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Abstract—In a previous paper we introduced the notion of syn-
thesis abstraction, which allows efficient compositional synthesis
of maximally permissive supervisors for large-scale systems of
composed finite-state automata. In the current paper, observation
equivalence is studied in relation to synthesis abstraction. It is
shown that general observation equivalence is not useful for
synthesis abstraction. Instead, we introduce additional conditions
strengthening observation equivalence, so that it can be used
with the compositional synthesis method. The paper concludes
with an example showing the suitability of these relations to
achieve substantial state reduction while computing a modular
supervisor.

I. INTRODUCTION

Modular approaches to supervisor synthesis are of great

interest in supervisory control theory [1], [2], firstly in order

to find more comprehensible supervisor representations, and

secondly to overcome the problem of state-space explosion for

systems with a large number of components. Many approaches

studied so far, such as [3], [4], rely on structure to be

provided by users and hence are hard to automate. Other

early methods such as [5] only consider the synthesis of a

least restrictive controllable supervisor, ignoring nonblocking.

Supervisor reduction [6] greatly helps to simplify synthesised

supervisors, yet it relies on a monolithic supervisor to be

constructed first, and thus remains limited by its size.

More recently, abstraction based on natural projection has

been studied for compositional supervisor synthesis. Natural

projection with the observer property produces a nonblocking

but not necessarily least restrictive supervisor; if output con-

trol consistency is added as an additional requirement, least

restrictiveness can be ensured [7]. In [8], it is furthermore

shown that output control consistency can be replaced by a

weaker condition called local control consistency.

Supervisor synthesis and abstractions have also been studied

in a nondeterministic setting. In [9], [10], conflict-preserving

abstractions and weak observation equivalence are shown to

be adequate for the synthesis of nonblocking supervisors, but

least restrictiveness is only guaranteed if all observable events

are retained in the abstraction. The methods in [11], [12] also

allow for the abstraction of observable events through hiding.

In more recent work [13], the authors propose another

means of abstraction called synthesis abstraction, which avoids

hiding and some of the problems encountered in [11], [12].

This present paper builds on this work and investigates how

automata can be simplified in the framework of synthesis

abstraction. The focus is on observation equivalence and

related methods.

After the preliminaries in Sect. II, the framework of synthe-

sis abstraction is presented in Sect. III. Next, in Sect. IV obser-

vation equivalence-based abstractions are studied in detail. It is

first shown that general observation equivalence is not suitable

for synthesis abstraction, and then the stronger versions of

uncontrollable observation equivalence and synthesis observa-

tion equivalence are shown to guarantee synthesis abstraction.

It is also shown that synthesis observation equivalence can

produce better abstraction than the projection-based method

of [8]. Finally, Sect. V demonstrates observation equivalence-

based abstraction using a practical example, and Sect. VI adds

some concluding remarks. Most formal proofs are omitted for

lack of space in this paper and can be found in [14].

II. PRELIMINARIES AND NOTATION

A. Events and Languages

Discrete event systems are modelled using events and lan-

guages [1]. Events are taken from a finite alphabet Σ, which is

partitioned into two disjoint subsets, the set Σc of controllable

events and the set Σu of uncontrollable events. The special

event ω ∈ Σc denotes termination.

The set of all finite strings of elements of Σ, including the

empty string ε, is denoted by Σ∗. A subset L ⊆ Σ∗ is called a

language. The concatenation of two strings s, t ∈ Σ∗ is written

as st. A string s ∈ Σ∗ is called a prefix of t ∈ Σ∗, written

s ⊑ t, if t = su for some u ∈ Σ∗. For Ω ⊆ Σ, the natural

projection PΩ : Σ∗ → Ω∗ is the operation that removes from

strings s ∈ Σ∗ all events not in Ω.

B. Nondeterministic Automata

Discrete system behaviours are typically modelled by de-

terministic automata, but notation in this paper is based on

nondeterministic automata, which may arise as intermediate

results during abstraction.

Definition 1: A (nondeterministic) finite-state automaton is

a tuple G = 〈Σ, Q,→, Q◦〉, where Σ is a finite set of events,

Q is a finite set of states, → ⊆ Q × Σ × Q is the state

transition relation, and Q◦ ⊆ Q is the set of initial states.

G is deterministic, if |Q◦| ≤ 1 and x
σ
→ y1 and x

σ
→ y2

always implies y1 = y2.

The transition relation is written in infix notation x
σ
→ y,

and is extended to strings in Σ∗ by letting x
ε
→ x for all



x ∈ Q, and x
sσ
→ z if x

s
→ y and y

σ
→ z for some y ∈ Q.

Furthermore, x
s
→ means that x

s
→ y for some y ∈ Q, and

x → y means that x
s
→ y for some s ∈ Σ∗. These notations

also apply to state sets, X
s
→ for X ⊆ Q means that x

s
→ for

some x ∈ X , and to automata, G
s
→ means that Q◦ s

→, etc.

A special requirement is that states reached by the termi-

nation event ω do not have any outgoing transitions, i.e., if

x
ω
→ y then there does not exist σ ∈ Σ such that y

σ
→. This

ensures that the termination event, if it occurs, always is the

final event of any trace. The traditional set of marked states

is Qω = {x ∈ Q | x
ω
→} in this notation. For graphical

simplicity, states in Qω are shown shaded in the figures of

this paper instead of explicitly showing ω-transitions.

For a state or state set x, the continuation language is

L(x) = { s ∈ Σ∗ | x
s
→}. The language of an automaton G

is L(G) = L(Q◦), and its marked language is M(G) = { s ∈
Σ∗ | sω ∈ L(G) }.

When automata are brought together to interact, lock-step

synchronisation in the style of [15] is used.

Definition 2: Let G1 = 〈Σ1, Q1,→1, Q
◦
1〉 and G2 = 〈Σ2,

Q2,→2, Q
◦
2〉 be two automata. The synchronous composition

of G1 and G2 is defined as

G1 ‖ G2 = 〈Σ1 ∪ Σ2, Q1 × Q2,→, Q◦
1 × Q◦

2〉 (1)

where

(x, y)
σ
→ (x′, y′) if σ ∈ (Σ1 ∩ Σ2), x

σ
→1 x′, y

σ
→2 y′ ;

(x, y)
σ
→ (x′, y) if σ ∈ (Σ1 \ Σ2), x

σ
→1 x′ ;

(x, y)
σ
→ (x, y′) if σ ∈ (Σ2 \ Σ1), y

σ
→2 y′ .

Another common automaton operation is the quotient mod-

ulo an equivalence relation on the state set.

Definition 3: Let G = 〈Σ, Q,→, Q◦〉 be an automaton and

let ∼ ⊆ Q × Q be an equivalence relation. The quotient

automaton of G modulo ∼ is

G/∼ = 〈Σ, Q/∼,→/∼, Q̃◦〉 , (2)

where →/∼ = { [x]
σ
→ [y] | x

σ
→ y } and Q̃◦ = { [x◦] | x◦ ∈

Q◦ }. Here, [x] = {x′ ∈ Q | x ∼ x′ } denotes the equivalence

class of x ∈ Q, and Q/∼ = { [x] | x ∈ Q } is the set of all

equivalence classes modulo ∼.

C. Supervisory Control Theory

Given a plant automaton G and a specification automa-

ton K, supervisory control theory [1] provides a method to

synthesise a supervisor that restricts the behaviour of the

plant such that the specification is always fulfilled. Two

common requirements for the supervisor are controllability

and nonblocking.

Definition 4: Let G and K be two automata using the same

alphabet Σ. K is controllable with respect to G if, for every

string s ∈ Σ∗, every state x of K, and every uncontrollable

event υ ∈ Σu such that K
s
→ x and G

sυ
→, it holds that x

υ
→

in K.

Definition 5: Let G = 〈Σ, Q,→, Q◦〉. A state x ∈ Q is

called reachable in G if G → x, and coreachable if x
tω
→

for some t ∈ Σ∗. G is called reachable or coreachable, if

every state x ∈ Q has the respective property. G is called

nonblocking if every reachable state is coreachable.

For a deterministic plant G and specification K, it is

shown in [1] that there exists a least restrictive controllable

sublanguage

supCG(K) ⊆ L(K) (3)

such that supCG(K) is controllable with respect to G and

nonblocking, and this language can be computed using a fixed-

point iteration.

In [12], this result is generalised to nondeterministic au-

tomata. For nondeterministic automata, synthesis produces a

subautomaton instead of a language, and the controllability

condition is modified accordingly.

Definition 6: [12] Let G1 = 〈Σ, Q1,→1, Q
◦
1〉 and G2 =

〈Σ, Q2,→2, Q
◦
2〉 be two automata. G1 is a subautomaton of

G2, written G1 ⊆ G2, if Q1 ⊆ Q2, →1 ⊆ →2, and Q◦
1 ⊆ Q◦

2.

Definition 7: [12] Let G = 〈Σ, QG,→G, Q◦
G〉 and K =

〈Σ, QK ,→K , Q◦
K〉 be automata such that K ⊆ G. Then K is

called controllable in G if, for all states x ∈ QK and y ∈ QG

and for every uncontrollable event υ ∈ Σu such that x
υ
→G y,

it also holds that x
υ
→K y.

The upper bound of controllable and nonblocking subau-

tomata is again controllable and nonblocking, and this implies

the existence of a least restrictive synthesis result.

Theorem 1: Let G = 〈Σ, Q,→, Q◦〉 be an automaton.

There exists a unique subautomaton supCN (G) ⊆ G such

that supCN (G) is nonblocking and controllable in G, and such

that for every subautomaton S ⊆ G that is also nonblocking

and controllable in G, it holds that S ⊆ supCN (G).
Therefore, supCN (G) is the unique synthesis result for a

plant G. It is shown in [12] how supCN (G) can be computed

using a fixpoint iteration. In order to apply this synthesis to

control problems that also involve specifications, the transfor-

mation proposed in [11] is used. A specification automaton is

transformed into a plant by adding, for every uncontrollable

event that is not enabled in a state, a transition to a new

blocking state ⊥. This essentially transforms all potential

controllability problems into potential blocking problems.

Definition 8: [11] Let K = 〈Σ, Q,→, Q◦〉 be a specifica-

tion. The complete plant automaton K⊥ for K is

K⊥ = 〈Σ, Q ∪ {⊥},→⊥, Q◦〉 (4)

where ⊥ /∈ Q is a new state and

→⊥ = → ∪ { (x, υ,⊥) | x ∈ Q, υ ∈ Σu, x 6
υ
→} . (5)

Proposition 2: [11] Let G, K, and K ′ be deterministic

automata over the same alphabet Σ, and let K ′ be reachable.

Then K ′ ⊆ G‖K⊥ is nonblocking and controllable in G‖K⊥

if and only if K ′ ⊆ G ‖ K is nonblocking and controllable

with respect to G.

According to this result, synthesis of the least restrictive

nonblocking and controllable behaviour allowed by a specifi-

cation K with respect to a plant G can be achieved by com-

puting supCN (G ‖ K⊥). If G and K are both deterministic,

2



it can be shown that

LsupCN (G ‖ K⊥) = supCG(K) . (6)

III. COMPOSITIONAL SYNTHESIS

Many discrete event systems are modular in that they consist

of a large number of interacting components. This modularity

can be used to abstract components before composing them,

in many cases avoiding state-space explosion. This section

briefly describes the framework introduced in [13] to perform

synthesis compositionally in this setting.

A. General Compositional Approach

A modular system consists of a modular specification K =
K1 ‖ · · · ‖ Km and a modular plant G = G1 ‖ · · · ‖ Gn. As

discussed in Sect. II-C, all the specifications can be translated

to plants, so the synthesis problem is given as

G ‖ K⊥ = G1 ‖ · · · ‖ Gn ‖ K⊥
1 ‖ · · · ‖ K⊥

m . (7)

In the compositional algorithm of [13], the modular system (7)

is abstracted step by step. Each automaton Gi or K⊥
j in (7)

may be replaced by an abstracted version, G̃i or K̃⊥
j , until no

more abstraction is possible. Then synchronous composition

is computed step by step, abstracting each intermediate result

again.

When abstracting an automaton Gi, this automaton will

typically contain some events that do not appear in any other

component Gi or K⊥
j . These events are called local events.

In the following, local events are denoted by the set Υ, and

Ω = Σ \ Υ denotes the non-local or shared events. Local

events are helpful to find an abstraction.

Eventually, the procedure leads to a single automaton G̃,

the abstract description of the system (7). After abstraction,

G̃ has less states and transitions compared to the original

system. Once G̃ is found, the final step is to use G̃ instead of

the original system, to calculate a synthesis result supCN (G̃),
which leads to a solution for the original synthesis problem (7).

B. Synthesis Abstraction

The general compositional approach explained above re-

quires an appropriate notion of abstraction. The task is to find

the least restrictive, nonblocking, and controllable supervisor,

so each automaton should be abstracted in such a way that the

behaviour of the supervised system is left unchanged.

Definition 9: [13] Let G and G̃ be two deterministic auto-

mata with alphabet Σ. Then G̃ is a synthesis abstraction of G
with respect to the local events Υ ⊆ Σ, written G .synth,Υ G̃,

if for every deterministic automaton T = 〈ΣT , QT ,→T , Q◦
T 〉

such that ΣT ∩ Υ = ∅ the following holds,

L(G ‖T ‖ supCN (G̃ ‖T )) = L(G ‖T ‖ supCN (G ‖T )) (8)

Def. 9 requires that the synthesis result for G and its

abstraction G̃ are the same in every possible context T . The

synthesis results supCN (G ‖ T ) and supCN (G̃ ‖ T ) are

composed with the original plant G ‖ T , and the resultant

behaviours must be equal. The following theorem shows how

G q0

q1

q2

(α)

!β

γ

G̃ q0

(α)

!β γ

q12

T

!β

γ

Fig. 1. G̃ is observation equivalent to G, but not a synthesis abstraction.

synthesis abstraction is applied to a control problem such

as (7).

Theorem 3: Let Hi = 〈Σi, Qi,→i, Q
◦
i 〉, i = 1, . . . , k, be

deterministic automata, and let Υ ⊆ Σ1 such that H1 .synth,Υ

H̃1 and Υ ∩ Σ2 = · · · = Υ ∩ Σk = ∅. Then

L(H1 ‖ · · · ‖ Hk ‖ supCN (H1 ‖ H2 ‖ · · · ‖ Hk))

= L(H1 ‖ · · · ‖ Hk ‖ supCN (H̃1 ‖ H2 ‖ · · · ‖ Hk)) . (9)

Proof: The claim follows directly from Def. 9 by consid-

ering H2 ‖ · · · ‖ Hk as T .

Theorem 3 is applied several times when simplifying (7). It

can be shown by induction that, if (7) is composed and sim-

plified to a single automaton G̃, then the synthesis result S̃ =
supCN (G̃) composed with the original system (7) is equal

to the monolithic synthesis result for (7). A least restrictive

modular supervisor can be constructed as S̃‖K1‖K2‖· · ·‖Km.

Note that the modular supervisor S̃ ‖ K1 ‖ K2 ‖ · · · ‖ Km

never needs to be calculated. It can be represented in its

modular form, and synchronisation can be performed on-line,

tracking the synchronous product states as the system evolves.

In this way, synchronous product computation and state-space

explosion can be avoided.

IV. METHODS OF ABSTRACTION

This section discusses some possible methods to compute

synthesis abstractions. While observation equivalence does not

in general yield synthesis abstractions, it can be strengthened

to do so.

A. Observation Equivalence

Observation equivalence or weak bisimilarity is a well-

known general abstraction method for nondeterministic auto-

mata [16]. It seeks to merge observation equivalent states, i.e.,

states with the same future behaviour.

Definition 10: Let G = 〈Σ, Q,→, Q◦〉 be an automaton

with Σ = Ω ∪̇ Υ. An equivalence relation ≈ ⊆ Q × Q is

called an observation equivalence on G with respect to Υ, if

the following holds for all x1, x2 ∈ Q such that x1 ≈ x2:

if x1
t1σu1−→ y1 for some σ ∈ Σ and t1, u1 ∈ Υ∗, then there

exist y2 ∈ Q and t2, u2 ∈ Υ∗ such that x2
t2PΩ(σ)u2

−→ y2 and

y1 ≈ y2.

Observation equivalence is known to preserve all temporal

logic properties [16] including conflict equivalence [17]. How-

ever, it does not always produce a synthesis abstraction, and

the following counterexample shows this.

Example 1: Consider automata G, G̃, and T in Fig. 1.

Uncontrollable events are prefixed with !, and local events in Υ

3



G

α
α βγ

(!ν)

(!ν)

(!µ)

G̃

α
βγ

(!ν)

(!ν)

(!µ)

T

α

S

α

β

β

γ

γ

(!ν)

(!ν)

Fig. 2. G̃ is observation equivalent to G with only uncontrollable local
events. Nevertheless it is not a synthesis abstraction.

are marked with parentheses around them. With α ∈ Υ, states

q1 and q2 in G are observation equivalent, and merging them

produces the abstraction G̃. However, γ ∈ LsupCN (G ‖ T )
but γ /∈ LsupCN (G̃‖T ), because in G, the local controllable

event α can be disabled to prevent the state q2 and thus the un-

desirable uncontrollable !β, but this is no longer possible in G̃.

Thus, L(G‖T ‖ supCN (G̃‖T )) 6= L(G‖T ‖ supCN (G‖T )),
and G̃ is not a synthesis abstraction of G.

This counterexample seems to contradict results in [9], [10],

where observation equivalence is used in synthesis abstraction.

However, the above mentioned papers only allow unobservable

events to be considered as local, while in this paper observable

events can also be local.

B. Bisimulation

One simple way to restrict observation equivalence such that

it implies synthesis abstraction is by not permitting any local

events. This leads to bisimulation equivalence [16], one of the

strongest known process equivalences.

Definition 11: Let G = 〈Σ, Q,→, Q◦〉 be an automaton.

An equivalence relation ≈ ⊆ Q × Q is called a bisimulation

on G, if the following holds for all x1, x2 ∈ Q such that

x1 ≈ x2: if x1
σ
→ y1 for some σ ∈ Σ, then there exists

y2 ∈ Q such that x2
σ
→ y2 and y1 ≈ y2.

Theorem 4: Let G be an automaton, and let ≈ be a bisim-

ulation on G. Then G .synth,∅ G/≈.

C. Uncontrollable Observation Equivalence

While bisimulation ensures synthesis abstraction, not per-

mitting any local events is highly restrictive, and it is desirable

to relax the condition. In example 1, the local event, α, is

controllable; if it was uncontrollable, merging the states would

result in a synthesis abstraction. This suggests to restrict the

set of local events to be uncontrollable, yet the following

counterexample shows that this is still not enough.

Example 2: In Fig. 2, the local events !µ and !ν are both

uncontrollable, and G̃ is observation equivalent to G. The

figure also shows S = G ‖ T ‖ supCN (G ‖ T ). However,

LsupCN (G̃ ‖ T ) = ∅, because in G̃ there is no way to

permit event α without also permitting the deadlock after the

uncontrollable !µ. Thus, G̃ is not a synthesis abstraction of G.

The situation in example 2 can be avoided by requiring that

the trace matching a controllable transition (such as the α-

transition in the example) does not contain any more local

events after the controllable event.

G q0

q1

q2

⊥
(α)

(α)

(β)
!ν

G̃ q0

q1

q2

⊥
(α)

(α)
!ν

T
!ν

Fig. 3. G̃ is observation equivalent to G, but not a synthesis abstraction.

Definition 12: Let G = 〈Σ, Q,→, Q◦〉 be an automaton

with Σ = Ω ∪̇ Υ and Υ ⊆ Σu. An equivalence relation ∼ ⊆
Q × Q is called an uncontrollable observation equivalence

on G with respect to Υ, if the following conditions hold for

all x1, x2 ∈ Q such that x1 ∼ x2:

(i) ∀σ ∈ Σc, if x1
σ
→ y1 then ∃t2 ∈ Υ∗ such that x2

t2PΩ(σ)
−→

y2 and y1 ∼ y2;

(ii) ∀σ ∈ Σu, if x1
σ
→ y1 then ∃t2, u2 ∈ Υ∗ such that

x2
t2PΩ(σ)u2

−→ y2 and y1 ∼ y2.

Condition (ii) is like observation equivalence (Def. 10), but

(i) imposes a stronger requirement for controllable events.

Theorem 5: Let ∼ be an uncontrollable observation equiv-

alence on G with respect to Υ. Then G .synth,Υ G/∼.

D. Synthesis Observation Equivalence

This section shows that the conditions of uncontrollable ob-

servation equivalence can be relaxed, permitting controllable

local events under certain conditions.

Example 3: Automata G and G̃ in Fig. 3 are observation

equivalent with controllable local events α and β, because the

local controllable β-transition is redundant according to obser-

vation equivalence. In both G and G̃, the controllable event α
must be disabled to prevent the undesired uncontrollable !ν.

By disabling α in G̃, termination no longer can be achieved,

yet termination is still possible in G using the β-transition.

Therefore, G̃ is not a synthesis abstraction of G.

The situation in example 3 can be avoided by imposing

an additional requirement as follows: a local controllable

transition x
σ
→ y in G needs to have a matching sequence of

local transitions [x]
s
→ [y] in G̃ such that every state along this

path, reached by a local controllable transition, is equivalent

to x. In the example, the transition q0
β
→ q2 in G can only be

matched by the transition sequence q0
α
→ q1

α
→ q2 in G̃, but

the state q1 in this sequence is not equivalent to q0 in G. This

idea leads to the following definition.

Definition 13: Let G = 〈Σ, Q,→, Q◦〉 be an automaton

with Σ = Ω ∪̇ Υ. An equivalence relation ∼ ⊆ Q × Q is

called a synthesis observation equivalence on G with respect

to Υ, if the following conditions hold for all x1, x2 ∈ Q such

that x1 ∼ x2:

(i) ∀σ ∈ Σc, if x1
σ
→ y1 then ∃t2 ∈ Υ∗ such that x2

t2PΩ(σ)
−→

y2 and y1 ∼ y2 and for all strings p2 ⊑ t2 such that

x2
p2

→ z2 and p2 ∈ Σ∗Σc it holds that x1 ∼ z2;

(ii) ∀σ ∈ Σu, if x1
σ
→ y1 then ∃t2, u2 ∈ (Υ ∩ Σu)∗ such

that x2
t2PΩ(σ)u2

−→ y2 and y1 ∼ y2.

Theorem 6: Let ∼ be a synthesis observation equivalence

on G with respect to Υ. Then G .synth,Υ G/∼.

4



G q0

q1 q2

q3

q4

α

α α

β

(!γ1) (!γ2)

!δ

G̃ q0

q12

q3

q4

α

α, β

(!γ1, !γ2)

!δ

Fig. 4. Uncontrollable observation equivalence has more abstraction potential
than observer projection.

E. Relationship to Projection

In related work [7], [8], natural projection is used to

simplify subsystems and perform modular synthesis. It is well-

known that, in general, natural projection of local events in a

subsystem cannot ensure the preservation of a global synthesis

result. In [7], it is shown that the synthesis result is preserved

if the projection satisfies two additional requirements known

as the observer property and output control consistency. The

condition of output control consistency is relaxed to local

control consistency in [8].

In the following, it is shown that observation equivalence-

based abstractions have a higher abstraction potential than

methods based on natural projection, and that every natural

projection that satisfies the observer property and local control

consistency leads to an abstraction that can also be achieved

using synthesis observation equivalence.

Definition 14: Let G = 〈Σ, Q,→, Q◦〉 be an automaton,

and Σ = Ω ∪̇ Υ. The natural projection PΩ : Σ∗ → Ω∗ is

• an observer for G, if for all s, s′, t ∈ Σ∗ and all states

x ∈ Q such that PΩ(s) = PΩ(s′), G
stω
−→, and G

s′

→
x, there exists t′ ∈ Σ∗ such that PΩ(t′) = PΩ(t) and

x
t′ω
→; [18]

• locally control-consistent (LCC) for G, if for all s ∈ Σ∗,

all υ ∈ Ω∩Σu, and all states x ∈ Q such that G
s
→ x and

PΩ(s)υ ∈ PΩL(G), if there exists t ∈ Υ∗ such that x
tυ
→

then there also exists u ∈ (Υ ∩ Σu)∗ such that x
uυ
→. [8]

Natural projection is a language-theoretic operation, which

can be applied to automata using the standard algorithms of

subset construction and minimisation [19]. Alternatively, natu-

ral projection can be seen to induce a state equivalence relation

on nondeterministic automata using Nerode equivalence [1].

Definition 15: Let G = 〈Σ, Q,→, Q◦〉 and Ω ⊆ Σ. The

natural projection PΩ : Σ∗ → Ω∗ induces the Nerode equiva-

lence modulo Ω on the state set Q:

x ≡Ω y if and only if PΩL(x) = PΩL(y) . (10)

It is known that Nerode equivalence implies observation

equivalence if the projection satisfies the observer prop-

erty [18], [20]; in this case, the quotient G/≡Ω is a candidate

for abstraction of G. On the other hand, not every observation

equivalence abstraction can be expressed using projection.

Example 4: Consider automaton G in Fig. 4. Hiding the

local uncontrollable events !γ1 and !γ2 does not yield an

observer projection, because event α is enabled in the source

put2

B2

M2

fetch3get2get1 fetch4

put1

B1

put3

H3

put4

H4

H1 H2
B3 B4

Sub1 Sub2 Sub3 Sub4

M1
fetch2

input1

get3
get4fetch1

input2 output2

output1

Fig. 5. Manufacturing system overview.

states q1 and q2, but not in the target state q3 of the local

transitions !γ1 and !γ2. Nevertheless, states q1 and q2 are

uncontrollable observation equivalent and can be merged,

producing the abstraction G̃ such that G .{!γ1,!γ2} G̃.

This example shows that uncontrollable observation equiv-

alence can perform abstractions that are not possible using

natural projection. In addition to removing events, under cer-

tain conditions events can also be identified and merged, and

synthesis observation equivalence provides some conditions

under which this is possible.

The following result shows that every abstraction obtained

by a projection with the observer and LCC properties induces

a synthesis observation equivalence abstraction, for nonblock-

ing automata. Blocking states can always be merged while

ensuring synthesis abstraction, but this cannot be done via ob-

servation equivalence. For blocking automata, the relationship

to projection is similar to the results in [18].

Theorem 7: Let G = 〈Σ, Q,→, Q◦〉 be a reachable and

nonblocking automaton, and let Σ = Ω ∪̇ Υ such that

PΩ : Σ∗ → Ω∗ is an observer and LCC for G. Then ≡Ω is a

synthesis observation equivalence on G with respect to Υ.

In combination with example 4, this result confirms that

synthesis observation equivalence can perform more abstrac-

tion than the projection-based method of [8].

V. EXAMPLE

In this section, the proposed method is applied to a manu-

facturing example previously studied in [21]. Fig. 5 gives an

overview of the system, and Fig. 6 shows automata models.

The manufacturing system consists of two machines (M1

and M2) for processing workpieces and four subsystems

(Sub1, . . . ,Sub4) for moving and buffering workpieces in

transit between the machines. Each subsystem Subi consists

of a buffer (Bi) that can store up to two workpieces, and a

handler (Hi) that fetches a workpiece from a machine and puts

it into the buffer.

The manufacturing system can produce two types of work-

pieces. Type I workpieces are first processed by M1 (action

input1). Then they are passed through Sub1: they are fetched

by H1 (fetch1) and placed into B1 (put1). Next, they are

processed by M2 (get1), fetched by H4 (fetch4) in Sub4

and placed into B4 (put4). Finally, they are processed by M1

5
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Fig. 7. Abstractions of manufacturing system.

once more (get4), and released (output1). Similarly, type II

workpieces are first processed by M2, passed through Sub3,

further processed by M1, passed through Sub2, and finally

processed by M2.

In the first step of compositional synthesis, events output1
and output2 are controllable local events in M1 and M2.

Since both conditions of synthesis observation equivalence

are fulfilled, it can be applied to M1 and M2, resulting in

abstractions M̃1 and M̃2. Fig. 7 shows M̃1; M̃2 is similar.

The remaining automata cannot be abstracted, so the next

step is to compose the automata in each subsystem. After

composing Hi and Bi, event puti becomes an uncontrollable

local event, and uncontrollable observation equivalence be-

comes applicable. The composition Hi ‖ Bi and the resulting

abstracted automaton, HB i, are shown in Fig. 7. HB i is

obtained by merging q1 with q2 and q3 with q4.

The final step of compositional synthesis is to compute a

supervisor for M̃1, M̃2, and HB i, i = 1, . . . , 4. The calculated

supervisor S̃ has 685 states, and the modular supervisor for the

system is S̃‖B1‖B2‖B3‖B4. Composing this supervisor with

the system results in the least restrictive monolithic supervisor

for the system, an automaton with 9216 states.

VI. CONCLUSIONS

Three variations of observation equivalence are investigated

for their applicability in the compositional synthesis frame-

work of synthesis abstraction [13], which allows the synthesis

of least restrictive modular supervisors for discrete event

systems. While standard observation equivalence is not useful

for synthesis abstraction, the stronger conditions of bisimu-

lation, uncontrollable observation equivalence, and synthesis

observation equivalence can be shown to preserve synthesis

abstraction and guarantee the construction of a correct modular

supervisor. It is also shown that observation equivalence based

synthesis abstraction provides more abstraction than natural

projection using local control consistency [8], and an example

demonstrates the potential of state-space reduction using the

proposed abstractions.
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