesy; € X7. Sincey; =~ y by inductive
[1] K. Akesson, H. Flordal, and M. Fabian. Exploiting modularity fo assumptiony, € X%'. This implieszy € ©&™(X2). Thus
nthesis and verification of supervisors. Rroc. 15th IFAC World nonb/ yvn cont({vn n+1 2
& T € O (XS) NOZM(XS) = 04 (Q2).
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October 1998. ie., if (z,yr) € gfp Og|r then, ([z],zr) € X™. Now it



must be shown that[z],z7) €
OFLr(X™) N @go/fu:r(X")-

Let o € S, and ([e].zr) % ([ylyr). Then [z] %
[y] and 27 % yp. This implies thatz’ % 3 for some
€ [z], ¥ € [y] and 2’,y’ € Q. Since according
to assumption the active events of states[ih are all
controllable events, it can be concluded that z’. Thus
r %y and (z,27) 5 (v,yr). If = pando € Y
then sincesc ¢ X we have([z],zr) = ([y],yr). Since
(z,27) € gfp O it follows that (y', yr) € gfp Og 7. By
inductive assumptiony], yr) = ([y'], yr) € X™. Therefore
([z],2r) € 92;”7t“T(X")-

Smce(x xr) € gfp GGHT’ there exists a patle, zr) =
(xoaxg) @G”T (z1,27) 3 Togyr Uk@GHT (Tk,l‘g) €
Q™ x Q7. Then (z1,2]) € gfp Ogyr for I = 0,...,k.

k
€

@?Jl ||T(Q/N x Qr)

By inductive assumptiorf[z;],z}) € X" for I = 0,..., k.
Thus ([z],z7) = ([x()}vxg) g\)?" SR

% o (fwil,al)
Q™ /~ x QF'. Therefore([z], z1) € O - (X™).
Therefore([z], x

T) € @Zﬂ”T(Q/N X Qr).

2) Let ([z],z7) € gfp Og/~|r, it must be shown that
(z,27) € OF7(Q x Qr) = X for all n > 0. This can be
proven by induction.

Base case(r,z7) € Q x Qr = X°.

Inductive step Assume the statement holds fare N,
i.e, if ([x],yr) € gfp Og/~r then (z,z7) € X". Now
it must be shown thaiz,zr) € OFIL(Q x Qr)
O (X™) N O (X™).

Let 0 € ¥, and (z,27) = (y,yr). Thenz % y and
rp 5 yp. This implies thatlz] % [y] and ([z],z7) 2
([yl,yr). Since ([z],z7) € gfp Og/uyr and o € X,
therefore([y], yr) € gfp O¢/~|r. By inductive assumption

(y,yr) € X™ and thus(z, z7) € QCGOWTt(X")

Since ([z],z7) € gfp O¢,~r, there exists a path

o1 g2

(el 2r) = ([zo], )
Bog, e ([2a]2])

of generality the selfloodp] = [p] =

T
_)ég/N”T ([x1]7$1 ) _)(;)G/NHT
€ QM/~ x QF and without loss
[¢] is not in the

path. Clearly([z], z{") € gfp Og/r for i = 0,...,k. By
inductive assumptioz), z{ ) € X" for [ =0, ...,k and for
all zj € [z]. Since[zo] & [ 1], there existSch € [xo] and

o1

o € [21] such thatr), 75 2. Since[z] 2 [x»], there exists
x} € [x1] andz} € [:c2] such thatr; 2 2, and so on. Since
x},zf € [z1], there are three p055|bll|t|es
() 2y =2y, thenzh 3z = 24 2 oY,
(i) =}
paq=ai > ay,
(i) =y =pandz! =q. Sincep =2 B x2, according to
the assumptioy = =¢ 23 z. Thusz) 2 /! 533 x2
. Alsq smpe([ zil, ) € QM /~ x QF thenz), = zJ.
induction, it can be shown that
(i) (zg,z) (z7,27) (x,27) 3 (5,23)
(z),z1), and (z}, 2T) € Q™ x Q,
. 8
(”) (I ) J (xla‘rl) - (Ilaz?) L‘E} ( gvxg)
(z ), and (z}, %) € Q™ x QW

= pandz} = q. Sincep L alsozh &

o1
—

T
793%
7xk

0
/
k

= (:EIQI’ .’L'g) o

(i) (zf,af) 2 (2, 2])
(%) € Q™ x QF.

Thus (z,27) € OFIP(X") and therefore(z,z7) €

OLIr(Q x Qr). [

Lemma 4:Let G = <Z,Q,—>,Qi,Qm> be an automaton
and letYT C ¥,,. Let~ C @ x @ be an equivalence relation
such that, for alley, zo € @ such thatz; ~ x4 it holds that,
there existsy € T* such thatz; > x5. Then the following
two conditions hold,

(i) if (z,z7) € gfp Og|r, then([z], z7) € gfp Og 1,

(ii) if ([z],z7) € gfp Og/~|1, then(z,z7) € gfp O 7.
Proof: 1) Let (z,z7) € gfp Ogr, it must be shown

that ([z], z1) € ©F, ||T(Q/~ x Qr) = X" for all n > 0.
This can be proven by induction on

Base case([z], z7) € Q/~ x Qr € X°.

Inductive step Assume the statement holds fare N,

e, if (z,yr) € gfp Ogr then ([z],zr) € X™. Now it

must be shown that[z],z7) € O¢F, 1 (Q/~ x Qr) =
OFL r(X™) N eg}anHT(Xn)-

Let o € ¥, and ([z],z7) 2 ([y],yr). Then[z] % [y]
andzp % yr. This implies thate’ % 3 for somex’ € [z],
y € [y] andz’,y’ € Q. Sincea’ € [], it holds thatr - 2’
for someu € Y. Therefore(z, z7) = (¢, 27) = (v, yr).
Since (z,z7) € gfp O¢g)r anduo € 3 it follows that
(y',yr) € gfp Ogr. By inductive assumptiort[y], yr) =
([y'], yr) € X™. Therefore([z],z7) € @w”tHT(X").

For blocking the same proof as in Lemma 3 holds here.

Therefore it can be concluded thaffz],z7) €
O (X N Ot (X™).

2) Let ([z],z7) € gfp O©g/~r, it must be shown that
(x,z7) € g +(Q x Qr) = X" for all n > 0. This can be
proven by |nduct|on
Base case(z,zr) € Q x Q7 € X°.

Inductive step Assume the statement holds fore N,

% (24,2T), and

e., if ([z],yr) € gfp Og/~r then (z,z7) € X™. Now
it must be shown thatz,zr) € OFI.(Q x Qr) =
cont Xn @nonb(Xn)

Iéor controllablllty the same proof as in 3 holds here.
Since ([z],zr) € gfp Og/~r, there exists a
path ([z],27)= ([vo],25) %6, . ([1),27) "’\@G/
Do,y (4] ) € @7/~ x Q. Then([ai], =) €
gfp @G/ ~|r for I = 0,..,k By inductive assumption
(z},zf) € X" for I = 0,...,k and for allz| € [x;]. Since
(o] & [z1], there exist37c0 € [xo] and zf € [z4] such
thatz), 7% 27. Since[z;] &3 [x»], there exists) € [ 1] and
xY € [x2] such thatr} 22 24, and so on. Slncel, [ € [z1]
there existsu; € T such thatx! ﬂqxn xy. Also since
z,x) € [zo] there existaug € T such thatr =% x. z{. Also
sincez) € [x;] and [z;] € Q™ /~ there existsr) € [z]
such thatz), € Q™/~ andz} “5x. z}, for somew;, €
Y. Therefore (z, 1) = (zo,28) Bixn (h,2d) Dixn
(z7,27)) E’\X" (z7,27) 2’|Xﬂ %’\X" (z7, o) u—>|xn
(z),. 2) € Q™ x Qf. Therefore(z, x7) € O (X™).
Therefore the claim is proven.



