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2.1 The role of a system model

2.1.1 A realistic model

In this chapter, we are interested in the ultimate limit on the rate of reliable communi-
cation over Rayleigh-fading channels that satisfy the wide-sense stationary (WSS) and
uncorrelated scattering (US) assumptions and are underspread [Bel63, Ken69]. There-
fore, the natural setting is an information-theoretic one, and the performance metric is
channel capacity [CT91, Gal68].

The family of Rayleigh-fading underspread WSSUS channels (reviewed in Chapter 1)
constitutes a good model for real-world wireless channels: their stochastic properties, like
amplitude and phase distributions match channel measurement results [SB07,Sch09]. The
Rayleigh-fading and the WSSUS assumptions imply that the stochastic properties of the
channel are fully described by a two-dimensional power spectral density (PSD) function,
often referred to as scattering function [Bel63]. The underspread assumption implies that
the scattering function is highly concentrated in the delay-Doppler plane.

To analyze wireless channels with information-theoretic tools, a system model, not just
a channel model, needs to be specified. A system model is more comprehensive than a
channel model because it defines, among other parameters, the transmit-power constraints
and the channel knowledge available at the transmitter and the receiver. The choice of a
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realistic system model is crucial for the insights and guidelines provided by information
theory to be useful for the design of practical systems. Two important aspects need to be
accounted for by a model that aims at being realistic:

i) Neither the transmitter nor the receiver knows the realization of the channel: In most
wireless systems, channel state information (CSI) is acquired by allocating part of
the available resources to channel estimation. For example, pilot symbols can be
embedded into the data stream as explained in Chapters 4 and 5 to aid the receiver
in the channel-estimation process. From an information-theoretic perspective, pilot-
based channel estimation is just a special case of coding. Hence, the rate achievable
with training-based schemes cannot exceed the capacity in the absence of CSI at
transmitter and receiver.

We refer to the setting where no CSI is available at transmitter and receiver, but both
know the statistics of the channel, as the noncoherent setting [SHN05, SWHL09,
ZT02], in contrast to the coherent setting, where a genie provides the receiver with
perfect CSI [BPS98, Section III.B]. Furthermore, we denote capacity in the nonco-
herent setting as noncoherent capacity.

ii) The peak power of the transmit signal is limited: Every power amplifier has finite
gain and every mobile transmitter has limited battery resources. In addition, reg-
ulatory bodies often constrain the admissible radiated power. Hence, in a realistic
system model, a peak constraint should be imposed on the transmit signal.

Motivated by these two aspects, we provide an information-theoretic analysis of Rayleigh-
fading underspread WSSUS channels in the noncoherent setting, under the additional
assumption that the transmit signal is peak-constrained.

2.1.2 A brief literature survey

The noncoherent capacity of fading channels is notoriously difficult to characterize ana-
lytically, even for simple channel models [AFTS01, MH99]. Most of the results available
in the literature pertain to either the large-bandwidth or the high-SNR regime. In the fol-
lowing, large-bandwidth regime refers to the case where the average power P is fixed
and the bandwidth B is large, so that the SNR, which is proportional to P/B, is small.
High-SNR regime refers to the case of B fixed and P large and, hence, large SNR. In
this section, we briefly review the relevant literature; two elements will emerge from this
review:

i) The modeling aspects we identified in the previous section (WSSUS, noncoherent
setting, peak constraint) are fundamental in that capacity is highly sensitive to these
aspects.

ii) In spite of the large number of results available in the literature, several questions of
practical engineering relevance about the design of wireless systems operating over
fading channels are still open.



Section 2.1: The role of a system model 3

Large-bandwidth (low-SNR) regime: The noncoherent capacity of fading channels has
been a subject of investigation in information theory for several decades. The first con-
tributions, which date back to the sixties [Gal68, Ken69, Pie66, Vit67] (see [BPS98] for a
more complete list of references), mainly deal with the characterization of the asymptotic
behavior of noncoherent capacity in the large-bandwidth limit.

The results in [Gal68, Ken69, Pie66, Vit67] illustrate the sensitivity of noncoherent ca-
pacity to the presence of a peak constraint. Specifically, the outcome of this analysis is the
following rather surprising result: in the large-bandwidth limit, the noncoherent capacity
of a fading channel coincides with that of an additive white Gaussian noise (AWGN)
channel with the same receive power. However, the signaling schemes that achieve the
noncoherent capacity of a fading channel in the wideband limit have unbounded peak
power—a result recently formalized by Verdú [Ver02]. Hence, these signaling schemes
are not practical.

If a peak constraint is imposed on the transmit signal, AWGN channel capacity can-
not be achieved in the infinite-bandwidth limit, and the actual behavior of noncoher-
ent capacity in the wideband regime depends on the specific form of the peak con-
straint [DSBS10, MG02, SH02, TT00, Vit67]. In particular, when the transmit signal is
subject to a peak constraint both in time and frequency (as in most practical systems), non-
coherent capacity vanishes as the bandwidth grows large [DSBS10, MG02, SH02, TT00],
provided that the number of independent diversity branches of the channel scales lin-
early with bandwidth,1 which is the case for WSSUS channels. Intuitively, under a peak
constraint on the transmit signal, the receiver is no longer able to resolve the channel
uncertainty as the bandwidth, and, hence, the number of independent diversity branches,
increases. This result implies that, for a large class of fading channels, the correspond-
ing noncoherent capacity has a global maximum at a certain finite bandwidth, commonly
referred to as the critical bandwidth. Computing this critical bandwidth is obviously of
great practical interest. Moreover, it is important to understand the role played by the
spatial degrees of freedom provided by multiple antennas at the transmitter and/or the re-
ceiver: can they be used to increase capacity, or do they merely lead to a rate loss because
of the increase in channel uncertainty?

High-SNR regime: Characterizing noncoherent capacity in the high-SNR regime is of
great practical interest for systems that operate over narrow frequency bands. As no
closed-form expressions for the noncoherent capacity are known, not even for memo-
ryless channels, one typically resorts to analyzing the asymptotic behavior of capacity as
SNR goes to infinity. Differently from the large-bandwidth regime, where capacity results
are robust with respect to the underlying channel model, in the high-SNR regime the ca-
pacity behavior is highly sensitive to the fine details of the channel model [Lap05,LM03,
LV04, MH99, Tel99, ZT02]. The following results support this claim.

In the coherent setting, capacity grows logarithmically with SNR [Tel99]; logarithmic
growth also holds in the noncoherent setting for block-fading channels [MH99, ZT02].2

An alternative—more general—approach to modeling the time variation of a wireless

1The independent diversity branches of a fading channel are sometimes referred to as stochastic degrees of
freedom [SB07]. We will not use this convention here. Instead, we will use the term degrees of freedom to
refer to signal-space dimensions. Information-theoretic analyses of wireless channels for which the number
of independent diversity branches scales sub-linearly with bandwidth, can be found, for example, in [PTN07,
RHS07].
2The block-fading model is the simplest model that captures the time variation of a wireless channel. In this
model, the channel is taken to be constant over a given time interval, called block, and assumed to change
independently from one such block to the next. The independence assumption across blocks can be justified,
e.g., for systems employing frequency hopping or if the data symbols are interleaved.
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channel is to assume that the fading process is stationary.3 Surprisingly, if the fading
process is stationary, the noncoherent capacity does not necessarily grow logarithmically
with SNR: other scaling behaviors are possible [Lap05]. For example, consider two sta-
tionary discrete-time Rayleigh-fading channels subject to additive Gaussian noise. The
fading process of the first channel has PSD equal to 1/∆ on the interval [−∆/2,∆/2],
where 0 < ∆ < 1, and 0 else. The fading process of the second channel has PSD equal to
(1− ε)/∆ on the interval [−∆/2,∆/2] and ε/(1−∆) else (0 < ε < 1). These two chan-
nels have completely different high-SNR capacity behavior, no matter how small ε is: the
noncoherent capacity of the first channel grows logarithmically in SNR, with pre-log fac-
tor equal to 1−∆ [Lap05]; the noncoherent capacity of the second channel grows double
logarithmically in SNR [LM03].

Such a result is unsatisfactory from an engineering point of view because the support
of a PSD cannot be determined through measurements (measurement noise is one of the
reasons, another one is the finite time duration of any physically meaningful measurement
process). In other words, capacity turns out to be highly sensitive to a parameter—the
measure of the support of the PSD—that has, in the words of Slepian [Sle76], “. . . no
direct meaningful counterparts in the real world . . . ”. Such a dependency of the capacity
behavior on fine details of the channel model suggests that the stationary model is not
robust in the high-SNR regime. An engineering-relevant problem is then to establish the
SNR value at which this lack of robustness starts to manifest itself.

2.1.3 Capacity bounds answering engineering-relevant questions

The purpose of this chapter is to present tight upper and lower bounds on the noncoherent
capacity of Rayleigh-fading underspread WSSUS channels. On the basis of these bounds,
answers to the following engineering-relevant questions can be given:

i) How does the noncoherent capacity of this class of channels differ from the corre-
sponding coherent capacity and from the capacity of an AWGN channel with the
same receive power?

ii) How much bandwidth and how many antennas should be used to maximize capacity?

iii) How robust is the Rayleigh-fading WSSUS underspread channel model? More
specifically, at which SNR values does the noncoherent capacity start being sensitive
to the fine details of the channel model?

The capacity bounds presented in this chapter make use of information-theoretic tools
recently developed in [GSV05, Lap05, LM03, SWHL09]. One of the difficulties we shall
encounter is to adapt these tools to the continuous-time setting considered in this chap-
ter. Harmonic analysis plays a fundamental role in this respect: it provides an effective
method for converting a general continuous-time channel into a discretized channel that

3Stationarity in time, together with the assumption that scatterers corresponding to paths of different delays are
uncorrelated, is the fundamental feature of the WSSUS model we focus on in this chapter.
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can be analyzed using standard information-theoretic tools. The discretization is accom-
plished by transmitting and receiving on a highly structured set of signals, similarly to
what is done in pulse-shaped (PS) orthogonal frequency-division multiplexing (OFDM)
systems [KM98]. This ensures that the resulting discretized channel inherits the statis-
tical properties of the underlying continuous-time channel (in particular, stationarity) a
fact that is crucial for the ensuing analysis. As a byproduct, our results yield a novel
information-theoretic criterion for the design of PS-OFDM systems (see [MSG+07] for a
recent overview on this topic).

2.2 A discretized system model

2.2.1 The channel model

2.2.1.1 Continuous-time input-output relation
The input-output (I/O) relation of a general continuous-time stochastic linear time-varying
(LTV) channel H can be written as

r(t) =
∫

∞

−∞

h(t,τ)s(t− τ)dτ +w(t). (2.1)

Here, s(t) is the (stochastic) input signal, whose realizations can be taken as elements
of the Hilbert space L2(R) of square-integrable functions over the real line R; r(t) is
the output signal and w(t) is a zero-mean unit-variance proper AWGN random process.
Finally, the time-varying channel impulse response h(t,τ) is a zero-mean jointly proper
Gaussian (JPG) random process that satisfies the WSSUS assumption [Bel63], i.e., it is
stationary in time t and uncorrelated in delay τ:

E
{

h(t,τ)h∗(t ′,τ ′)
}
, rh(t− t ′,τ)δ (τ− τ

′).

As a consequence of the JPG and WSSUS assumptions, the time-delay correlation func-
tion rh(t,τ) fully characterizes the channel statistics. The JPG assumption is empirically
supported for narrowband channels [VB03]; even ultrawideband (UWB) channels with
bandwidth up to several Gigahertz can be modeled as Gaussian-distributed [SB07]. The
WSSUS assumption is widely used in wireless channel modeling [Bel63, BPS98, Ken69,
MH03,Pro01,VB03]. It is in good agreement with measurements of tropospheric scatter-
ing channels [Ken69], and provides a reasonable model for many types of mobile radio
channels [Cox73a, Cox73b, Jak74], at least when observed over a limited time duration
and limited bandwidth [Bel63]. A more detailed review of the WSSUS channel model
can be found in Chapter 1.

Often, it will be convenient to describe H in domains other than the time-delay do-
main. The time-varying transfer function LH(t, f )=Fτ→ f {h(t,τ)} and the delay-Doppler
spreading function SH(τ,ν) = Ft→ν{h(t,τ)} can be used for this purpose. As a conse-
quence of the WSSUS assumption, LH(t, f ) is WSS both in time t and in frequency f ,
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and SH(τ,ν) is uncorrelated in delay τ and Doppler ν :

E
{

LH(t, f )L∗H(t
′, f ′)

}
, RH(t− t ′, f − f ′). (2.2)

E
{

SH(τ,ν)S∗H(τ
′,ν ′)

}
,CH(τ,ν)δ (τ− τ

′)δ (ν−ν
′). (2.3)

The function RH(t, f ) is usually referred to as the channel time-frequency correlation
function, and CH(τ,ν) is called the channel scattering function. The two functions are
related by the two-dimensional Fourier transform CH(τ,ν) = Ft→ν , f→τ{RH(t, f )}. We
assume throughout that ∫

∞

−∞

∫
∞

−∞

CH(τ,ν)dτdν = 1 (2.4)

for simplicity.

2.2.1.2 The underspread assumption
Almost all WSSUS channels of practical interest are underspread, i.e., they have a scatter-
ing function CH(τ,ν) that is highly concentrated around the origin of the delay-Doppler
plane [Bel63].

A mathematically precise definition of the underspread property is available for the
case when CH(τ,ν) is compactly supported within a rectangle in the delay-Doppler plane.
In this case, a WSSUS channel is said to be underspread if the support area of CH(τ,ν) is
much less than one [DSBS10, Koz97]. In practice, it is not possible to determine through
channel measurements whether CH(τ,ν) is compactly supported or not. Hence, in the
terminology introduced in Section 2.1.2, the measure (area) of the support of the scat-
tering function is a fine detail of the channel model. To investigate the sensitivity of
noncoherent capacity to this fine detail, and assess the robustness of the Rayleigh-fading
WSSUS model, we replace the compact-support assumption by the following physically
more meaningful assumption: CH(τ,ν) has a small fraction of its total volume supported
outside a rectangle of an area that is much smaller than 1. More precisely, we have the
following definition:

Definition 1 Let τ0,ν0 ∈ R+,ε ∈ [0,1], and let H (τ0,ν0,ε) be the set of all Rayleigh-
fading WSSUS channels H with scattering function CH(τ,ν) that satisfies∫

ν0

−ν0

∫
τ0

−τ0

CH(τ,ν)dτdν ≥ 1− ε.

We say that the channels in H (τ0,ν0,ε) are underspread if ∆H , 4τ0ν0� 1 and ε � 1.

Remark 1 Definition 1 is inspired by Slepian’s treatment of L2(R) signals that are ap-
proximately limited in time and frequency [Sle76]. Note that ε = 0 in Definition 1 yields
the compact-support underspread definition of [DSBS10, Koz97]. An alternative defini-
tion of the underspread property, also not requiring that CH(τ,ν) is compactly supported,
was used in [MH03]. The definition in [MH03] is in terms of moments of the scattering
function.
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Typical wireless channels are (highly) underspread, with most of the volume of CH(τ,ν)
supported within a rectangle of area ∆H ≈ 10−3 for typical land-mobile channels, and as
low as 10−7 for some indoor channels with restricted mobility of the terminals [Has93,
Par00, Rap02]. In the remainder of the chapter, we refer to ∆H as the channel spread.

2.2.1.3 Continuous-time channel model and capacity
The goal of this chapter is to provide a characterization of the capacity of the continuous-
time channel with I/O relation (2.1), under the assumptions that:

i) Neither the transmitter nor the receiver knows the realizations of h(t,τ), but both
are aware of the channel statistics. For the Rayleigh-fading WSSUS channel model,
knowledge of the channel statistics amounts to knowledge of the channel scattering
function.

ii) The input signal s(t) is subject to a bandwidth constraint, an average-power con-
straint, and a peak-power constraint.

A formal definition of the capacity of the continuous-time channel (2.1) can be found
in [DMBon]. This definition is along the lines of Wyner’s treatment of the capacity of a
bandlimited continuous-time AWGN channel [Gal68, Wyn66]. The key element in this
definition is the precise specification of the set of constraints (approximate time duration,
bandwidth, average power, . . . ) that are imposed on the input signal s(t). For the sake
of simplicity of exposition, we refrain from presenting this definition here (the interested
reader is referred to [DMB09, DMBon]). We take, instead, a somewhat less rigorous
approach, which has the advantage of simplifying the exposition drastically and better
illustrates the harmonic analysis aspects of the problem: we first discretize the chan-
nel I/O relation, and then impose a set of constraints on the resulting discretized input
signal. These constraints “mimic” the ones that are natural to impose on the underly-
ing continuous-time input signal. We emphasize that all the results stated in the next
sections can be made precise in an information-theoretic sense following the approach
in [DMB09, DMBon].

2.2.2 Discretization of the continuous-time input-output relation

Different ways to discretize LTV channels have been proposed in the literature (some
are reviewed in Chapter 1); not all the induced discretized I/O relations are, however,
equally well suited for an information-theoretic analysis. Stationarity of the discretized
system functions and statistically independent noise samples are some of the desiderata
regarding the discretization step.

The most common approach to the discretization of random LTV channels is based on
sampling [Bel63, Méd00, MG02], often combined with a basis expansion model (BEM)
(see Chapter 1 for a detailed discussion). A different approach, particularly well suited
for information-theoretic analyses [Wyn66, Gal68], is based on a channel operator eigen-
decomposition or, more generally, singular-value decomposition. We briefly review these
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two approaches and discuss their shortcomings when used for the problem we are dealing
with in this chapter. These shortcomings will motivate us to pursue a different approach
detailed in Section 2.2.2.3.

2.2.2.1 Sampling and basis expansion
Under the assumption that CH(τ,ν) is compactly supported in ν over the interval [−ν0,ν0],
and the input signal s(t) is strictly bandlimited with bandwidth B (i.e., S( f ), F{s(t)}= 0
for | f | > B), the I/O relation (2.1) can be discretized by means of the sampling theorem
(see, for example, [AMH04] for a detailed derivation). The resulting discretized I/O rela-
tion is given by

r
(

n
fo

)
=

1
fi

∞

∑
m=−∞

hc

(
n
fo
,

m
fi

)
s
(

n
fo
− m

fi

)
+w
(

n
fo

)
(2.5)

where fo = 2(B+ν0), fi = 2B, and

hc(t,τ),
∫

∞

−∞

h(t,z)
sin[2πB(τ− z)]

π(τ− z)
dz. (2.6)

The discretized I/O relation (2.5) can be further simplified if the input signal is oversam-
pled, i.e., if fi is chosen to be equal to fo. In this case, (2.5) can be rewritten as

r[n] =
∞

∑
m=−∞

hc[n,m]s[n−m]+w[n]. (2.7)

One evident limitation of the sampling approach just discussed is the compact-support
assumption on CH(τ,ν) (cf. Definition 1). Furthermore, as a consequence of (2.6), hc[n,m]
does not inherit the US property of h(t,τ), a fact that makes the information-theoretic
analysis of (2.7) more involved. Finally, the apparently harmless oversampling step im-
poses an implicit constraint on the set of the input-signal samples; this constraint is hard
to account for in an information-theoretic analysis. More specifically, if the input-signal
samples are chosen in an arbitrary way, the resulting continuous-time input signal may
have a bandwidth as large as B+ν0, rather than just B.

Often, the sampling approach is combined with a BEM. In the most common form of
the BEM, the basis consists of complex exponentials and hc[n,m] is given by

hc[n,m] =
I−1

∑
i=0

ci[m]e j2πνin (2.8)

where {νi}I−1
i=0 is a set of Doppler frequencies. For general WSSUS underspread chan-

nels, the validity of the modeling assumption underlying (2.8) is difficult to assess, and
information-theoretic results obtained on the basis of (2.8) might lack generality.

2.2.2.2 Discretization through channel eigen-decomposition
As discussed in Chapter 1, the kernel kH(t, t ′) , h(t, t − t ′) associated with a general
LTV channel H (under the assumption that the channel operator H is normal and com-
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pact [DS63, DSBS10, NS82]) can be decomposed as [NS82, Theorem 6.14.1]

kH(t, t ′) =
∞

∑
k=0

λkuk(t)u∗k(t
′) (2.9)

where λk and uk(t) are the channel eigenvalues and eigenfunctions, respectively. The
set {uk(t)} is orthonormal and complete in the input space and in the range space of H
[NS82, Theorem 6.14.1]. Hence, any input signal s(t) and any output signal r(t) can
be expressed, without loss of generality, in terms of its projections onto the set {uk(t)}
according to

s(t) = ∑
k
〈s(t),uk(t)〉︸ ︷︷ ︸

,s[k]

uk(t) (2.10)

and
r(t) = ∑

k
〈r(t),uk(t)〉︸ ︷︷ ︸

,r[k]

uk(t). (2.11)

The decomposition (2.9), together with (2.10) and (2.11), yields a particularly simple I/O
relation, which we refer to as channel diagonalization:

r[k] = 〈(Hs)(t)+w(t),uk(t)〉= ∑
k′

s[k′]〈(Huk′)(t),uk(t)〉︸ ︷︷ ︸
λk′δk′k

+〈w(t),uk(t)〉︸ ︷︷ ︸
,w[k]

= λk s[k]+w[k]. (2.12)

Note that in (2.12), the channel acts on the discretized input through scalar multiplications
only. To summarize, it follows from (2.10) and (2.11) that channel diagonalization is
achieved by transmitting and receiving on the channel eigenfunctions.

The discretization method just described is used in [Wyn66] to compute the capacity
of bandlimited AWGN channels and in [Gal68] to compute the capacity of (deterministic)
linear time-invariant (LTI) channels. This approach, however, is not applicable to our set-
ting. Transmitting and receiving on the channel eigenfunctions {uk(t)} requires perfect
knowledge of {uk(t)} at the transmitter and the receiver. But as H is random, its eigen-
functions uk(t) are (in general) random as well, and, hence, not known at the transmitter
and the receiver in the noncoherent setting.

In contrast, if the eigenfunctions of the random channel H did not depend on the par-
ticular realization of H, we could diagonalize H without knowledge of the channel real-
izations. This is the case, for example, for LTI channels, where (deterministic) complex
sinusoids are always eigenfunctions, independently of the realization of the channel im-
pulse response. This observation is crucial for the ensuing analysis. Specifically, our dis-
cretization strategy is based on the following fundamental property of underspread LTV
channels (see Chapter 1 for details): the eigenfunctions of a random underspread WSSUS
channel can be well approximated by deterministic functions that are well localized in
time and frequency.

Before illustrating the details of the discretization step, we would like to point out two
difficulties that arise from the approach we are going to pursue. The discretized I/O re-
lation induced by replacing the channel eigenfunctions in (2.10) and (2.11) with approx-
imate eigenfunctions (or, in other words, induced by transmitting and receiving on the
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approximate channel eigenfunctions) will, in general, not be as simple as (2.12), because
of the presence of “off-diagonal” terms. Furthermore, the set of approximate eigenfunc-
tions may not be complete in the input and range spaces of the channel operator H. This
results in a loss of dimensions in signal space, i.e., of degrees of freedom, which will need
to be accounted for in our information-theoretic analysis.

2.2.2.3 Discretization through transmission and reception on a
Weyl-Heisenberg set

We accomplish the discretization of the I/O relation (2.1) by transmitting and receiv-
ing on the highly structured Weyl-Heisenberg (WH) set of time-frequency shifts of a
pulse g(t). We denote such a WH set as (g(t),T,F) ,

{
gk,l(t) = g(t− kT )e j2πlFt

}
k,l∈Z,

where T,F > 0 are the grid parameters of the WH set [KM98]. The triple g(t),T,F is
chosen such that g(t) has unit energy and that the resulting set (g(t),T,F) is orthonor-
mal.4 Note that we do not require that the set (g(t),T,F) is complete in L2(R). The
time-frequency localization of g(t) plays an important role in our analysis, because the
functions in a WH set constructed from a pulse that is well localized in time and frequency
are approximate eigenfunctions of underspread WSSUS channels [Koz97,MH98,MH03].

We consider input signals of the form

s(t) =
K−1

∑
k=0

L−1

∑
l=0

s[k, l]gk,l(t). (2.13)

Whenever g(t) is well localized in time and frequency, we can take D , KT to be the
approximate time duration of s(t) and B , LF to be its approximate bandwidth. Note that
the lack of completeness of (g(t),T,F) implies that there exist signals s(t) ∈ L2(R) that
cannot be written in the form (2.13), even when K,L→ ∞. In other words, we may lose
degrees of freedom.

The received signal r(t) is projected onto the signal set
{

gk,l(t)
}K−1,L−1

k=0,l=0 to obtain

〈r(t),gk,l(t)〉︸ ︷︷ ︸
,r[k,l]

=〈(Hgk,l)(t),gk,l(t)〉︸ ︷︷ ︸
,h[k,l]

s[k, l]+
K−1

∑
k′=0

L−1

∑
l′=0

(k′,l′)6=(k,l)

〈(Hgk′,l′)(t),gk,l(t)〉︸ ︷︷ ︸
,z[k′,l′,k,l]

s[k′, l′]

+ 〈w(t),gk,l(t)〉︸ ︷︷ ︸
,w[k,l]

that is

r[k, l] = h[k, l]s[k, l]+
K−1

∑
k′=0

L−1

∑
l′=0

(k′,l′)6=(k,l)

z[k′, l′,k, l]s[k′, l′]+w[k, l]. (2.14)

We refer to the channel with I/O relation (2.14) as the discretized channel induced by
the WH set (g(t),T,F). The I/O relation (2.14) satisfies the desiderata we listed at

4A systematic approach to constructing orthonormal WH sets is described in Section 2.2.2.6.
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Figure 2.1: Pulse-shaped OFDM interpretation of the signaling scheme (2.13). The
shaded areas represent the approximate time-frequency support of the pulses gk,l(t).

the beginning of Section 2.2.2. Specifically, the channel coefficients h[k, l] inherit the
two-dimensional stationarity property of the underlying continuous-time system func-
tion LH(t, f ) [see (2.2)]. Furthermore, the noise coefficients w[k, l] are i.i.d. CN (0,1) as
a consequence of the orthonormality of (g(t),T,F). These two properties are crucial for
the ensuing analysis.

A drawback of (2.14) is the presence of (self-)interference [the second term in (2.14)],
which makes the derivation of capacity bounds involved, as will be seen in Section 2.4.

The signaling scheme (2.13) can be interpreted as PS-OFDM [KM98], where the input
symbols s[k, l] are modulated onto a set of orthogonal signals, indexed by discrete time
(symbol index) k and discrete frequency (subcarrier index) l. From this perspective, the
interference term in (2.14) can be interpreted as intersymbol and intercarrier interference
(ISI and ICI). Fig. 2.1 provides a qualitative representation of the PS-OFDM signaling
scheme.

2.2.2.4 Outline of the information-theoretic analysis
The program pursued in the next sections is to tightly bound the noncoherent capacity of
the discretized channel (2.14) under an average-power and a peak-power constraint on the
input symbols s[k, l]. We refer the interested reader to [DMB09,DMBon] for a discussion
on the relation between the capacity of the discretized channel (2.14) and the capacity of
the underlying continuous-time channel (2.1).

The derivation of capacity bounds is made difficult by the presence of the interference
term in (2.14). Fortunately, to establish our main results in Sections 2.4 and 2.5, it will be
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sufficient to compare a trivial capacity upper bound, i.e., the capacity of an AWGN chan-
nel with the same receive power as in (2.14), with simple capacity lower bounds obtained
by treating the interference term in (2.14) as noise. The corresponding results are of prac-
tical interest, as receiver algorithms that take the structure of interference explicitly into
account are, in general, computationally expensive. The power of the interference term
in (2.14) depends on the choice of the WH set. As it will be shown in Section 2.2.2.7,
good time-frequency localization of the pulse g(t) the WH set is generated from is re-
quired for the interference term to be small. But good time-frequency localization entails
a loss of degrees of freedom.

Before discussing the trade-off between interference minimization and maximization
of the number of degrees of freedom, we review some important theoretical results on the
construction of WH sets.

2.2.2.5 Orthonormality, completeness, and localization
Orthonormality, completeness, and time-frequency localization are desirable properties of
the WH set (g(t),T,F). It is, therefore, sensible to ask whether complete orthonormal WH
sets generated by a g(t) with prescribed time-frequency localization exist. The answer is
as follows:

i) A necessary condition for the set (g(t),T,F) to be orthonormal is T F ≥ 1 [Grö01,
Cor. 7.5.1, Cor. 7.3.2].

ii) For T F = 1, it is possible to find orthonormal sets (g(t),T,F) that are complete
in L2(R) [Chr03, Th. 8.3.1]. These sets, however, do not exhibit good time-frequency
localization, as a consequence of the Balian-Low Theorem [Chr03, Th. 4.1.1], which
states that if (g(t),T,F) is orthonormal and complete in L2(R), then(∫

∞

−∞

|tg(t)|2 dt
)(∫

∞

−∞

| f G( f )|2 d f
)
= ∞

where G( f ) = F{g(t)}.

iii) For T F > 1, it is possible to have orthonormality and good time-frequency localiza-
tion concurrently, but the resulting set (g(t),T,F) is necessarily incomplete in L2(R).
Lack of completeness entails a loss of degrees of freedom.

iv) For T F < 1, it is possible to construct WH sets generated by a well-localized g(t),
which are also (over)complete in L2(R). However, as a consequence of overcom-
pleteness, the resulting input signal (2.13) cannot be recovered uniquely at the re-
ceiver, even in the absence of noise.

Our choice will be to privilege localization and orthonormality over completeness.
The information-theoretic results in Sections 2.4 and 2.5 will show that this choice is
sound. In the next two sections, we review the mathematical framework that enables
the construction of (non-complete) orthonormal WH sets that are well localized in time
and frequency. We furthermore review a classic criterion for the design of WH sets,
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which is based on the maximization of the signal-to-interference ratio (SIR) in (2.14).
The information-theoretic analysis in Section 2.5 will yield a design criterion that is more
fundamental.

2.2.2.6 Construction of WH sets
We next discuss how to construct (non-complete) WH sets with prescribed time-frequency
localization. Frame theory plays a fundamental role in this context.

A WH set (g(t),T,F) is called a WH frame for L2(R) if there exist constants A and B
(frame bounds) with 0 < A≤ B < ∞ such that for all s(t) ∈ L2(R), we have

A‖s(t)‖2 ≤∑
k

∑
l

∣∣〈s(t),gk,l(t)〉
∣∣2 ≤ B‖s(t)‖2.

When A = B, the frame is called tight. A necessary condition for (g(t),T,F) to be a
frame for L2(R) is T F ≤ 1 [Grö01, Cor. 7.5.1]. For specific pulses, sufficient conditions
for the corresponding WH set to be a frame are known. For example, for the Gaussian
pulse g(t) = 21/4e−πt2

, the condition T F < 1 is necessary and sufficient for (g(t),T,F)
to be a frame [Grö01, Th. 7.5.3].

A frame (g(t),T,F) for L2(R) can be transformed into a tight frame (g⊥(t),T,F) for
L2(R) through standard frame-theoretic methods [Chr03, Th. 5.3.4]. Furthermore, the
so-obtained g⊥(t) inherits the decay properties of g(t) (see [BJ00, MSG+07] for a math-
ematically precise formulation of this statement).

The key result that makes frame theory relevant for the construction of orthonor-
mal WH sets is the so called duality theorem [DLL95, Jan95, RS97], which states that
(g(t),T,F) with T F ≥ 1 is an orthonormal WH set if and only if (g(t),1/F,1/T ) is a
tight frame for L2(R).

The results summarized above are used in the following example to construct an or-
thonormal WH set that will be used throughout this chapter.

Example 1 (Root-raised-cosine WH set) For later use, we present an example of an
orthonormal WH set for the case T = F =

√
c, with 1 ≤ c ≤ 2. Let G( f ) , F{g(t)},

ζ =
√

c, and µ = c−1. We choose G( f ) as the (positive) square root of a raised-cosine
pulse:

G( f ) =


√

ζ , if | f | ≤ 1−µ

2ζ√
ζ

2 [1+S( f )], if 1−µ

2ζ
≤ | f | ≤ 1+µ

2ζ

0, otherwise

where S( f ) = cos
[

πζ

µ

(
| f |− 1−µ

2ζ

)]
. As (1+µ)/(2ζ ) = ζ/2, the function G( f ) has com-

pact support of length ζ =
√

c. Furthermore, G( f ) is real-valued and even, and satisfies

∞

∑
l=−∞

G( f − l/ζ )G( f − l/ζ − kζ ) = ζ δk0.

By [Chr03, Th. 8.7.2], we can, therefore, conclude that the WH set (g(t),1/
√

c,1/
√

c) is a
tight WH frame for L2(R), and, by duality, the WH set (g(t),

√
c,
√

c) is orthonormal. Note
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that, for c= 1 (i.e., T F = 1), the pulse G( f ) reduces to the rectangular pulse 1[−1/2,1/2]( f )
and, consequently, g(t) reduces to a sinc function, which has poor time localization, as
expected from the Balian-Low Theorem.

2.2.2.7 Diagonalization and loss of degrees of freedom
By choosing g(t) to be well-localized in time and frequency and T F sufficiently large,
we can make the variance of the interference term in the I/O relation (2.14) small. The
drawback is a loss of degrees of freedom, as formalized next.

Let Ag(τ,ν) denote the ambiguity function of g(t), defined as

Ag(τ,ν),
∫

∞

−∞

g(t)g∗(t− τ)e− j2πνtdt.

The variance of both h[k, l] = 〈(Hgk,l)(t),gk,l(t)〉 and z[k′, l′,k, l] = 〈(Hgk′,l′)(t),gk,l(t)〉
can be expressed in terms of Ag(τ,ν). In fact, as a consequence of the WSSUS property
of H, we have that

E
{

h[k, l]h∗[k′, l′]
}
=
∫

∞

−∞

∫
∞

−∞

CH(τ,ν)
∣∣Ag(τ,ν)

∣∣2 e j2π[(k−k′)T ν−(l−l′)Fτ]dτdν (2.15)

and, in particular,

σ
2
h , E

{
|h[k, l]|2

}
=
∫

∞

−∞

∫
∞

−∞

CH(τ,ν)
∣∣Ag(τ,ν)

∣∣2 dτdν . (2.16)

Because
∣∣Ag(τ,ν)

∣∣2 ≤ ‖g(t)‖4 = 1 and because the scattering function CH(τ,ν) was as-
sumed to be of unit volume [see (2.4)], we have that σ2

h ≤ 1. The relation (2.15) implies
that RH[k,k′, l, l′] , E{h[k, l]h∗[k′, l′]} = RH[k− k′, l− l′], i.e., that h[k, l] is WSS both in
discrete time k and discrete frequency l.

The variance of the interference term in (2.14), under the assumption that the s[k, l] are
i.i.d. with zero mean and unit variance,5 can be upper-bounded as follows:

E

{∣∣∣∣ K−1

∑
k′=0

L−1

∑
l′=0

(k′,l′)6=(k,l)

z[k′, l′,k, l]s[k′, l′]
∣∣∣∣2
}

=
K−1

∑
k′=0

L−1

∑
l′=0

(k′,l′)6=(k,l)

E
{∣∣z[k′, l′,k, l]∣∣2}

≤
∞

∑
k′=−∞

∞

∑
l′=−∞

(k′,l′)6=(k,l)

E
{∣∣z[k′, l′,k, l]∣∣2}

=
∞

∑
k′=−∞

∞

∑
l′=−∞

(k′,l′)6=(k,l)

∫
∞

−∞

∫
∞

−∞

∣∣Ag(τ +(k′− k)T,ν +(l′− l)F)
∣∣2 CH(τ,ν)dτdν

=
∞

∑
k=−∞

∞

∑
l=−∞

(k,l)6=(0,0)

∫
∞

−∞

∫
∞

−∞

∣∣Ag(τ,ν)
∣∣2 CH(τ− kT,ν− lF)dτdν

, σ
2
I .

(2.17)

5In Sections 2.4 and 2.5, we will use this assumption to obtain capacity lower bounds explicit in σ2
I .
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Figure 2.2: Support of CH(τ − kT,ν − lF) for some (k, l) pairs. From (2.16), it follows
that σ2

h ≈ 1 if
∣∣Ag(τ,ν)

∣∣2 ≈ 1 over the support of CH(τ,ν). Furthermore, from (2.17) it

follows that σ2
I ≈ 0 if

∣∣Ag(τ,ν)
∣∣2 ≈ 0 outside the area shaded in grey.

The “infinite-horizon” interference variance σ2
I will turn out to be of particular impor-

tance in the information-theoretic analysis in Sections 2.4 and 2.5. When σ2
I ≈ 0, the I/O

relation (2.14) can be well approximated by the following diagonalized I/O relation

r[k, l] = h[k, l]s[k, l]+w[k, l]. (2.18)

This simplification eases the derivation of bounds on capacity. As the received signal
power in (2.18) is proportional to σ2

h , it is also desirable to choose WH sets that result
in σ2

h ≈ 1 (recall that σ2
h ≤ 1).

Next, we investigate the design criteria a WH set (g(t),T,F) needs to satisfy so that
σ2

h ≈ 1 and σ2
I ≈ 0. We assume, for simplicity, that CH(τ,ν) is compactly supported

within the rectangle [−τ0,τ0]× [−ν0,ν0]. Referring to (2.16), (2.17), and to Fig. 2.2, we
conclude the following:

i) σ2
h ≈ 1 if the ambiguity function of g(t) satisfies

∣∣Ag(τ,ν)
∣∣2 ≈ 1 over the support of

the scattering function.

ii) σ2
I ≈ 0 if the ambiguity function of g(t) takes on small values on the rectangles [−τ0+

kT,τ0 + kT ]× [−ν0 + lF,ν0 + lF ], for (k, l) ∈ Z2 \{(0,0)}.
For these two conditions to be satisfied, the spread of the channel ∆H = 4τ0ν0 needs

to be small and the grid parameters need to be chosen such that the ambiguity func-
tion Ag(τ,ν) takes on small values outside the solid grey-shaded rectangle centered at
the origin in Fig. 2.2. Let Dg and Bg be the root-mean-square duration and the root-
mean-square bandwidth, respectively, of the pulse g(t) (see Chapter 1 for a definition of
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these two quantities). Then, condition ii) above holds if T > τ0 +Dg and F > ν0 +Bg.
These two inequalities illustrate the importance of good time-frequency localization of
the pulse g(t) (i.e., small Dg and Bg). In fact, large Dg and Bg imply large T and F , and,
consequently, a significant loss of degrees of freedom.

For fixed T F , a simple rule on how to choose the grid parameters T and F follows
from the observation that for given τ0 and ν0, the area of the solid rectangle centered at
the origin in Fig. 2.2 is maximized if [Koz97, KM98, MSG+07]

ν0T = τ0F. (2.19)

This rule is commonly referred to as grid matching rule.

Remark 2 Whenever T and F are chosen according to the grid matching rule, it is pos-
sible to assume, without loss of generality, that CH(τ,ν) in (2.16) and (2.17) is supported
on a square rather than a rectangle. A proof of this claim follows from a simple coordinate
transformation.

Common approaches for the optimization of WH sets, such as the ones described
in [MSG+07], aim at finding—for fixed T F—the pulse g(t) that maximizes the ratio
σ2

h /σ2
I (which can be thought of as an SIR). To understand the trade-off between de-

grees of freedom and SIR, we proceed in a different way, and study how σ2
h /σ2

I varies
as a function of T F , for fixed g(t). In Fig. 2.3, we plot a lower bound on σ2

h /σ2
I for the

root-raised-cosine WH sets of Example 1, as a function of T F and for different channel
spreads ∆H (see Example 2 for more details). As expected, the larger T F , the larger the
SIR, but the larger also the loss of degrees of freedom. A common compromise between
loss of degrees of freedom and maximization of SIR is to take T F ≈ 1.2 [MSG+07].

The limitation of the analysis we just outlined is that, although it sheds light on how
σ2

h /σ2
I depends on T F , it does not reveal the influence that σ2

h , σ2
I , and T F have on the

rate achievable when interference is treated as noise. An information-theoretic analysis
of the trade-off between maximization of SIR and minimization of the loss of degrees of
freedom is called for. Such an analysis is provided in Section 2.5.

Example 2 (Trade-off between T F and σ2
h /σ2

I ) Let D , [−τ0,τ0]× [−ν0,ν0] and as-
sume that CH(τ,ν) is compactly supported within D and has unit volume. Then,

σ
2
h =

∫
∞

−∞

∫
∞

−∞

CH(τ,ν)
∣∣Ag(τ,ν)

∣∣2 dτdν ≥ min
(τ,ν)∈D

∣∣Ag(τ,ν)
∣∣2 , mg. (2.20)

Furthermore,

σ
2
I =

∞

∑
k=−∞

∞

∑
l=−∞

(k,l)6=(0,0)

∫
∞

−∞

∫
∞

−∞

∣∣Ag(τ + kT,ν + lF)
∣∣2 CH(τ,ν)dτdν

≤ max
(τ,ν)∈D

∞

∑
k=−∞

∞

∑
l=−∞

(k,l)6=(0,0)

∣∣Ag(τ + kT,ν + lF)
∣∣2 , Mg. (2.21)
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Figure 2.3: Trade-off between the product T F of the grid parameters and the signal-to-
interference ratio σ2

h /σ2
I for the root-raised-cosine WH sets constructed in Example 1.

The two cases ∆H = 10−4 and ∆H = 10−6 are considered. The ratio mg/Mg is a lower
bound on σ2

h /σ2
I , as detailed in Example 2.

The ratio mg/Mg is obviously a lower bound on the SIR σ2
h /σ2

I , and is easier to compute
than σ2

h /σ2
I , because it depends on the scattering function only through its support area

and not its shape. Under the assumption that T and F are chosen according to the grid
matching rule (2.19), it is sufficient to study the ratio mg/Mg exclusively for the case when
the scattering function is compactly supported within a square in the delay-Doppler plane
(see Remark 2). In Fig. 2.3, the ratio mg/Mg is plotted as a function of T F and for different
values of ∆H for the family of root-raised-cosine WH sets defined in Example 1. The
curves in Fig. 2.3 can be used to determine the value of T F needed to achieve a prescribed
SIR for a given channel spread. The ratio mg/Mg increases significantly when T F is taken
only slightly larger than 1. A further increase of T F produces a much less pronounced
increase of the ratio mg/Mg.

2.2.2.8 Large-bandwidth and high-SNR regimes
The effect of a loss of degrees of freedom on capacity depends on the operating regime
of the system. To illustrate this point, let us consider, for simplicity, an AWGN channel
and input signals subject to an average-power constraint only. Two operating regimes can
be identified, where the impact of a loss of degrees of freedom is drastically different: the
large-bandwidth (or, power-limited, or low-SNR) regime and the high-SNR (or bandwidth-
limited) regime [TV05].

In the large-bandwidth regime, capacity is essentially proportional to the receive power,
and only mildly sensitive to the number of degrees of freedom. Hence, a loss of degrees of
freedom is irrelevant in this regime. In contrast, in the high-SNR regime, capacity grows



18 Chapter 2: Information Theory of Underspread WSSUS Channels

linearly with the number of degrees of freedom and is only mildly sensitive to the receive
power. Therefore, a loss of degrees of freedom is critical in this regime.

One of the main contributions of this chapter is to illustrate that for all SNR values
of practical interest, the noncoherent capacity of a Rayleigh-fading underspread WSSUS
channel is close to the capacity of an AWGN channel with the same receive power. A key
element to establish this result is an appropriate choice of the WH set (g(t),T,F) that is
used to discretize the channel. Not surprisingly, this choice turns out to depend on the
operating regime of the system. In particular,

i) In the large-bandwidth regime, where capacity is only mildly sensitive to a loss of
degrees of freedom, it is sensible to choose (g(t),T,F) so that σ2

h ≈ 1 and σ2
I ≈ 0,

and replace the discretized I/O relation (2.14) by the much simpler diagonalized I/O
relation (2.18). In Section 2.3, we study the noncoherent capacity of the diagonalized
channel (2.18) in the large-bandwidth regime. Then, in Section 2.4, we assess how
well the noncoherent capacity of (2.18) approximates that of (2.14) in this regime.
The analysis in these two sections sheds light on the impact of bandwidth, number
of antennas, and shape of the scattering function on capacity, and allows us to derive
guidelines on the choice of the WH set.

ii) In the high-SNR regime, where capacity is sensitive to a loss of degrees of freedom,
the choice of (g(t),T,F) that leads to σ2

h ≈ 1 and σ2
I ≈ 0 may be inadequate, as it

could entail a dimension loss that is too high. We, therefore, have to work directly
with the I/O relation (2.14), which accounts for ISI/ICI. In Section 2.5, we study the
noncoherent capacity of (2.14) in the high-SNR regime. In particular, we address
the dependency of noncoherent capacity on the support of the scattering function,
and we discuss, from an information-theoretic perspective, the trade-off between
maximization of the number of degrees of freedom and maximization of SIR.

2.3 The large-bandwidth regime: diagonalized I/O relation

As a first step towards the characterization of the noncoherent capacity of the chan-
nel (2.14) in the large-bandwidth regime, we present, in this section, tight bounds on the
noncoherent capacity of the diagonalized channel (2.18). In Section 2.4, we will then dis-
cuss how well the noncoherent capacity of (2.18) approximates that of (2.14). We chose
this two-level approach because bounds on the noncoherent capacity of (2.18) are much
easier to derive than for (2.14). Furthermore, the information-theoretic tools presented in
this section will also turn out useful for the analysis of the noncoherent capacity of (2.14)
presented in Sections 2.4 and 2.5.

Throughout this section, we shall then focus on the diagonalized I/O relation (2.18),
which we recall is obtained by discretizing the continuous-time channel I/O relation (2.1)
by means of a WH set (g(t),T,F) for which σ2

h ≈ 1 and σ2
I ≈ 0. As a consequence, the

capacity bounds we shall derive in this section, will depend on (g(t),T,F) only through
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the grid parameters T and F . A more refined analysis, which is based on the I/O rela-
tion with ISI/ICI (2.14) and, hence, leads to bounds explicit in g(t), will be presented
in Section 2.4.

We shall assume throughout that the scattering function of the underlying Rayleigh-
fading underspread WSSUS channel is compactly supported within [−τ0,τ0]× [−ν0,ν0],
and that the grid parameters satisfy the Nyquist condition T ≤ 1/(2ν0) and F ≤ 1/(2τ0).
These assumptions are not fundamental: they merely serve to simplify the analytic ex-
pressions for our capacity bounds.

It is convenient for our analysis to rewrite the I/O relation (2.18) in vector form. As dis-
cussed in Section 2.2.2.3, we let D = KT be the approximate duration of the continuous-
time input signal s(t) in (2.13) and B = LF be its approximate bandwidth. We denote by s
the KL-dimensional input vector that contains the input symbols s[k, l]. The exact way the
input symbols s[k, l] are organized into the vector s is of no concern here, as we will only
provide a glimpse of the proof of the capacity bounds. The detailed proof can be found
in [DSBS10]. Similarly, the vector r contains the output-signal samples r[k, l], the vec-
tor h contains the channel coefficients h[k, l], and w contains the AWGN samples w[k, l].
With these definitions, we can now express the I/O relation (2.18) as

r = h�s+w (2.22)

where � denotes the Hadamard element-wise product.

2.3.1 Power constraints

We assume that the average power and the peak power of the input signal are constrained
as follows:

i) The average power satisfies
1
T
E
{
‖s‖2}≤ KP (2.23)

where P denotes the admissible average power.

ii) Among the several ways in which the peak power of the input signal in (2.18) can be
constrained (see [DSBS10] for a detailed discussion), here, we exclusively analyze
the case where a joint limitation in time and frequency is imposed, i.e., the case
where the amplitude of the input symbols s[k, l] in each time-frequency slot (k, l) is
constrained:

1
T
|s[k, l]|2 ≤ β

P
L
. (2.24)

Here, β ≥ 1 is the nominal peak- to average-power ratio (PAPR). This type of peak
constraint is of practical relevance. It models, e.g., a limitation of the radiated peak
power in a given frequency band; it also mimics regulatory peak constraints, such as
those imposed on UWB systems.
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Note that, according to (2.24), the admissible peak power per time-frequency slot goes
to zero as the bandwidth [and, hence, L in (2.24)] goes to infinity. An important observa-
tion is that the peak constraint in (2.24) depends on the total available bandwidth, rather
than the bandwidth that is effectively used by the input signal. As a consequence, it can
be shown [DSBS10] that the peak constraint (2.24) enforces the use of the total available
bandwidth. Consequently, the PAPR of the signal transmitted in each time-frequency
slot is effectively limited, and signals with unbounded PAPR, like flash signals [Ver02],
are ruled out. Input alphabets commonly used in current systems, like phase-shift key-
ing (PSK) and quadrature-amplitude modulation (QAM), satisfy the constraint (2.24). In
contrast, Gaussian inputs, which are often used in information-theoretic analyses, do not
satisfy (2.24).

We note that the power constraints (2.23) and (2.24) are imposed on the input sym-
bols s[k, l], rather than on the continuous-time signal s(t). While for the average-power
constraint it is possible to make our analysis more rigorous and let the constraint on s[k, l]
follow from an underlying constraint on s(t) [DMB09], the same does not seem to hold
true for the peak-power constraint: a limit on the amplitude of s[k, l] does not generally
imply a limit on the amplitude of s(t).

2.3.2 Definition of noncoherent capacity

Let Q be the set of probability distributions on s that satisfy the average-power con-
straint (2.23) and the peak-power constraint (2.24). The noncoherent capacity of the
channel (2.18) is given by [SH05]

C , lim
K→∞

1
KT

sup
Q

I(r;s) (2.25)

where I(r;s) denotes the mutual information between the KL-dimensional output vector r
and the KL-dimensional input vector s [CT91]. The noncoherent capacity C is notoriously
hard to characterize analytically. In the next subsections, we present the following bounds
on C:

i) An upper bound Uc, which we refer to as coherent-capacity upper bound, that is
based on the assumption that the receiver has perfect knowledge of the channel real-
izations. The derivation of this bound is standard (see, e.g., [BPS98, Sec. III.C.1]).

ii) An upper bound U1 that is explicit in the channel scattering function and extends the
upper bound [SWHL09, Prop. 2.2] on the capacity of frequency-flat time-selective
channels to general underspread WSSUS channels.

iii) A lower bound L1 that extends the lower bound [SHN05, Prop. 2.2] to general under-
spread WSSUS channels. This bound is explicit in the channel scattering function
only for large bandwidth.

Our focus here will be on the engineering insights that can be obtained from the
bounds; we will give a flavor of the derivations and refer the reader to [DSBS10,SDBP09]
for detailed derivations.
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2.3.3 A coherent-capacity upper bound

The assumptions that the receiver perfectly knows the instantaneous channel realizations
and that the input vector s is subject only to an average-power constraint furnish the
following standard capacity upper bound [BPS98, Sec. III.C.1]

Uc(B),
B

T F
Eh

{
ln
(

1+
PT F

B
|h|2
)}

(2.26)

where h ∼ CN (0,1). As the upper bound Uc increases monotonically with bandwidth,
this bound does not reflect the noncoherent capacity behavior for large bandwidth accu-
rately. Nevertheless, we shall see in Section 2.3.6, by means of numerical examples, that
Uc is quite useful over a large range of bandwidth values of practical interest.

2.3.4 An upper bound on capacity that is explicit in CH(τ,ν)

In this section, we derive an upper bound on C that will help us to better understand the
dependency of noncoherent capacity on bandwidth in the large-bandwidth regime. An
important feature of this bound is that it is explicit in the channel scattering function. To
simplify the exposition of the key steps used to obtain this bound, we first focus on a very
simple channel model.

2.3.4.1 Bounding idea
Let h ∼ CN (0,1) denote the random gain of a memoryless flat-fading channel with in-
put s, output r, and additive noise w∼ CN (0,1), i.e., with I/O relation r = hs+w. Let Q
denote the set of all probability distributions on s that satisfy the average-power con-
straint E[|s|2] ≤ P and the peak constraint |s|2 ≤ βP. We obtain an upper bound on the
capacity supQ I(r;s) along the lines of [SWHL09, Prop. 2.2] (see also [BPS98, p. 2636])
as follows:

sup
Q

I(r;s)
(a)
= sup

Q

{
I(r;s,h)− I(r;h |s)

}
(b)
≤ sup

Q

{
ln
(
1+E

{
|s|2
})
−E
{

ln(1+ |s|2)
}}

= sup
0≤α≤1

sup
Q

E{|s|2}=αP

{
ln
(
1+E

{
|s|2
})
−E
{

ln(1+ |s|2)
}}

(c)
≤ sup

0≤α≤1

{
ln(1+αP)− inf

Q
E{|s|2}=αP

E

{
inf

|u|2≤βP

ln(1+ |u|2)
|u|2

|s|2
}}

(d)
= sup

0≤α≤1

{
ln(1+αP)− α

β
ln(1+βP)

}
. (2.27)

Here, (a) follows from the chain rule for mutual information [CT91]; the inequality (b)
results because we take hs as JPG with variance E{|hs|2} = E{|s|2}. To obtain the in-
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equality (c), we multiply and divide ln(1+ |s|2) by |s|2 and lower-bound the resulting
term ln(1+ |s|2)/ |s|2 by its infimum over all inputs s that satisfy the peak constraint. Fi-
nally, (d) results because ln(1+ |u|2)/ |u|2 is monotonically decreasing in |u|2, so that its
infimum is achieved for |u|2 = βP.

If the supremum in (2.27) is achieved for α = 1, the upper bound simplifies to

C ≤ ln(1+P)− 1
β

ln(1+βP).

This bound can be interpreted as the capacity of an AWGN channel with SNR equal to P
minus a penalty term that quantifies the capacity loss due to channel uncertainty. The
higher the allowed peakiness of the input, as measured by the PAPR β , the smaller the
penalty.

In spite of its simplicity, the upper bound (2.27) is tight in the low-SNR regime we
are interested in (in this section). More precisely, the Taylor-series expansion of the
upper bound (2.27) around the point P = 0 matches that of capacity up to second or-
der [SWHL09, Prop. 2.1]. In contrast, at high SNR the upper bound (2.27) exhibits an
overly optimistic behavior. In fact, the bound scales logarithmically in P, while the high-
SNR capacity scaling for memoryless channels is doubly logarithmic [TE97, LM03].

2.3.4.2 The actual bound
For the I/O relation of interest in this chapter, namely, (2.18), the derivation of a bound
similar to (2.27) is complicated by the correlation that h[k, l] exhibits in k and l. A key
element in this derivation is the relation between mutual information and minimum mean-
square error (MMSE) estimation [GSV05], which leads (through the classic formula for
the infinite-horizon noncausal prediction error for stationary Gaussian processes [Poo94,
Eq. (V.D.28)]) to a closed-form expression that is explicit in the channel scattering func-
tion. The resulting upper bound on C is presented in Theorem 1 below. A detailed deriva-
tion of this upper bound can be found in [DSBS10].

Theorem 1 The noncoherent capacity of the channel (2.18), under the assumption that
the input signal satisfies the average-power constraint (2.23) and the peak-power con-
straint (2.24), is upper-bounded as C ≤U1, where

U1(B),
B

T F
ln
(

1+α(B)P
T F
B

)
−α(B)ψ(B) (2.28a)

with

α(B), min
{

1,
B

T F

(
1

ψ(B)
− 1

P

)}
(2.28b)

and

ψ(B),
B
β

∫
∞

−∞

∫
∞

−∞

ln
(

1+
βP
B

CH(τ,ν)

)
dτdν . (2.28c)
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The bound U1 vanishes for B→ ∞ [DSBS10, Sec. III.E], a behavior that is to be ex-
pected because the peak constraint (2.24) forces the input signal to be spread out over the
total available bandwidth. This behavior is well known [MG02, SH02, TT00]. However,
as the bound (2.28) is explicit in B, it allows us to characterize the capacity behavior also
for finite bandwidth. In particular, through a numerical evaluation of U1 (and of the lower
bound we shall derive in Section 2.3.5), it is possible to (coarsely) identify the critical
bandwidth for which capacity is maximized (see Section 2.3.6).

By means of a Taylor-series expansion, the bound U1 can be shown to be tight in the
large-bandwidth regime. More precisely, the Taylor-series expansion of U1 around the
point 1/B = 0 matches that of capacity up to first order [DSBS10].

2.3.4.3 Some simplifications
Similarly to the very simple memoryless flat-fading channel analyzed in Section 2.3.4.1,
if the minimum in (2.28b) were attained for α(B) = 1, the first term of the upper bound U1
in (2.28a) could be interpreted as the capacity of an effective AWGN channel with power P
and B/(T F) degrees of freedom, while the second term could be seen as a penalty term
that characterizes the capacity loss due to channel uncertainty. It turns out, indeed,
that α(B) = 1 minimizes (2.28b) for virtually all wireless channels and SNR values of
practical interest. In particular, a sufficient condition for α(B) = 1 is [DSBS10]

∆H ≤
β

3T F
(2.29a)

and

0≤ P
B
<

∆H

β

[
exp
(

β

2T F∆H

)
−1
]
. (2.29b)

As virtually all wireless channels are highly underspread, as β ≥ 1, and as, typically, T F ≈
1.2 (see Section 2.2.2.7), condition (2.29a) is satisfied in most real-world application sce-
narios, so that the only relevant condition is (2.29b); but even for large channel spread ∆H,
this condition holds for all SNR values6 P/B of practical interest. As an example, con-
sider a system with β = 1 and spread ∆H = 10−2; for this choice, (2.29b) is satisfied for
all SNR values less than 153dB. As this value is far in excess of the SNR encountered
in practical systems, we can safely claim that a capacity upper bound of practical interest
results if we substitute α(B) = 1 in (2.28a).

2.3.4.4 Impact of channel characteristics
The spread ∆H and the shape of the scattering function CH(τ,ν) are important characteris-
tics of wireless channels. As the upper bound (2.28) is explicit in the scattering function,
we can analyze its behavior as a function of CH(τ,ν). We restrict our discussion to the
practically relevant case α(B) = 1.

6Recall that the noise variance was normalized to 1.
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Channel spread: For fixed shape of the scattering function, the upper bound U1 de-
creases for increasing spread ∆H. To see this, we define a normalized scattering func-
tion C̃H(τ,ν) supported on a square with unit area, so that

CH(τ,ν) =
1

∆H
C̃H

(
τ

2τ0
,

ν

2ν0

)
.

By a change of variables, the penalty term can now be written as

ψ(B) =
B
β

∫
∞

−∞

∫
∞

−∞

ln
(

1+
βP
B

CH(τ,ν)

)
dτdν

=
B∆H

β

∫ 1/2

−1/2

∫ 1/2

−1/2
ln
(

1+
βP

B∆H
C̃H(τ,ν)

)
dτdν .

Because ∆H ln(1+ρ/∆H) is monotonically increasing in ∆H for any positive constant ρ >
0, the penalty term ψ(B) increases with increasing spread ∆H. Consequently, as the first
term in (2.28a) does not depend on ∆H, the upper bound U1 decreases with increasing
spread. Because of the Fourier relation CH(τ,ν) = Ft→ν , f→τ{RH(t, f )}, a larger spread
implies less correlation in time, frequency, or both; but a channel with less correlation is
harder for the receiver to learn; hence, channel uncertainty increases, which ultimately
reduces capacity. In a typical system that uses pilot symbols to estimate the channel, a
larger spread means that more pilots are required to reliably estimate the channel, so that
fewer degrees of freedom are left to transmit data.

Shape of the scattering function: For fixed spread ∆H, the scattering function that
minimizes the upper bound U1 is the “brick-shaped” scattering function: CH(τ,ν) = 1/∆H
for (τ,ν) ∈ [−τ0,τ0]× [−ν0,ν0]. This observation follows from Jensen’s inequality ap-
plied to the penalty term in (2.28c), the normalization of CH(τ,ν) in (2.4), and the fact
that a brick-shaped scattering function achieves the resulting upper bound.

First design sketches of a communication system often rely on simple channel param-
eters like the maximum multipath delay τ0 and the maximum Doppler shift ν0. These two
parameters completely specify a brick-shaped scattering function, which we just saw to
provide the minimum capacity upper bound among all WSSUS channels with a scatter-
ing function of prescribed τ0 and ν0. Hence, a design on the basis of τ0 and ν0 alone is
implicitly targeted at the worst-case channel and thus results in a robust design.

2.3.5 A lower bound on capacity

Typically, lower bounds on capacity are easier to obtain than upper bounds because it
is sufficient to evaluate the mutual information in (2.25) for an input distribution that
satisfies the power constraints (2.23) and (2.24). The main difficulty here is to find input
distributions that lead to tight lower bounds. As we are going to show in Section 2.3.6, a
good trade-off between analytical tractability and tightness of the resulting bound follows
from the choice of i.i.d. zero-mean constant modulus input symbols. Constant modulus
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input symbols are often found in practical systems in the form of PSK constellations,
especially in systems designed to operate at low SNR.

2.3.5.1 Bounding idea
As with the upper bound in Theorem 1, we illustrate the main steps in the derivation of the
lower bound by considering a simple memoryless channel with I/O relation r = hu+w.
Here, we pick u to be of zero mean and constant modulus |u|2 = P. A word of warning
is appropriate at this point. The choice of transmitting constant-modulus signals on a
memoryless fading channel (with the channel not known at the receiver) is a bad one.
It is easy to show that the corresponding mutual information I(r;u) (which is a lower
bound on the capacity of the memoryless channel) equals zero. The underlying reason is
that in constant modulus signals, the information is encoded in the phase of the signal.
But for the setting we just described, the conditional probability of r given u depends
on the amplitude of u only. Disturbing as this observation might seem, the bounding
steps presented below lead to a perfectly sensible lower bound on the capacity of the
channel (2.18) we are interested in. In fact, as the discretized channel h[k, l] in (2.18)
exhibits correlation both in k and l, the conditional probability of r given s [see (2.22)]
depends on both the phase and the amplitude of the entries of s. Consequently, as we shall
see in Section 2.3.6, we have that I(r;s)> 0 also when constant-modulus inputs are used.

We now derive a lower bound on I(r;u), which not surprisingly will turn out to be
negative. We use the chain rule to split the mutual information I(r;u) and obtain

I(r;u) = I(r;u,h)− I(r;h |u)
= I(r;h)+ I(r;u |h)− I(r;h |u)
(a)
≥ I(r;u |h)− I(r;h |u)
(b)
= I(r;u |h)−E

{
ln(1+ |u|2)

}
(c)
= I(r;u |h)− ln(1+P). (2.30)

To get the inequality (a), we used the chain rule for mutual information twice, and then
dropped the nonnegative term I(r;h). This essentially splits the mutual information into
a first component that corresponds to the case when perfect channel knowledge at the
receiver is available, and a second component that [like in the upper bound (2.27)] can
be interpreted as a penalty term, and quantifies the impact of channel uncertainty. Next,
(b) follows because, given the input u, the output r is JPG with variance 1+ |u|2. Finally,
(c) results as u is of constant modulus with |u|2 = P. As expected, the lower bound
we arrived at is negative. In fact, the first term in the lower bound (2.30), which is a
“coherent” mutual information, is always less than the second term, which is the capacity
of an AWGN channel with the same receive power.

If the input signal is subject to a peak-power constraint, with PAPR β strictly larger
than 1, we can improve upon (2.30) by time sharing [SHN05, Cor. 2.1]: we let the input
signal have squared magnitude γP during a fraction 1/γ of the total transmission time,
where 1≤ γ ≤ β—that is, we set the channel input s to be s =

√
γu during this time; for
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the remaining time, the transmitter is silent, so that the constraint on the average power is
satisfied. The resulting bound is

sup
Q

I(r;s)≥ max
1≤γ≤β

1
γ

[
I(r;
√

γu |h)− ln(1+ γP)
]
.

Because a closed-form expression for the coherent mutual information I(r;
√

γu |h), for
constant modulus u, does not exist, numerical methods are needed for evaluating the lower
bound just derived.

2.3.5.2 The actual bound
Two difficulties arise when trying to derive a bound similar to (2.30) on the capacity of the
channel (2.18): we need to account for the correlation that h[k, l] exhibits in k and l and we
need to compute the limit K→∞ in (2.25). We choose the input symbols to be i.i.d. of zero
mean and constant modulus |s[k, l]|2 = PT/K. The coherent mutual information I(r;s |h)
is then simply given by KL× I(r;s |h), i.e., KL times the coherent mutual information of
the scalar memoryless Rayleigh-fading channel we analyzed previously.

In the limit K → ∞, the penalty term I(r;h |s) is explicit in the matrix-valued spec-
trum Ph(θ) of the multivariate channel process {h[k],

(
h[k,0] h[k,1] · · · h[k,L−1]

)T}

Ph(θ),
∞

∑
k=−∞

Rh[k]e− j2πkθ , |θ | ≤ 1
2
, (2.31)

where Rh[k] , E
{

h[k′+ k]hH [k′]
}

. This result follows from a generalization of Szegö’s
theorem on the asymptotic distribution of Toeplitz matrices (see [DSBS10] for further
details).

The final lower bound on capacity is stated in the following theorem. As before, a
detailed derivation can be found in [DSBS10].

Theorem 2 The noncoherent capacity of the channel (2.18), under the assumption that
the input signal satisfies the average-power constraint (2.23) and the peak-power con-
straint (2.24), is lower-bounded as C ≥ L1, where

L1(B) = max
1≤γ≤β

{
B

γT F
I(r;
√

γu |h)− 1
γT

∫ 1/2

−1/2
lndet

(
IL +

γPT F
B

Ph(θ)

)
dθ

}
. (2.32)

2.3.5.3 Some approximations
The lower bound (2.32) differs from the upper bound in Theorem 1 in two important as-
pects. i) The first term inside the braces in (2.32) cannot be expressed in closed form but
needs to be evaluated numerically because of the constant modulus signaling assumption.
ii) The penalty term depends on the scattering function only indirectly through Ph(θ),
which again complicates the evaluation of the lower bound. The reason for the com-
plicated structure are edge effects caused by the finite bandwidth B = LF . In the large-
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bandwidth regime, however, we can approximate the penalty term by exploiting the asymp-
totic equivalence between Toeplitz and circulant matrices [Gra05]. This yields

L1(B)≈ La(B), max
1≤γ≤β

{
B

γT F
I(r;
√

γu |h)

− B
γ

∫
∞

−∞

∫
∞

−∞

ln
(

1+
γP
B

CH(τ,ν)

)
dτdν

}
. (2.33)

Furthermore, we can replace the mutual information I(r;
√

γu |h) in (2.33) by its first-
order Taylor series expansion for B→ ∞ [Ver02, Th. 14], to obtain the approximation

La(B)≈ Laa(B), max
1≤γ≤β

{
P− γP2T F

B

− B
γ

∫
∞

−∞

∫
∞

−∞

ln
(

1+
γP
B

CH(τ,ν)

)
dτdν

}
. (2.34)

Both La and Laa are no longer true lower bounds, yet they agree with L1 in (2.32) for large B.
More details on how well La and Laa approximate L1 can be found in [DSBS10].

2.3.6 A numerical example

We evaluate the bounds presented previously for the following set of practically relevant
system parameters:

i) Brick-shaped scattering function with maximum delay τ0 = 0.5µs, maximum Doppler
shift ν0 = 5Hz, and corresponding spread ∆H = 4τ0ν0 = 10−5.

ii) Grid parameters T = 0.35ms and F = 3.53kHz, so that T F ≈ 1.25 and ν0T = τ0F ,
as suggested by the design rule (2.19).

iii) Receive power normalized with respect to the noise spectral density P/(1W/Hz) =
2.42 ·107s−1.

These parameter values are representative of several different types of systems. For ex-
ample:
(a) An IEEE 802.11a system with transmit power of 200 mW, path loss of 118dB, and

receiver noise figure [Raz98] of 5dB; the path loss is rather pessimistic for typical
indoor link distances and includes the attenuation of the signal, e.g., by a concrete
wall.

(b) A UWB system with transmit power of 0.5 mW, path loss of 77dB, and receiver noise
figure of 20dB.

As illustrated in Fig. 2.4, the upper bound U1 and the lower bound L1 (which is evaluated
for a QPSK input alphabet) take on their maximum at a large but finite bandwidth; above
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Figure 2.4: The coherent-capacity upper bound Uc in (2.26), the upper bound U1 in (2.28),
as well as the lower bound L1 in (2.32) (evaluated for a QPSK input alphabet) and its
large-bandwidth approximations La and Laa in (2.33) and (2.34), respectively, for β = 1
and a brick-shaped scattering function with spread ∆H = 10−5. The noncoherent capacity
is confined to the area shaded in grey. The AWGN-capacity upper bound (2.35) is also
plotted for reference.

this critical bandwidth, additional bandwidth is detrimental and the capacity approaches
zero as the bandwidth increases further. In this regime, the rate gain resulting from the
additional degrees of freedom is offset by the resources required to resolve channel uncer-
tainty. In particular, we can see from Fig. 2.4 that many current wireless systems operate
well below the critical bandwidth.

For bandwidth values smaller than the critical bandwidth, L1 comes quite close to the
coherent-capacity upper bound Uc; we show in Section 2.4.2 that this gap can be further
reduced by a more sophisticated choice of the input distribution.

We finally note that, for a large range of bandwidth values of practical interest, both U1
and L1 [and, hence, the noncoherent capacity of (2.18)] are close to the capacity of an
AWGN channel with the same receive power [a trivial upper bound on (2.25)], given by7

Cawgn(B) = B ln
(

1+
P
B

)
. (2.35)

This observation will be helpful in Section 2.4, where we quantify how well the nonco-
herent capacity of the diagonalized channel (2.18) approximates that of the channel with
ISI/ICI (2.14) in the large-bandwidth regime.

7In the remainder of the chapter, we will refer to Cawgn as AWGN-capacity upper bound.
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2.3.7 Extension to the multi-antenna setting

Bandwidth is the main source of degrees of freedom in wireless communications but it
also results in channel uncertainty. Multiple antennas at the transmitter and the receiver
can be used to increase the number of degrees of freedom even further. Hence, ques-
tions of engineering relevance are (i) how channel uncertainty grows with the number
of antennas, (ii) if there is a regime where the additional spatial degrees of freedom are
detrimental just as the degrees of freedom associated with bandwidth are, and (iii) what
is the impact on capacity of spatial correlation across antennas.

2.3.7.1 Modeling multi-antenna channels—a formal extension
To answer the questions above, we need an appropriate model for multi-antenna under-
spread WSSUS channels. As the accurate modeling of multi-antenna LTV channels goes
beyond the scope of this chapter, we limit our analysis to a multi-antenna channel model
that is a formal extension of the single-input single-output (SISO) model used so far.
More precisely, we extend the diagonalized SISO I/O relation (2.18) to a multiple-input
multiple-output (MIMO) I/O relation with MT transmit antennas, indexed by q, and MR
receive antennas, indexed by r. We assume that all component channels, which we denote
by hr,q[k, l], are identically distributed, though not necessarily statistically independent.

For a given slot (k, l), we arrange the corresponding component channels hr,q[k, l] in
an MR×MT matrix H[k, l] with entries [H[k, l]]r,q = hr,q[k, l]. The diagonalized I/O rela-
tion of the MIMO channel is then given by

r[k, l] = H[k, l]s[k, l]+w[k, l] (2.36)

where, for each slot (k, l), w[k, l] is the MR-dimensional noise vector, s[k, l] is the MT-
dimensional input vector, and r[k, l] is the output vector of dimension MR. We allow for
spatial correlation according to the separable (Kronecker) correlation model [CTKV02,
KSP+02], i.e.,

E
[
hr,q[k′+ k, l′+ l]h∗r′,q′ [k

′, l′]
]
= B[r,r′]A[q,q′]RH[k, l].

The MT×MT matrix A with entries [A]q,q′ =A[q,q′] is called the transmit correlation ma-
trix, and the MR×MR matrix B with entries [B]r,r′ = B[r,r′] is the receive correlation ma-
trix. We normalize A and B so that tr(A) =MT and tr(B) =MR. Finally, we let σ0≥σ1≥
·· · ≥ σMT−1 be the eigenvalues of A, and λ0 ≥ λ1 ≥ ·· · ≥ λMR−1 the eigenvalues of B.

A detailed discussion and formal description of the MIMO extension just outlined can
be found in [Sch09, SDBP09].

2.3.7.2 Capacity bounds for MIMO channels in the large-bandwidth regime
Upper and lower bounds on the capacity of the MIMO channel (2.36), under the average-
power constraint

1
T
E

{
K−1

∑
k=0

L−1

∑
l=0
‖s[k, l]‖2

}
≤ KP (2.37)
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and the peak-power constraint
1
T
‖s[k, l]‖2 ≤ β

P
L

(2.38)

can be obtained using the same techniques as in the SISO case. The resulting upper and
lower bounds are presented in Theorems 3 and 4 below. A detailed derivation of these
bounds can be found in [Sch09, SDBP09].

2.3.7.3 The upper bound
Theorem 3 The noncoherent capacity of the channel (2.36), under the assumption that
the input signal satisfies the average-power constraint (2.37) and the peak-power con-
straint (2.38), is upper-bounded as C ≤Umimo

1 , where

Umimo
1 (B), sup

0≤α≤σ0

MR−1

∑
r=0

[
B

T F
ln
(

1+αλr
PT F

B

)
−αψr(B)

]
(2.39a)

with

ψr(B),
B

σ0β

∫
∞

−∞

∫
∞

−∞

ln
(

1+
σ0λrβP

B
CH(τ,ν)

)
dτdν . (2.39b)

Similarly to the single-antenna case (see Section 2.3.4.3), it can be shown that for vir-
tually all SNR values of practical interest the supremum in (2.39a) is attained for α =
σ0. Hence, the upper bound can be interpreted as the capacity of a set of MR parallel
AWGN channels with B/(T F) degrees of freedom and received power σ0λrP, minus a
penalty term that quantifies the capacity loss because of channel uncertainty. The obser-
vations on the impact of the shape and spread of the scattering function made in Sec-
tion 2.3.4.4 remain valid.

2.3.7.4 The lower bound
Theorem 4 The noncoherent capacity of the channel (2.36), under the assumption that
the input signal satisfies the average-power constraint (2.37) and the peak-power con-
straint (2.38), is lower-bounded as

C(B)≥ max
1≤Q≤MT

Lmimo
1 (B,Q)

where

Lmimo
1 (B,Q) = max

1≤γ≤β

{
B

γT F
I(r̃;
√

γ s̃ |H̃)

− 1
γT

Q−1

∑
q=0

MR−1

∑
r=0

∫ 1/2

−1/2
lndet

(
IL +σqλr

γPT F
QB

Ph(θ)

)
dθ

}
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with
r̃ = ΛΛΛ

1/2H̃ΣΣΣ
1/2s̃+ w̃.

Here, s̃ is a MT-dimensional vector whose first Q elements are i.i.d. of zero mean and
constant modulus

∣∣[s̃]q∣∣2 = PT/(QL), and the remaining MT−Q elements are equal to
zero. Both the MR×MT matrix H̃ and the MR-dimensional vector w̃ have i.i.d. JPG
entries of zero mean and unit variance. Finally, ΣΣΣ = diag

{
(σ0 σ1 · · · σMT−1)

T
}

and
ΛΛΛ = diag

{
(λ0 λ1 · · · λMR−1)

T
}

.

The lower bound Lmimo
1 needs to be optimized with respect to the number of active

transmit eigenmodes Q (i.e., the number of eigenmodes of the transmit correlation ma-
trix A being signaled over, see [SDBP09] for more details). Note that when the channel is
spatially uncorrelated at the transmitter, Q simply denotes the number of active transmit
antennas.

It can be shown that, at very large bandwidth, it is optimal to signal along the strongest
eigenmode only [SDBP09], a scheme often referred to as rank-one statistical beamform-
ing or eigen-beamforming [Ver02]. In particular, when the channel is spatially uncor-
related at the transmitter, at very large bandwidth it is optimal to use a single transmit
antenna, an observation previously made in [SWHL09] for frequency-flat time-selective
channels. At intermediate bandwidth values, the number of transmit antennas to use (for
uncorrelated component channels at the transmitter side), or the number of transmit eigen-
modes to signal over (if correlation is present), can be determined by numerical evaluation
of the bounds, as shown in Section 2.3.8.

2.3.8 Numerical examples

For a 3× 3 MIMO system, we show in Figs 2.5–2.7 plots of the upper bound Umimo
1 ,

and—for a number of active transmit eigenmodes Q ranging from 1 to 3—plots of the
lower bound Lmimo

1 and of a large-bandwidth approximation of Lmimo
1 denoted as Lmimo

aa .8

Parameter settings: All plots are obtained for receive power normalized with respect
to the noise spectral density P/(1W/Hz) = 1.26 · 108 s−1; this corresponds, e.g., to a
transmit power of 0.5mW, thermal noise level at the receiver of −174dBm/Hz, free-
space path loss corresponding to a distance of 10m, and a rather conservative receiver
noise figure of 20dB. Furthermore, we assume that the scattering function is brick-shaped
with τ0 = 5µs, ν0 = 50Hz, and corresponding spread ∆H = 10−3. We also set β = 1. For
this set of parameter values, we analyze three different scenarios: a spatially uncorrelated
channel, spatial correlation at the receiver only, and spatial correlation at the transmitter
only.

Spatially uncorrelated channel: Fig. 2.5 shows the upper bound Umimo
1 and the lower

bound Lmimo
1 for the spatially uncorrelated case. For comparison, we also plot a standard

8The analytic expression for Lmimo
aa , which is similar to (2.34), can be found in [SDBP09, Eq. (19)].
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Figure 2.5: Upper and lower bounds on the noncoherent capacity of a spatially uncorre-
lated MIMO underspread WSSUS channel with MT = MR = 3, β = 1, and ∆H = 10−3.
The bounds confine the noncoherent capacity to the hatched area.

capacity upper bound Umimo
c obtained for the coherent setting and with input subject to

an average-power constraint only [TV05]. We can observe that Umimo
c is tighter than our

upper bound Umimo
1 for small bandwidth; this holds true in general, as for small bandwidth

and spatially uncorrelated channels, Umimo
1 (B) ≈ [(MRB)/(T F)] ln(1+PT F/B), which

is the Jensen upper bound on Umimo
c .

For small and medium bandwidth, the lower bound Lmimo
1 increases with Q and comes

surprisingly close to the coherent capacity upper bound Umimo
c for Q = 3.

As for the SISO case, when the bandwidth exceeds a certain critical bandwidth, both
Umimo

1 and Lmimo
1 start to decrease, because the rate gain due to the additional degrees of

freedom is offset by the increase in channel uncertainty. The same argument holds in the
wideband regime for the degrees of freedom provided by multiple transmit antennas: in
this regime, using a single transmit antenna is optimal [SDBP09].

Impact of receive correlation: Fig. 2.6 shows the same bounds as before, but evalu-
ated for spatial correlation at the receiver according to a correlation matrix with eigen-
values {2.6, 0.3, 0.1} and a spatially uncorrelated channel at the transmitter. The curves
in Fig. 2.6 are very similar to the ones shown in Fig. 2.5 for the spatially uncorrelated
case, yet they are shifted toward higher bandwidth and the maximum is lower. In gen-
eral, receive correlation reduces capacity at small bandwidth, but is beneficial at large
bandwidth [SDBP09].
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Figure 2.6: Upper and lower bounds on the noncoherent capacity of a MIMO under-
spread WSSUS channel that is spatially uncorrelated at the transmitter but correlated at
the receiver with eigenvalues of the receive correlation matrix given by {2.6, 0.3, 0.1};
MT = MR = 3, β = 1, and ∆H = 10−3. The bounds confine the noncoherent capacity to
the hatched area.

Impact of transmit correlation: We evaluate the same bounds once more, but this time
for spatial correlation at the transmitter according to a correlation matrix with eigenvalues
{1.7, 1.0, 0.3} and a spatially uncorrelated channel at the receiver. The corresponding
curves are shown in Fig. 2.7. The maximum of both the upper and the lower bound is
higher than the corresponding maxima in the previous two examples. This rate increase
at large bandwidth is caused by the power gain due to statistical beamforming [SDBP09].
The impact of transmit correlation at small bandwidth is more difficult to characterize,
because the distance between upper and lower bound is larger than for the spatially un-
correlated case.

An observation of practical importance is that both Umimo
1 and Lmimo

1 are rather flat
over a large range of bandwidth values around their respective maxima. Further numerical
results (not presented here) point at the following: (i) for smaller values of the channel
spread ∆H, these maxima broaden and extend toward higher bandwidth; (ii) an increase
in β increases the gap between upper and lower bounds.
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Figure 2.7: Upper and lower bounds on the noncoherent capacity of a MIMO un-
derspread WSSUS channel that is spatially correlated at the transmitter with eigenval-
ues of the transmit correlation matrix {1.7, 1.0, 0.3} and uncorrelated at the receiver;
MT = MR = 3, β = 1, and ∆H = 10−3. The bounds confine the noncoherent capacity to
the hatched area.

2.4 The large-bandwidth regime: I/O relation with
interference

So far, we based our analysis on the diagonalized I/O relation (2.18). The goal of this
section is to determine how well the noncoherent capacity of (2.18) approximates that
of the channel with ISI and ICI (2.14) in the large-bandwidth regime. The presence of
interference makes the derivation of tight capacity bounds (in particular, upper bounds)
technically challenging. Nevertheless, our analysis will be sufficient to establish that
for a large range of bandwidth values of practical interest, the presence of interference
does not change the noncoherent capacity behavior significantly, whenever the channel is
underspread.

To establish this result, we derive a lower bound on the capacity of (2.14) by treat-
ing interference as noise. We then show that whenever the channel is underspread, this
lower bound, evaluated for an appropriately chosen root-raised-cosine WH set (see Exam-
ple 1), is close for a large range of bandwidth values of practical interest both to the lower
bound L1 we derived in the previous section [for the diagonalized I/O relation (2.18)] and
to the AWGN-capacity upper bound Cawgn.

To get an I/O relation in vector form, similar to the one we worked with in the previ-
ous section, we arrange the intersymbol and intercarrier interference terms {z[k′, l′,k, l]}
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in (2.14) in a KL×KL matrix Z with entries

[Z](l′+k′L)(l+kL) =

{
z[k′, l′,k, l], if (k′, l′) 6= (k, l)

0, otherwise.

This definition, together with the definitions in Section 2.3, allows us to compactly ex-
press (2.14) as

r = h�s+Zs+w.

For a given WH set, the noncoherent capacity C of the induced discretized channel (2.14)
is defined as in (2.25). We next derive a lower bound on C. As in Section 2.3, we first
illustrate the main steps in the derivation of the lower bound using a simplified setting.

2.4.1 A lower bound on capacity

2.4.1.1 The bounding idea
We consider, for simplicity, a block-fading channel with block length 2 and I/O relation

r[1] = hs[1]+ zs[2]+w[1]

r[2] = hs[2]+ zs[1]+w[2] (2.40)

where h,w[1],w[2]∼ CN (0,1) are mutually independent, while z∼ CN (0,σ2
z ) is inde-

pendent of the noise samples w[1] and w[2], but not necessarily independent of h. For this
setting, the interference matrix Z reduces to

Z =

[
0 z
z 0

]
and the I/O relation (2.40) can be recast as:

r = hs+Zs+w.

Let Q be the set of probability distributions on s satisfying the average-power con-
straint E

{
|s[i]|2

}
≤ P and the peak constraint |s[i]|2 ≤ βP, for i = 1,2. To obtain a

lower bound on noncoherent capacity, which is given by9 (1/2)supQ I(r;s), we com-
pute the mutual information for a specific probability distribution in Q. In particular,
we take a probability distribution for which s[1] and s[2] are i.i.d. and h(s[1]) > −∞,
where h(·) denotes differential entropy. We denote by ρs the average power of s[1]
and s[2], i.e., ρs , E

{
|s[1]|2

}
= E

{
|s[2]|2

}
≤ P. The presence of the interference term

in (2.40) makes the derivation of a capacity lower bound involved even for this simple
setting; bounding steps more sophisticated than the ones we used in Section 2.3.5.1 are

9The factor 1/2 arises because of the normalization with respect to the block length (2 in this case).
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needed. As in (2.30), we first use the chain rule and the non-negativity of mutual infor-
mation to split I(r;s) as

I(r;s) = I(r;h)+ I(r;s |h)− I(r;h |s)
≥ I(r;s |h)− I(r;h |s). (2.41)

We next bound each of the two terms on the right-hand side (RHS) of (2.41).

A lower bound on the first term: To lower-bound the first term on the RHS of (2.41),
we use the chain rule for differential entropy, the independence of s[1] and s[2] and the
fact that conditioning reduces entropy [CT91, Sec. 9.6]:

I(r;s |h) = h(s |h)−h(s |r,h)
= h(s[1])+h(s[2])−h(s[1] |r,h)−h(s[2] |r,h,s[1])
≥ h(s[1])+h(s[2])−h(s[1] |r[1],h)−h(s[2] |r[2],h)
= I(r[1];s[1] |h)+ I(r[2];s[2] |h)
= 2 I(r[1];s[1] |h). (2.42)

The mutual information I(r[1];s[1] |h) is still difficult to evaluate because of the pres-
ence of the interference term zs[2]. A simple way to deal with this issue is to treat the
interference as noise, as shown below [Lap05, App. I]:

I(r[1];s[1] |h) = h(s[1])−h(s[1] |r[1],h)
(a)
= h(s[1])−min

δ

h(s[1]−δ r[1] |r[1],h)
(b)
≥ h(s[1])−min

δ

h(s[1]−δ r[1] |h)
(c)
≥ h(s[1])−min

δ

Eh

{
ln
[
πeE

{
|s[1]−δ r[1]|2 |h

}]}
(d)
= h(s[1])−Eh

{
ln

[
πe

ρs(σ
2
z ρs +1)

|h|2 ρs +σ2
z ρs +1

]}

= Eh

{
ln

(
1+

|h|2 ρs

σ2
z ρs +1

)}
−
[
ln(πeρs)−h(s[1])

]
. (2.43)

In (a) we used the fact that the differential entropy is invariant to translations, in (b)
that conditioning reduces entropy, (c) follows because the Gaussian distribution maxi-
mizes the differential entropy, and (d) follows by choosing δ to be the coefficient of
the linear estimator of s[1] (from r[1]) that minimizes the mean square error. Note that
the term ln(πeρs)− h(s[1]) is always positive, and can be interpreted as a penalty term
that quantifies the rate loss due to the peak constraint. In fact, for any distribution for
which E

{
|s[1]|2

}
= ρs, we have h(s[1]) ≤ ln(πeρs), with equality if and only if s[1] ∼

CN (0,ρs). But the complex Gaussian distribution does not belong to Q, because it vio-
lates the peak constraint.
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An upper bound on the second term: We next upper-bound the second term on the
RHS of (2.41). Let w(1) ∼ CN (0,αI2) and w(2) ∼ CN (0,(1−α)I2), where 0 < α < 1,
be two independent JPG vectors. Furthermore, let r(1) = hs+w(1) and r(2) = Zs+w(2).
By the data-processing inequality and the chain rule for mutual information, we have that

I(r;h |s)≤ I(r(1),r(2);h |s)
= I(r(1);h |s)+ I(r(2);h |s,r(1)). (2.44)

The first term on the RHS of (2.44) can be upper-bounded according to

I(r(1);h |s) = E

{
ln
(

1+
‖s‖2

α

)}
≤ ln

(
1+

ρs

α

)
.

For the second term on the RHS of (2.44), we proceed as follows:

I(r(2);h |s,r(1)) = h
(

r(2) |s,r(1)
)
−h
(

r(2) |s,r(1),h
)

(a)
= h

(
r(2) |s,r(1)

)
−h
(

r(2) |s,h
)

(b)
≤ h

(
r(2) |s

)
−h
(

r(2) |s,h,Z
)

(c)
= h
(

r(2) |s
)
−h
(

r(2) |s,Z
)

= I(r(2);Z |s)

= E

{
ln
(

1+
σ2

z

1−α
‖s‖2

)}
≤ ln

(
1+

σ2
z ρs

1−α

)
.

Here, (a) holds because r(1) and r(2) are conditionally independent given s and h, in (b)
we used that conditioning reduces entropy, and (c) follows because r(2) and h are condi-
tionally independent given Z. Combining the two bounds, we get

I(r;h |s)≤ ln
(

1+
ρs

α

)
+ ln

(
1+

ρsσ
2
z

1−α

)
.

Furthermore, as the bound holds for any α ∈ (0,1), we have

I(r;h |s)≤ inf
0<α<1

{
ln
(

1+
ρs

α

)
+ ln

(
1+

ρsσ
2
z

1−α

)}
. (2.45)

Completing the bound: To get the final bound, we first insert (2.43) into (2.42), and
then (2.42) and (2.45) into (2.41):

sup
Q

I(r;s)≥ 2

[
Eh

{
ln

(
1+

|h|2 ρs

σ2
z ρs +1

)}
−
(

ln(πeρs)−h(s[1])
)]

− inf
0<α<1

{
ln
(

1+
ρs

α

)
+ ln

(
1+

ρsσ
2
z

1−α

)}
. (2.46)
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The bound just obtained can be tightened by maximizing it over the set of probability
distributions on s[1] that satisfy the average-power constraint E

{
|s[1]|2

}
≤ P and the

peak-power constraint |s[1]|2 ≤ βP.

2.4.1.2 The actual bound
The application of the bounding steps just illustrated to the channel (2.14), is made dif-
ficult by the correlation exhibited by h[k, l] and z[k′, l′,k, l]. We deal with this difficulty
as follows. As in Section 2.3.5.2, the stationarity of h[k, l] in k allows us to use Szegö’s
theorem on the eigenvalue distribution of Toeplitz matrices to obtain a bound explicit
in the matrix-valued spectral density Ph(θ) defined in (2.31). The statistical properties
of z[k′, l′,k, l] are captured through the interference variance σ2

I defined in (2.17), which
replaces σ2

z in (2.46). More details on these bounding steps can be found in [DMBon].
As in Section 2.3, we consider, for simplicity of exposition, scattering functions that

are compactly supported within the rectangle [−τ0,τ0]× [−ν0,ν0] and grid parameters
satisfying the Nyquist condition T ≤ 1/(2ν0) and F ≤ 1/(2τ0). The resulting lower bound
on capacity is presented in the following theorem, whose proof can be found in [DMBon].

Theorem 5 Let (g(t),T,F) be a WH set and consider a Rayleigh-fading WSSUS chan-
nel with scattering function CH(τ,ν). Then, for a given bandwidth B, the noncoherent
capacity of the discretized channel (2.14) induced by (g(t),T,F), with input subject to the
average-power constraint (2.23) and the peak-power constraint (2.24), is lower-bounded
as C ≥ Lint

1 , where

Lint
1 (B),

B
T F

[
Eh

{
ln

(
1+

T F |h|2 ρsσ
2
h

1+T Fρsσ
2
I

)}
−
(

ln(πeρs)−h(s)
)]

− inf
0<α<1

{
1
T

∫ 1/2

−1/2
lndet

(
IL +

T Fρs

α
Ph(θ)

)
dθ +

B
T F

ln
(

1+
T Fρsσ

2
I

1−α

)}
. (2.47)

Here, h∼ CN (0,1), and s is a complex random variable that satisfies

ρs , E
{
|s|2
}
≤ P

B
and |s|2 ≤ β

P
B
.

For WH sets that result in σ2
h ≈ 1 and σ2

I ≈ 0 (see Section 2.2.2.7), the lower bound Lint
1

is close—for a large range of bandwidth values of practical interest—to the lower bound L1
in (2.32). A qualitative justification of this statement is provided below, followed by nu-
merical results in Section 2.4.2. When σ2

h ≈ 1 and σ2
I ≈ 0, we can approximate Lint

1 as

Lint
1 (B)≈ B

T F

[
Eh

{
ln
(

1+T F |h|2 ρs

)}
−
(

ln(πeρs)−h(s)
)

− 1
T

∫ 1/2

−1/2
lndet(IL +T FρsPh(θ))dθ

]
. (2.48)
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If, for simplicity, we neglect the peak constraint and take s ∼ CN (0,ρs), we have that
ln(πeρs)−h(s) = 0. Furthermore, in the large-bandwidth regime of interest in this sec-
tion, we can approximate the first term on the RHS of (2.48) by its first-order Taylor series
expansion, and obtain (for ρs = P/B)

Eh

{
ln
(

1+T F |h|2 ρs

)}
≈ P− P2T F

B
.

This expansion coincides with that of the mutual information I(r;
√

γu |h) in (2.32) [see
also (2.34)]. From this approximate analysis, it follows that, at least for Gaussian inputs,
the difference between Lint

1 and L1 is small in the large-bandwidth regime (when σ2
h ≈ 1

and σ2
I ≈ 0). In Section 2.4.2, we present numerical results that support this statement.

Specifically, these numerical results reveal that:

i) When the channel H is underspread, there exist WH sets for which (for Gaussian
inputs) Lint

1 ≈ L1 in the large-bandwidth regime; one such set is the root-raised-cosine
WH set of Example 1, with T and F chosen so that the grid matching rule (2.19)
is satisfied. Furthermore, both Lint

1 and L1 are close to the AWGN-capacity upper
bound Cawgn for a large range of bandwidth values of practical interest.

ii) The difference between Lint
1 and L1 can be made small for a large range of bandwidth

values of practical interest also when the Gaussian input distribution is replaced by
an appropriate distribution that satisfies the peak constraint |s|2 ≤ βP.

Before providing the corresponding numerical results, we make three remarks on Lint
1 ,

which simplify its numerical evaluation.

2.4.1.3 Large-bandwidth approximation
To ease the numerical evaluation of Lint

1 , we proceed as in Section 2.3.5.3. Specifically,
we use the asymptotic equivalence between Toeplitz and circulant matrices [Gra05], to
obtain the following large-bandwidth approximation of the first term inside the braces
in (2.47):

1
T

∫ 1/2

−1/2
lndet

(
IL +

T Fρs

α
Ph(θ)

)
dθ

≈ B
∫

∞

−∞

∫
∞

−∞

ln
(

1+
ρs

α
CH(τ,ν)

∣∣Ag(τ,ν)
∣∣2)dτdν

≤ B
∫

∞

−∞

∫
∞

−∞

ln
(

1+
ρs

α
CH(τ,ν)

)
dτdν . (2.49)

In the first step, we used the fact that CH(τ,ν) is compactly supported and that T and F
are chosen so as to satisfy the Nyquist condition T ≤ 1/(2ν0) and F ≤ 1/(2τ0). The
last step follows because

∣∣Ag(τ,ν)
∣∣ ≤ 1. If we further use that σ2

h ≥ mg and σ2
I ≤ Mg

[see (2.20) and (2.21), respectively], we get the following large-bandwidth approximation
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of Lint
1 , which is easier to evaluate numerically than Lint

1 :

Lint
1 (B)& Lint

a (B),
B

T F

[
Eh

{
ln

(
1+

T F |h|2 ρsmg

1+T FρsMg

)}
−
(

ln(πeρs)−h(s)
)

− inf
0<α<1

{
T F

∫
∞

−∞

∫
∞

−∞

ln
(

1+
ρs

α
CH(τ,ν)

)
dτdν + ln

(
1+

T FρsMg

1−α

)}]
. (2.50)

2.4.1.4 Reduction to a square setting
The evaluation of the lower bound is simplified if T and F are chosen according to the grid
matching rule (2.19). In this case, a simple coordinate transformation yields the following
result.

Lemma 6 Let (g(t),T,F) be an orthonormal WH set, and assume that the channel scat-
tering function CH(τ,ν) is compactly supported within the rectangle [−τ0,τ0]× [−ν0,ν0].
Then, for any ζ > 0, we have

Lint
a (B,g(t),T,F,CH(τ,ν)) = Lint

a

(
B,
√

ζ g(ζ t),
T
ζ
,ζ F,CH

(
τ0

ζ
,ζ ν0

))
.

In particular, assume that ν0T = τ0F and let ζ =
√

T/F =
√

τ0/ν0, g̃(t) ,
√

ζ g(ζ t),
and C̃H(τ,ν) =CH(τ0/ζ ,ζ ν0), where C̃H(τ,ν) is compactly supported within the square
[−√∆H/2,

√
∆H/2]× [−√∆H/2,

√
∆H/2], with ∆H = 4τ0ν0. Then,

Lint
a (B,g(t),T,F,CH(τ,ν)) = Lint

a (B, g̃(t),
√

T F ,
√

T F ,C̃H(τ,ν)).

In what follows, for the sake of simplicity of exposition, we choose T and F such that
the grid matching rule ν0T = τ0F is satisfied. Then, as a consequence of Lemma 6, we
will, without loss of generality, only consider WH sets of the form (g(t),

√
T F ,
√

T F) and
WSSUS channels with scattering function compactly supported within a square.

2.4.1.5 Maximization of the lower bound
The lower bound Lint

a in (2.50) can be tightened by maximizing it over the orthonor-
mal WH set and the probability distribution on s. The maximization over all orthonor-
mal WH sets is difficult to carry out, because the dependency of mg and Mg on the WH
set (g(t),T,F) is, in general, hard to characterize analytically. This problem can be par-
tially overcome when ∆H � 1. In this case, a first-order Taylor-series expansion of mg
and Mg around ∆H = 0 yields an accurate picture, as discussed in [DMB09]. Here, we
simplify the maximization problem by considering only WH sets that are based on a root-
raised-cosine pulse (see Example 1).

For simplicity, we also avoid the maximization over the probability distribution on s.
Instead, we consider a simple distribution, obtained by truncating a complex Gaussian
distribution so that s satisfies the peak constraint |s|2 ≤ βP/B. More specifically, we
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take s =
(√

P/B
)
s̃, where the phase of s̃ is uniformly distributed on [0,2π); furthermore,

|s̃|2 = z is distributed according to

fz(z) = c1e−z/c21[0,β )(z)

where c1 = c2/(1− e−β/c2), and c2 is chosen so that E
{
|s̃|2
}
= 1. A straightforward

calculation reveals that for this input distribution

h(s̃) = logc1 +
1
c2

+ lnπ.

Hence, the penalty term ln(πeρs)−h(s) in (2.50) reduces to

ln(πeρs)−h(s)
(a)
= ln(πe)−h(s̃)

= 1− logc1−
1
c2

where in (a) we used that ρs = P/B, by construction. Note that, for the input distribution
under consideration, the penalty term ln(πeρs)− h(s) is independent of the SNR P/B,
and depends only on the PAPR β through c1 and c2 (more precisely, the penalty term is
monotonically decreasing in β , and vanishes in the limit β → ∞). In the large-bandwidth
regime, the lower bound Lint

a turns out to be highly sensitive to the value of this penalty
term.

2.4.2 Numerical examples

In this section, we evaluate the bound Lint
a for a set of parameters similar to the one consid-

ered in Section 2.3.6. In particular, we take P/(1W/Hz) = 2.42 ·107s−1 and T F = 1.25,
and consider a brick-shaped scattering function with ∆H = 10−5 (see Section 2.3.6 for a
discussion on the practical relevance of this set of parameters). Furthermore, we focus on
WH sets based on a root-raised-cosine pulse (see Example 1), and assume β = 10. Fi-
nally, we take as probability distribution on s, the truncated complex Gaussian distribution
discussed in Section 2.4.1.5.

Fig. 2.8 shows the AWGN-capacity upper bound Cawgn in (2.35) (same curve as in
Fig. 2.4), the lower bound L1 in (2.32), which, differently from Fig. 2.4 is evaluated
for β = 10, and the lower bound Lint

a , evaluated for β = 6, 8, and 10, to illustrate the
impact of the penalty term ln(πeρs)−h(s) on Lint

a for different values of β . As mentioned
above, Lint

a is extremely sensitive to β in the large-bandwidth regime. Fortunately, this
sensitivity manifests itself only for bandwidth values that are significantly above those en-
countered in practical systems. We can observe that for β = 10 the difference between L1
and Lint

a is negligible over a large range of bandwidth values of practical interest. Further-
more, also the difference between Lint

a and Cawgn is small. We can, therefore, conclude that
the presence of interference in (2.14) does not change the capacity behavior significantly
for a large range of bandwidth values of practical interest.
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a in (2.50), for B = 3GHz. The channel

scattering function is brick-shaped with ∆H = 10−5. Furthermore, β = 10.

We next analyze the dependency of L1 and Lint
a on T F . Fig. 2.9 shows the lower

bounds L1 and Lint
a as a function of T F for B = 3GHz, which roughly corresponds to the

capacity-maximizing bandwidth for the setting considered in Fig. 2.8. Even though the
lower bound L1 decreases monotonically with T F , the rate loss experienced when T F is
increased from 1 to 1.5 is extremely small (about 0.1%). This is in good agreement with
our claim that, in the large-bandwidth regime, capacity is only mildly sensitive to a loss
of degrees of freedom. The lower bound Lint

a is surprisingly close to L1 over almost the
entire range of T F values considered. Only for T F ≈ 1, the gap widens significantly. As
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remarked in Example 1, when T F = 1, the pulse g(t) reduces to a sinc function, which has
poor time localization. As a consequence, the variance of the interference term increases
(as illustrated in Fig. 2.3), and so does the gap between L1 and Lint

a .
Compared to the characterization of the noncoherent capacity of the diagonalized chan-

nel (2.18), the characterization we provided here on the basis of Lint
a and Cawgn is less

accurate. At moderate bandwidth values, our analysis could be strengthened by replac-
ing Cawgn with a tighter upper bound based on perfect CSI at the receiver. Finding such
a bound is an interesting open problem. In the very large bandwidth regime, the differ-
ence between Cawgn and Lint

a is large. In fact Cawgn approaches P as B→ ∞ [see (2.35)],
while Lint

a approaches 0. To obtain a more accurate capacity characterization in the very
large bandwidth regime, both upper and lower bound would need to be tightened. From
an engineering point of view, however, our analysis is sufficient to (coarsely) determine
the optimal (i.e., critical) bandwidth at which to operate.

2.5 The high-SNR regime

Next, we consider the high-SNR regime. As argued in Section 2.2.2.8, in this regime the
choice of the WH set (g(t),T,F) that leads to σ2

h ≈ 1 and σ2
I ≈ 0 might be suboptimal

because of a loss of degrees of freedom. Hence, we work with the I/O relation (2.14)
directly. In the previous section, we considered, for simplicity of exposition, only scat-
tering functions that are compactly supported in the delay-Doppler plane. Here, we drop
this assumption and consider the larger class of WSSUS channels that satisfy the more
general underspread notion in Definition 1. We recall that the crucial parameters in Def-
inition 1 are the channel spread ∆H = 4τ0ν0, which is the area of the rectangle in the
delay-Doppler plane that supports most of the volume of the scattering function, and ε ,
which is the maximal fraction of volume of CH(τ,ν) that lies outside the rectangle of
area ∆H. The compact-support assumption on CH(τ,ν) is dropped because the results
summarized in Section 2.1.2 hint at a high sensitivity of capacity in the high-SNR regime
to whether CH(τ,ν) is compactly supported or not, a property of CH(τ,ν) that, however,
cannot be verified through measurements (see Section 2.2.1.2).

The goal of the high-SNR analysis presented in this section is twofold: i) to shed light
on the trade-off between interference reduction and maximization of number of degrees of
freedom (see also Section 2.2.2.7), and ii) to assess the robustness of the Rayleigh-fading
WSSUS underspread model by determining the SNR values at which capacity becomes
sensitive to whether CH(τ,ν) is compactly supported or not.

To this end, in the next section, we present a capacity lower bound that is explicit in the
parameters ∆H and ε and in the WH set (g(t),T,F). We then compare this lower bound
to the AWGN-capacity upper bound Cawgn. Our main result is the following: we show
that for an appropriate choice of the grid-parameter product T F , the lower bound obtained
using WH sets based on a root-raised-cosine pulse (see Example 1) is close to Cawgn for all
SNR values of interest in practical systems, and for all Rayleigh-fading WSSUS channels
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that are underspread according to Definition 1, independently of whether the scattering
function CH(τ,ν) is compactly supported or not.

2.5.1 A lower bound on capacity

The lower bound we analyze in this section is obtained from the bound Lint
1 in (2.47)

through some additional bounding steps to make the dependency on ∆H and ε explicit.
More specifically, we use the fact that for any Rayleigh-fading WSSUS channel in the set
H (τ0,ν0,ε) (see Definition 1) the following inequalities hold [DMBon]:

σ
2
h ≥ mg(1− ε)

σ
2
I ≤Mg + ε.

(2.51)

The quantities mg and Mg are defined in (2.20) and (2.21), respectively. Furthermore,
whenever ∆̃H , 2ν0T < 1, we also have [DMBon]

1
T

∫ 1/2

−1/2
lndet

(
IL +

T Fρs

α
Ph(θ)

)
dθ

≤ ∆̃H ln
(

1+
T Fρs

α∆̃H

)
+(1− ∆̃H) ln

(
1+

T Fρsε

α(1− ∆̃H)

)
.

The condition ∆̃H < 1 is not restrictive for underspread channels if T and F are chosen
according to the grid matching rule (2.19). In this case, ∆̃H =

√
∆HT F � 1 for all values

of T F of practical interest. By using (2.51) in (2.47), we get the following result.

Theorem 7 Let (g(t),T,F) be a WH set and consider any Rayleigh-fading WSSUS chan-
nel in the set H (τ0,ν0,ε) (see Definition 1). Then, for a given bandwidth B and a given
SNR ρ , P/B, and under the technical condition ∆̃H = 2ν0T < 1, the capacity of the dis-
cretized channel (2.14) induced by (g(t),T,F), with input subject to the average-power
constraint (2.23) and the peak-power constraint (2.24), is lower-bounded as C ≥ Lint

2 ,
where

Lint
2 (ρ),

B
T F

[
E

{
ln

(
1+

T Fρs(1− ε)mg|h|2
1+T Fρs(Mg + ε)

)}
−
(

ln(πeρs)−h(s)
)

− inf
0<α<1

{
∆̃H ln

(
1+

T Fρs

α∆̃H

)
+(1− ∆̃H) ln

(
1+

T Fρsε

α(1− ∆̃H)

)

+ ln
(

1+
T Fρs

1−α
(Mg + ε)

)}]
. (2.52)

Here, h∼ CN (0,1), and s is a complex random variable that satisfies

ρs , E
{
|s|2
}
≤ ρ and |s|2 ≤ βρ.
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2.5.1.1 Some remarks on the lower bound
The remarks we listed in Sections 2.4.1.4 and 2.4.1.5 about the reduction to a square
setting, and about the maximization of Lint

a with respect to the choice of the WH set
and the probability distribution on s, apply to the bound Lint

2 as well. As in Section 2.4,
we consider only WH sets based on a root-raised-cosine pulse and use for s the truncated
complex-Gaussian distribution described in Section 2.4.1.5. Differently from the behavior
of Lint

a in the large-bandwidth regime, the bound Lint
2 is hardly sensitive to the value of the

penalty term ln(πeρs)−h(s).
For fixed g(t) (in our case, a root-raised-cosine pulse), the lower bound Lint

2 can be
tightened by maximizing it over the product T F of the grid parameters. This provides
an information-theoretic criterion for the design of the WH set (g(t),T,F). Compared to
the design criterion based on SIR maximization discussed in Section 2.2.2.7, the maxi-
mization of the lower bound Lint

2 yields a more complete picture, because it reveals the
influence of the number of degrees of freedom (reflected through the grid-parameter prod-
uct T F), and of the SIR (reflected through the quantities mg and Mg) on capacity.

The lower bound Lint
2 is not useful in the asymptotic regime ρ → ∞. In fact, the bound

even turns negative when ρ is sufficiently large. Nevertheless, as shown in Section 2.5.2
below, when the channel is underspread, the bound Lint

2 , evaluated for the T F value that
maximizes it, is close to the AWGN-capacity upper bound for all SNR values of practical
interest.

2.5.2 Numerical examples

In this section, we evaluate the lower bound Lint
2 in (2.52) for the WH set based on a root-

raised-cosine pulse considered in Example 1, under the assumption that the underlying
WSSUS channel is underspread according to Definition 1, i.e., ∆H� 1 and ε � 1. More
precisely, we assume ∆H ≤ 10−4 and ε ≤ 10−4, respectively. We also assume that s
follows the truncated complex-Gaussian distribution described in Section 2.4.1.5.

Trade-off between interference reduction and maximization of the number of degrees
of freedom: In Fig. 2.10, we plot the ratio Lint

2 /Cawgn for β = 10, ε = 10−6, and ∆H =
10−4 and ∆H = 10−6. The different curves correspond to different values of T F . We can
observe that the choice T F = 1 is highly suboptimal. The reason for this suboptimality
is the significant reduction in SIR this choice entails (see Fig. 2.3). In fact (as already
mentioned), when T F = 1, the pulse g(t) reduces to a sinc function, which has poor time
localization. A value of T F slightly above 1 leads to a significant improvement in the
time localization of g(t) and to a corresponding increase in the lower bound Lint

2 for all
SNR values of practical interest, despite the (small) loss of degrees of freedom. A further
increase of the product T F seems to be detrimental for all but very high SNR values,
where the ratio Lint

2 /Cawgn is much smaller than 1: the rate loss due to the reduction of
the number of degrees of freedom is more significant than the rate increase due to the
resulting SIR improvement.
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Figure 2.10: Lower bounds Lint
2 on the capacity of the channel (2.14) normalized with

respect to the AWGN capacity. The bounds are computed for WH sets based on a
root-raised-cosine pulse (see Example 1), for different values of the grid-parameter prod-
uct T F . The channel spread ∆H (see Definition 1) is equal to 10−4 in (a) and equal to 10−6

in (b); furthermore, in both cases ε = 10−6 and β = 10.

Sensitivity to the PAPR β : Fig. 2.11 shows the ratio Lint
2 /Cawgn for T F = 1.02, ∆H =

ε = 10−6, and different values of β . We can observe that in the high-SNR regime, Lint
2 is

only mildly sensitive to the value of the penalty term ln(πeρs)−h(s) (recall that the value
of the penalty term decreases as β increases).
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Figure 2.11: Lower bounds Lint
2 on the capacity of the channel (2.14) normalized with

respect to the AWGN capacity. The lower bounds are computed for WH sets based on a
root-raised-cosine pulse (see Example 1), for different values of the PAPR β . The channel
spread ∆H (see Definition 1) is equal to 10−6; furthermore, ε = 10−6 and T F = 1.02.

Sensitivity of capacity to the measure of the support of CH(τ,ν): The results pre-
sented in Fig. 2.10 suggest that, for T F = 1.02, the lower bound Lint

2 is close to the
AWGN-capacity upper bound Cawgn over a quite large range of SNR values. To make
this statement precise, we compute the SNR interval [ρmin,ρmax] over which

Lint
2 ≥ 0.75Cawgn. (2.53)

The interval end points ρmin and ρmax can easily be computed numerically; the corre-
sponding values for ρmin and ρmax are illustrated in Figs. 2.12 and 2.13, respectively, for
different (∆H,ε) pairs. For the WH set and WSSUS underspread channels considered in
this section, we have ρmin ∈ [−25dB,−7dB] and ρmax ∈ [32dB,68dB].

Insights into how ρmin and ρmax are related to the channel parameters ∆H and ε can
be obtained by replacing both sides of the inequality (2.53) by corresponding low-SNR
approximations (to get ρmin) and high-SNR approximations (to get ρmax). Under the
assumption that ∆H ≤ 10−4 and ε ≤ 10−4, this analysis, detailed in [DMBon], yields
ρmin ≈ 13

√
∆H and ρmax ≈ 0.22/(∆H+ε) for the WH set considered in this section. The

following rule of thumb then holds: the capacity of all WSSUS underspread channels
with scattering function CH(τ,ν) having no more than ε of its volume outside a rectangle
(in the delay-Doppler plane) of area ∆H, is close to Cawgn for all SNR values ρ that satisfy√

∆H� ρ � 1/(∆H + ε), independently of whether CH(τ,ν) is compactly supported or
not, and independently of the shape of CH(τ,ν). To conclude, we stress that the condition√

∆H� ρ � 1/(∆H + ε) holds for all channels and SNR values of practical interest.
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and ε . The lower bound Lint

2 is computed for a WH set based on a root-raised-cosine pulse
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Figure 2.13: Maximum SNR value ρmax for which (2.53) holds, as a function of ∆H
and ε . The lower bound Lint

2 is evaluated for a WH set based on a root-raised-cosine pulse
(see Example 1); furthermore, T F = 1.02, and β = 10.

2.6 Conclusions

In this chapter, we provided an information-theoretic characterization of Rayleigh-fading
channels that satisfy the WSSUS and the underspread assumptions. The information-
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theoretic analysis is built upon a discretization of WSSUS underspread channels that takes
the underspread property explicitly into account to minimize the ISI/ICI in the discretized
I/O relation. The channel discretization is accomplished by transmitting and receiving on
a WH set generated by a pulse that is well localized in time and frequency.

We obtained bounds on the noncoherent capacity under both an average and a peak-
power constraint, and used these bounds to study engineering-relevant questions.

For the large-bandwidth regime, we provided upper and lower bounds on the non-
coherent capacity on the basis of a diagonalized I/O relation that closely approximates
the underlying continuous-time I/O relation. These upper and lower bounds provide im-
portant guidelines for the design of wireless communication systems operating over a
Rayleigh-fading WSSUS underspread channel with known scattering function. Even if
the scattering function is not known completely and the channel is only characterized
coarsely by its maximum delay τ0 and maximum Doppler shift ν0, the bounds may serve
as an efficient design tool. The maximum delay and the maximum Doppler shift are suf-
ficient to characterize a brick-shaped scattering function, for which our upper and lower
bounds are easy to evaluate. Furthermore, a brick-shaped scattering function was shown
to minimize the capacity upper bound for a given τ0 and ν0. Therefore, the widely ac-
cepted practice to characterize wireless channels simply by means of these two parameters
leads to robust design guidelines.

The numerical results in Section 2.3.6 indicate that the upper and lower bounds are
surprisingly close over a large range of bandwidth values. In particular, our lower bound
is close to the coherent-capacity upper bound in Fig. 2.4 for bandwidth values of up
to 1GHz. It is exactly this regime that is of most interest for current wideband and UWB
communication systems; this is also the regime for which we can expect the WSSUS model
to be most accurate.

The advent of UWB communication systems spurred the current interest in wireless
communications over channels with very large bandwidth. Our bounds make it possi-
ble to assess whether multiple antennas at the transmitter are beneficial for UWB sys-
tems. The system parameters used to numerically evaluate the bounds in Section 2.3.8
are compatible with a UWB system that operates over a bandwidth of 7GHz and trans-
mits at−41.3 dBm/ MHz. Figs. 2.5, 2.6, and 2.7 show that the maximum rate increase that
can be expected from the use of multiple antennas at the transmitter does not exceed 7%.
For channels with smaller spreads than the one in Section 2.3.6, the possible rate increase
is even smaller.

For the high-SNR regime, we provide a capacity lower bound that is obtained by treat-
ing interference as noise. This lower bound yields valuable insights into the capacity
of Rayleigh-fading underspread WSSUS channels over a large range of SNR values of
practical interest. On the basis of this lower bound, we derived an information-theoretic
criterion for the design of capacity-optimal WH sets. This criterion is more fundamental
than criteria based on SIR maximization (see Section 2.2.2.7), because it sheds light on
the trade-off between number of degrees of freedom and time-frequency localization of
the pulse g(t). Unfortunately, the corresponding optimization problem is hard to solve.
We simplified the problem by fixing g(t) to be a root-raised-cosine pulse and performing
an optimization over the grid parameters T and F . Our analysis shows that the optimal
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value of the grid-parameter product T F is close to 1 (but strictly larger than 1) for a large
range of SNR values of practical interest. This result suggests that the maximization of
the number of degrees of freedom should be privileged over the SIR maximization in the
design of capacity-maximizing WH sets.

Even though our analysis was confined to a specific pulse shape (i.e., root-raised-
cosine), we were able to show that for all Rayleigh-fading WSSUS channels that are
underspread according to Definition 1, the corresponding capacity lower bound is close
to the AWGN-capacity upper bound for all SNR values of practical interest, indepen-
dently of whether the scattering function is compactly supported or not (a fine detail of
the channel model). In other words, the capacity of Rayleigh-fading underspread WSSUS
channels starts being sensitive to this fine detail of the channel model only for SNR values
that lie outside the SNR range typically encountered in real-world systems. Hence, the
Rayleigh-fading WSSUS underspread model is a robust model.
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