
PHYSICAL REVIEW B 83, 045419 (2011)

Diffusion-induced dephasing in nanomechanical resonators
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We study resonant response of an underdamped nanomechanical resonator with fluctuating frequency. The
fluctuations are due to diffusion of molecules or microparticles along the resonator. They lead to broadening and
change of shape of the oscillator spectrum. The spectrum is found for the diffusion confined to a small part of the
resonator and where it occurs along the whole nanobeam. The analysis is based on extending to the continuous
limit, and appropriately modifying, the method of interfering partial spectra. We establish the conditions of
applicability of the fluctuation-dissipation relations between the susceptibility and the power spectrum. We also
find where the effect of frequency fluctuations can be described by a convolution of the spectra without these
fluctuations and with them as the only source of the spectral broadening.
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I. INTRODUCTION

Nanomechanical resonators are attracting interest in various
areas of physics. Because they are small and their vibrations
can be strongly underdamped, even a small perturbation can
lead to a detectable change of their frequency. This can be used
for charge1–3 and mass4–8 sensing, high-resolution magnetic
force microscopy,9,10 and other measurements; see Refs. 11–15
and papers cited therein. The analysis of the frequency change
usually relies on the assumption that the properties of the
system do not change during the measurement. For example,
in mass sensing it is assumed that the massive particle attached
to the resonator does not move. The motion would lead to
variations of the vibration frequency in time. This is because
the resonator displacement in the vibrational mode depends
on coordinates, for example, for the fundamental mode of
a doubly clamped nanobeam it is maximal at the center,
whereas for a cantilever it is maximal at the apex. The
larger the displacement at the particle location the stronger
is the particle-induced frequency change.16 If the motion is
random, there emerge frequency fluctuations, which broaden
the spectrum of the resonant response.

The effect of frequency fluctuations on the spectrum of
an oscillator has been well understood in the limit where the
correlation time of such fluctuations tc is small. In the limit
tc → 0, if the fluctuations are Gaussian, they lead to diffusion
of the oscillator phase, keeping the oscillator power spectrum
Lorentzian; cf. Ref. 17. The effect of Gaussian fluctuations
with a finite correlation time has been also discussed in the
literature; see Refs. 18–20 and references therein. In the
context of nanoresonators, an important role can be played
also by random frequency jumps due to molecule attachment
and detachment.4,21–23

In the present paper we consider the effect of phase
fluctuations due to continuous in time random frequency
variations, which are generally non-Gaussian. A simple
physical mechanism of such variations is diffusion of a
massive particle along a nanoresonator. We develop a general
method for describing the susceptibility of the oscillator
with continuously fluctuating frequency. One might think that
this susceptibility could be described by weighting a partial
susceptibility for a given frequency (with the imaginary part

described by a Lorentzian) with the probability density to
have such frequency. However, susceptibilities with close
frequencies interfere; in other words, to find the susceptibility
one should add the amplitudes rather than the cross sections of
the corresponding transitions. We develop a method that takes
this interference into account. We then apply the results to
models of interest for particles diffusing along nanoresonators.

Another question of interest is the interrelation between
the power spectra and the susceptibilities of underdamped
oscillators in the presence of nonequilibrium frequency fluc-
tuations. We provide the conditions of applicability of the
standard fluctuation-dissipation relation, including the case of
oscillators with weakly nonlinear restoring force and nonlinear
friction. We also address the question of where the effects
of oscillator decay and thermal fluctuations, on the one side,
and of its frequency fluctuations, on the other side, can be
considered independently. This analysis provides a link to the
classical work on the line shape of magnetic resonance in the
presence of transition frequency fluctuations, where different
methods were developed.24–26

In Sec. II we describe the model, a single mode resonator
with a massive particle diffusing along it. We assume that the
vibrations do not affect the diffusion, that is, there is no back
action. We introduce the concept of partial susceptibility den-
sity (PSD) for a given particle position and find it in the limiting
cases of slow and fast frequency fluctuations. In Sec. III
we derive an equation for the PSD of an underdamped
oscillator. This equation is solved in explicit form in Sec. IV
for diffusion confined to a small part of the nanoresonator. In
Sec. V the PSD is found in the form of a continued fraction
for diffusion along a doubly clamped nanobeam. In Sec. VI
we study the connection between the susceptibility and the
power spectrum and find the conditions where the spectral
broadening from frequency fluctuations is not affected by
energy relaxation and thermal fluctuations of the oscillator. In
Sec. VII we provide a summary of the results.

II. UNDERDAMPED OSCILLATOR WITH A
DIFFUSION-MODULATED FREQUENCY

Mechanical nanoresonators typically have a well-separated
fundamental mode with eigenfrequency ω0 that largely
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exceeds the decay rate �, with the Q factor Q = ω0/2� ∼
103–105; see Refs. 2, 3, 7 and 8 and references therein. Forced
vibrations of such mode can be described by the model of a
driven oscillator, and for not too strong driving the oscillator
can be assumed harmonic. We can then write the equation of
motion for the oscillator coordinate q in the form

q̈ + 2�q̇ + [ω0 + �D(x)]2q = 2
F

M
cos ωt + ξT (t). (1)

Here, F and ω are the amplitude and frequency of the driving
force. The term ξT (t) represents thermal noise, and M is the
oscillator mass.

The term �D describes frequency fluctuations. They can
have different physical origin. In this paper we are interested
in fluctuations which are continuous in time, but are not
necessarily Gaussian and have a finite correlation time. As
mentioned above, for concreteness we assume that they are
caused by a particle absorbed on the vibrating nanobeam or
trapped in the microchannel inside the vibrating cantilever
and diffusing along the nanoresonator. Such diffusion causes
a frequency shift. If x is the particle position along the
nanoresonator, we can write

�D(x) = ω0(m/M)R(x), (2)

where m is the mass of the particle, and R(x) can be called
the mass responsivity function; it arises because the frequency
change depends on the relative amplitude of the vibrational
mode at the location of the particle.16

The particle diffusion is described by the Langevin equation

ẋ = −∂xU (x) + ξD(t). (3)

Here, U (x) is the trapping potential and ξD(t) is a white
Gaussian noise, 〈ξD(t1)ξD(t2)〉 = 2Dδ(t1 − t2), where D is
the diffusion coefficient; 〈· · ·〉 indicates ensemble averaging.
The potential U (x) can be created by a droplet of a “glue”
that confines the attached particle to a small region on the
nanobeam (a functionalized target area); alternatively, we will
also consider the case where the particle is allowed to freely
diffuse along the nanobeam.

We will be interested in the parameter range where the
reciprocal correlation time t−1

c and the standard deviation �

of the fluctuations of �D(x) are comparable,

� = 〈[�D(x) − 〈�D(x)〉]2〉1/2.

We assume that ω0 is the largest frequency in the system,

�,�,tc,|δω| � ω, δω = ω − ω0. (4)

Conditions (4) have been essentially used in writing Eq. (1)
where we ignored the effect of the mass change due to particle
diffusion on the appropriately scaled decay rate of the resonator
and the field amplitude.

Other types of frequency fluctuations and their effect
on the oscillator spectrum have been studied in several
contexts.18–20,23,27,28 We will assume that, even though the
fluctuations are small on average compared to ω0, cf. Eq. (4),
the interrelation between � and � can be arbitrary. We note
that our formulation ignores the back action of the oscillator
on diffusion. This back action may lead to nontrivial effects

like bistability of forced vibrations, which will be studied
elsewhere.

A. Resonant susceptibility in the limiting cases

We will be interested in the oscillator susceptibility X (ω),
which relates the average value of the coordinate to the field,

〈q(t)〉 = X (ω)Fe−iωt + c.c.; (5)

we assume that 〈q〉 = 0 in the absence of driving. We note that
the ensemble averaging in Eq. (5) should be taken with care in
the case of a single oscillator. In the experiment, the system is
usually assumed to be ergodic. However, the ergodicity is es-
tablished over the correlation time of frequency fluctuations tc,
and for the measurement time shorter than tc the system may
be nonergodic.

The shape of X (ω) near resonance, |ω − ω0| � ω, is
determined by the interrelation between the oscillator decay
rate �, the typical frequency dispersion �, and the correlation
time tc. Frequency fluctuations can significantly affect the
spectrum for �,t−1

c � �.
The susceptibility takes a simple form for comparatively

large fluctuational frequency spread, t−1
c � �. In this case �

gives the typical width of the spectrum. The limit tc → ∞
corresponds to inhomogeneous broadening, where there is no
averaging of the eigenfrequency due to motion of the particle,
there is just a probability for the oscillator to have different
values of the eigenfrequency.

To zeroth order in t−1
c , the susceptibility is given by a

superposition of what can be called scaled partial susceptibili-
ties χ (x; ω), the scaled susceptibilities for instantaneous fixed
positions x. More precisely, given the continuous character of
the underlying diffusion, χ (x; ω) should be called the scaled
partial susceptibility density (PSD). For tc → ∞, Im χ (x; ω)
is a Lorentzian centered at frequency ω0 + �D(x),

X (ω) = (2Mω)−1χ (ω); χ (ω) =
∫

dxχ (x; ω),
(6)

χ (x; ω) = iP (x){� − i[δω − �D(x)]}−1 (tc → ∞).

Here, P (x) is the probability density for the diffusing particle
to be at point x. The overall spectrum Im χ (ω) in this limit
is typically non-Lorentzian. It becomes particularly simple in
the limit � → 0, in which case

Im χ (ω) = π
∑
xω

P (xω)

/
|�′

D(xω)|

with xω given by the equation �D(xω) = δω; �′
D(x) ≡

∂x�D(x).
In the opposite limit, t−1

c 
 �, the oscillator cannot
“resolve” frequency variations, they are averaged out. This
is similar to the motional narrowing effect in NMR. To zeroth
order in tc� we expect Im χ (ω) to be a Lorentzian curve
centered at frequency ω0 + 〈�D〉 with half width �, where

〈�D〉 =
∫

dxP (x)�D(x).

Clearly, the shape of χ (ω) is qualitatively different in the
opposite limits of tc�. In what follows we will develop an
approach that allows one to find the susceptibility for an
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arbitrary tc�. We will also relate the results to the analysis of
dephasing developed by Anderson24 and Kubo and Tomita25,26

in the context of resonant absorption by two-level systems.
For diffusion described by Eq. (3), the system has detailed
balance in the absence of periodic driving (again, we disregard
the effect of back action on the diffusion), and therefore the
susceptibility can be obtained from the power spectrum of the
oscillator calculated for F = 0.29 However, we will calculate
the susceptibility directly, since our approach applies also to
systems without detailed balance.

III. EQUATION FOR THE PARTIAL
SUSCEPTIBILITY DENSITY

It is convenient to analyze resonant response of the
oscillator using the standard method of averaging. This is done
by changing from q(t),q̇ to slow variables u(t),u∗(t),

q(t) = ueiωt + u∗e−iωt , q̇ = iω(ueiωt − u∗e−iωt ). (7)

The Langevin equations of motion for slow variable u(t) in the
rotating wave approximation (RWA) is

u̇ = −{� + i[δω − �D(x)]}u + F

2iMω
+ ξT ;u(t), (8)

where ξT ;u(t) = (2iω)−1ξT (t) exp(−iωt) is the random force.
The equation for u∗ can be obtained from Eq. (8) by complex
conjugation. We note that, in fact, the Markovian equations of
motion for u,u∗ have a much broader range of applicability
than the original Eq. (1). They apply even where relaxation
of the oscillator is not described by a simple viscous friction
force, as in Eq. (1), but is delayed. Quite generally, the delay
disappears on the slow time scale ∼1/�. The random forces
ξT ;u(t) and ξ ∗

T ;u(t) are also δ correlated on the slow time scale
rather than in the “fast” time; see Refs. 30,31 and papers cited
therein.

The probability distribution of the oscillator in slow time
ρ(u,u∗,x; t) is described by the Fokker-Planck equation,32

which follows from Eqs. (3) and (8),

∂tρ = ∂u({� + i[δω − �D(x)]}uρ) − F

2iMω
∂uρ

+ ∂u∗ ({� − i[δω − �D(x)]}u∗ρ) + F

2iMω
∂u∗ρ

+ �kBT

Mω2
0

∂2
uu∗ρ + LD[ρ]. (9)

Here, T is the bath temperature and LD is the diffusion
operator,

LD[ρ] = ∂x(ρ∂xU ) + D∂2
xρ. (10)

The scaled susceptibility χ (ω) for ω close to ω0 is given by
the expectation value (2Mω/F )〈u∗〉. It is convenient to write it
in the form of an integral over x of the PSD χ (x; ω); see Eq. (6).
Using Eqs. (5) and (6) one can write the PSD in the form

χ (x; ω) = 2Mω

F

∫
du du∗ u∗ρst (u,u∗,x), (11)

where ρst (u,u∗,x) is the stationary solution of Eq. (9).
Multiplying Eq. (9) by u∗ and integrating over u and u∗ one
obtains

{� − i[δω − �D(x)]}χ (x; ω) − LD[χ (x; ω)] = iP (x),
(12)

P (x) =
∫

du du∗ρst (u,u∗,x) = Z−1e−U (x)/D

with Z = ∫
dx exp[−U (x)/D].

Equations (6) and (12) reduce the problem of the spectrum
of the oscillator to solving a diffusion equation for the PSD
χ (x; ω). They show also that the values of the PSD for different
particle positions x are coupled to each other. This coupling
becomes small for large �, i.e., for the case where the actual
range of �D(x) in Eq. (12) is large. If the drift and diffusion
operator LD[χ ] in Eq. (12) is disregarded, one immediately
obtains Eq. (6) for χ (x; ω). The (minus) reciprocal correlation
time t−1

c is given by the lowest nonzero eigenvalue of LD , and
disregarding LD is justified provided tc� 
 1.

In the opposite limit where the variation of �D(x) with x

can be disregarded in Eq. (12),

χ (x; ω) ≈ iP (x)/[� − i(δω − 〈�D〉)].
Formally, one can think that the PSDs have the same shape in
this case, but it is more correct to say that they are strongly
coupled by the operator LD and the contributions to χ (ω) of
the PSDs from different ranges of x cannot be identified.

The solution of Eq. (12) can be written in the form
of a convolution of the “complex Lorentzian” susceptibility
(� − iδω)−1 and the PSD χph(x; ω) calculated in the absence
of the oscillator decay and determined by phase fluctuations
only. This form applies also in a more complicated case of
a nonlinear oscillator as long as �D is independent of the
oscillator amplitude; see Sec. VI. For a nonlinear oscillator,
the additive thermal noise ξT (t) affects the susceptibility, in
contrast to the case of a linear oscillator.

In the general case of an arbitrary tc�, an arbitrary form of
the frequency shift �D(x), and an arbitrary potential U (x),
Eq. (12) can be solved numerically. However, there are
important situations where an analytical solution can be
obtained. They are discussed in the next section.

IV. HARMONIC CONFINING POTENTIAL

The susceptibility χ (ω) can be found in an explicit form
if the diffusing particle is confined to a small region of the
nanobeam. A simple and important form of the confinement is
described by a parabolic potential U (x) = k(x − x0)2/2. Such
a potential models confinement due to a small droplet of a
polymer “glue” on a nanobeam or to centrifugal forces created
in a suspended nanochannel by additional driving.8 We will
assume that the potential minimum x0 is far from the ends of
the resonator and that the typical displacement of the particle
from the potential minimum (D/k)1/2 � L. Then the shift
�D(x) can be expanded about the value �D(x0) which we will
set equal to zero (it can be incorporated into ω0),

�D(x) ≈ α(x − x0) + β(x − x0)2. (13)

For small x − x0 the linear in x − x0 term in Eq. (13) generally
dominates and the quadratic term can be disregarded. However,
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if the linear term is small, it is necessary to keep the quadratic
term. This is the case, for example, if x0 is at the center of a
doubly clamped nanobeam. For diffusion in a parabolic poten-
tial, the correlation time of x(t), and thus of �D , is tc = 1/k.

We seek the susceptibility as

χ (x; ω) =
∫ ∞

0
dt eit δωχ̃ (x; t),

(14)
χ̃(x; 0) = iP (x) = i(k/2πD)1/2 exp[−k(x − x0)2/2D].

From Eqs. (12) and (14) we obtain an equation for function
χ̃ (x; t) of the form

∂t χ̃ + [� + i�D(x)]χ̃ − LD[χ̃ ] = 0 (15)

with χ̃ (x; 0) given by Eq. (14).
Equations (13) and (15) have a solution

χ̃ (x; t) = i exp[A(t)(x − x0)2 + B(t)(x − x0) + C(t)], (16)

where functions A,B,C are given by a set of ordinary
differential equations

Ȧ = 4DA2 + 2kA − iβ, Ḃ = kB + 4DAB − iα,
(17)

Ċ = D(B2 + 2A) + k − �

with initial conditions

A(0) = −k/2D, B(0) = 0, C(0) = 1
2 ln(k/2πD).

Equations (17) can be easily solved, and the solution
is expressed in elementary functions. It allows finding the
function χ̃(t) = ∫

dxχ̃ (x; t),

χ̃ (t) = i

[ −π

A(t)

]1/2

exp

[
−B2(t)

4A(t)
+ C(t)

]
,

(18)

χ (ω) =
∫ ∞

0
dteit δωχ̃(t).

Since the general solution is somewhat cumbersome, we will
consider the cases where only one of the coefficients α and β

is nonzero.

A. Frequency change linear in the particle displacement

We start with the case �D(x) = α(x − x0). For U (x) =
k(x − x0)2/2 this case corresponds to the oscillator frequency
being modulated by the Ornstein-Uhlenbeck noise, which is
an exponentially correlated Gaussian noise. Indeed, from Eq.
(3), x is Gaussian, and thus �D(x) ∝ x − x0 is Gaussian, too,
with 〈�D〉 = 0 and

〈�D(x(t))�D(x(t ′))〉 = �2e−k|t−t ′| (19)

with � = (α2D/k)1/2.
From Eqs. (17) and (18) for β = 0 we obtain

χ̃ (t) = i exp

[
− �t − �2

k
t + �2

k2
(1 − e−kt )

]
. (20)

As explained in Sec. VI below, this result could be also
obtained from the expression for the power spectrum of the
oscillator without driving by using the cumulant expansion.
Equation (20) is equivalent to the result of Ref. 18.

It is interesting to compare Eq. (20) with the asymptotic
results for small and large tc� ≡ �/k. For tc� 
 1, one

can expand the exponent in Eq. (20) in kt , getting χ̃ (t) ∝
exp(−�t − �2t2/2). Substituting this expression into Eq. (18)
one obtains an expression that coincides with Eq. (6) with
the corresponding P (x) and �D(x). Specifically, Imχ (ω)
is a convolution of a Lorentzian with half width � and a
�-independent Gaussian distribution ∝ exp(−δω2/2�2). In
the opposite limit, tc� � 1, the peak of Im χ (ω) is Lorentzian,
with half width � + tc�

2. As a whole, the spectrum of Im χ (ω)
is symmetric, with maximum at ω = ω0.

B. Frequency change quadratic in the particle displacement

We now consider the case where �D(x) = β(x − x0)2. As
mentioned before, this case is interesting if the equilibrium
position of the particle is at an antinode of the vibrational
mode of the nanomechanical resonator. The value of β is
easy to estimate using the standard analysis.16 For example,
for the fundamental mode of a doubly clamped beam of
length L we have β ≈ ω0mπ2/L2M . Frequency fluctuations
due to diffusion are non-Gaussian, with 〈�D〉 = βD/k and
� ≡

√
〈�2

D〉 − 〈�D〉2 = √
2|β|D/k. The correlation time is

the same as for the linear in x frequency change, tc = 1/k.
From Eqs. (17) and (18) we find

χ̃(t) = 2ia
1/2
β exp

[ − �t − 1
2k(aβ − 1)t

]
× [(aβ + 1)2 − (aβ − 1)2 exp(−2aβkt)]−1/2, (21)

aβ = (1 + 4iβD/k2)1/2 (Re aβ > 0).

This expression shows that, for the frequency shift quadratic
in the particle displacement, decay of χ̃ (t) is nonexponential
in time, which means that the spectrum of Im χ (ω) is non-
Lorentzian. As expected from the general arguments, except
for the trivial factor exp(−�t), which describes decay of
the vibration amplitude, χ̃(t) is a function of the scaled
time kt ≡ t/tc and one dimensionless parameter aβ = (1 +
4i〈�D〉/k)1/2; this parameter, in turn, is given by the ratio
of the standard deviation of the fluctuating frequency � =√

2|〈�D〉| to the reciprocal correlation time of fluctuations k.
From Eqs. (18) and (21), for � � k, the major effect of

diffusion is the shift of the peak of Im χ (ω) by ≈ 〈�D〉; to
the first order in �/k the peak of Im χ (ω) remains symmetric
and Lorentzian. However, for large �/k the peak becomes
strongly asymmetric. For arbitrary �/k one can write χ (ω) as

χ (ω) = 2a
1/2
β

∞∑
n=0

(2n − 1)!!

2nn!

(aβ − 1)2n

(aβ + 1)2n+1
χn(ω),

(22)
χn(ω) = i

{
� + 1

2k[(4n + 1)aβ − 1] − iδω
}−1

.

Equation (22) presents the susceptibility in the form of a sum of
the spectra χn(ω). Functions Im χn(ω) have peaks at equally
spaced frequencies ω0 + (4n + 1)kIm aβ/2, with half width
� + [(4n + 1)Re aβ − 1]k/2 that linearly increases with n. We
note that these spectra should not be called partial spectra of the
oscillator; even in the limit � 
 k the distance between their
peaks ≈25/4(k�)1/2 is generally smaller than their half width
≈2−3/4(4n + 1)(k�)1/2 + �. Moreover, functions χn(ω) enter
the expression for χ (ω) with complex weighting factors, so
that Im χ (ω) is determined by the both real and imaginary
parts of χn(ω).
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FIG. 1. (Color online) The scaled susceptibility Im χ (ω) for the
case of dephasing due to a particle diffusing about the antinode of
a nanoresonator, with the frequency shift quadratic in the particle
displacement. The data refer to the resonator energy decay rate � = 0.
The frequency δω = ω − ω0 is scaled by the standard deviation of
the oscillator frequency due to the massive particle �. Curves 1–5
refer to tc� = 100,40,3,0.05, and 0.005, respectively.

Equation (22) is convenient for a numerical evaluation of
χ (ω). It also allows establishing the connection with the limit
tc� ≡ �/k 
 1, Eq. (6). To do this one notices that |aβ | 
 1
for � 
 k. Typical values of δω within the peak of Im χ (ω)
are ∼βD/k = 〈�D〉 [see Eq. (23) below]. Since |β|D/k2 ≈
|aβ |2/4 
 |aβ |, the major contribution to the sum over n in
Eq. (22) comes from n 
 1 and one can replace summation
over n by integration. The integrand has a singularity for n =
np, where np = iδω/2kaβ for � = 0, |np| 
 1 for typical
δω. Integration over n can be done by lifting or lowering,
depending on the sign of β, the integration contour up to
Im np, which gives for � = 0

Im χ (ω) ≈ (πk/2βDδω)1/2e−kδω/2βD(βδω), (23)

where (x) is the step function. Equation (23) applies for

� 
 k,�, |δω| 
 (k�)1/2.

The spectrum (23) has a very specific shape that makes
it possible to identify the corresponding mechanism. It is
profoundly asymmetric, with a square-root divergence near
the maximum in the neglect of corrections ∝ k/� and with an
exponential tail.

The evolution of the spectrum Im χ (ω) with varying �/k

is seen in Fig. 1. For convenience, the figure is plotted for
� = 0; to allow for � the spectra should be convoluted with
the Lorentzian distribution. The susceptibility as a function
of dimensionless frequency δω/� depends on the single
dimensionless parameter �/k. It is seen from Fig. 1 that, with
increasing �/k, the spectrum shape changes from an almost
symmetric peak centered close to 〈�D〉 with width ∝�2/k

for small �/k to the strongly asymmetric distribution that
approaches Eq. (23) for large �/k.

V. UNCONFINED DIFFUSION ALONG A
NANOMECHANICAL RESONATOR

We now consider dephasing due to a particle that freely
diffuses along a nanoresonator, but does not leave it. We

assume that the nanoresonator is a one-dimensional doubly
clamped beam, and we are interested in its fundamental mode.
The change of the mode frequency due to a particle at a point
x is determined by the squared vibration amplitude at x.16 If
for simplicity we approximate the amplitude by a cosine, for a
beam of length L this gives �D(x) = −γ cos2(πx/L), where
γ = ω0m/M: x is counted off from the center of the beam.
The stationary probability distribution of the particle along the
beam is uniform, P (x) = 1/L.

The average frequency shift and the standard frequency
deviation are, respectively, 〈�D〉 = −γ /2 and � = γ /

√
8.

The correlation time of frequency fluctuations can be found
by calculating the time correlation function of �D(x(t)), which
can be done following the standard prescription32 (the classical
analog of the quantum regression theorem). It involves
evaluating the probability density ρ� of a transition (x0,t =
0) → (x,t) integrated over x0 with the appropriate weight.
Function ρ� is given by the solution of diffusion equation
ρ̇�(x; t) = −D∂2

xρ�(x; t). The boundary conditions follow
from the absence of current, ∂xρ� = 0 for x = ±L/2, and the
initial condition is ρ�(x; t = 0) = [�D(x) − 〈�D〉]/L. This
gives

〈�D(x(t))[�D(x(0)) − 〈�D〉]〉 ≡
∫

dx�D(x)ρ�(x; t)
(24)= �2 exp(−t/tc), t−1

c = D(2π/L)2.

The oscillator susceptibility is given by Eq. (12) with
U (x) = 0 and with boundary conditions ∂xχ (x; ω) = 0 for
x = ±L/2. It is clear from the structure of Eq. (12) and the
expression for �D(x) that the solution can be sought in the
form

χ (x; ω) =
∑
n�0

bn(ω) cos(2πnx/L).

Equation (12) is then reduced to a tridiagonal system of linear
equations for coefficients bn, which can be solved by the
method of continued fractions. This gives for χ (ω)

χ (ω) = i

V0 + �2

V1 + �2/2

V2 + �2/2

V3 + · · ·

(25)

where Vn = � + n2t−1
c − i(δω − 〈�D〉). We note that, alter-

natively, χ (ω) can be also expressed in terms of the Mathieu
functions.

From Eq. (25), for � = 0 the reduced susceptibility χ (ω)/tc
is a function of dimensionless frequency tcδω that depends on
the single parameter tc�. For tc� � 1, to find the peak of
Im χ (ω) one can ignore in Eq. (25) fractions that contain Vn

with n � 2. This gives a Lorentzian peak,

Im χ (ω) ≈ �2tc/[(δω − 〈�D〉)2 + (�2tc)2]

for � = 0. The half width of the peak �2tc has a typical form
of the width of the spectral peak for motional narrowing in
NMR; see Sec. VI.
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FIG. 2. (Color online) The scaled susceptibility Im χ (ω) for the
fundamental mode of a doubly clamped resonator with a particle
freely diffusing along it. The data refer to the resonator energy decay
rate � = 0. The frequency δω = ω − ω0 is scaled by the standard
frequency deviation �. Curves 1–5 refer to tc� = 50,5,0.5,0.05,

and 0.005, respectively.

In the opposite limit, tc� 
 1, we obtain from Eq. (6) or
Eq. (25) for � = 0

Im χ (ω) ≈ π

2
[〈�D〉2 − (δω − 〈�D〉)2]−1/2.

This spectrum as a function of ω has two inverse square-root
peaks symmetrically spaced around frequency ω0 + 〈�D〉.

Expression (25) is convenient for a numerical evaluation
of the susceptibility in the general case of arbitrary tc�. The
evolution of the shape of Im χ (ω) with varying tc� for � = 0
is illustrated in Fig. 2. The spectrum remains symmetric, but as
expected from the asymptotic expressions, it can have a single
peak or two peaks.

VI. FLUCTUATION-DISSIPATION RELATION AND
THE SEPARATION OF PHASE AVERAGING

Along with the susceptibility, the power spectra of nano-
or micromechanical resonators are also often studied in
experiment.33 For systems in thermal equilibrium, the two
spectra are simply related by the fluctuation-dissipation theo-
rem. However, frequency modulation by an attached diffusing
particle (or by another external source) can drive the system
away from equilibrium. Here we derive the conditions where
the fluctuation-dissipation relations apply in the presence
of frequency modulation. Another important issue that we
address is whether it is possible to perform averaging over
thermal fluctuations and over the externally imposed frequency
fluctuations independently and then convolute the results.

We will be interested in an underdamped oscillator. It is
characterized by slow variables u,u∗, Eq. (7). Fluctuations of
these variables in slow time are usually Markovian, in the
RWA, and can be described by the Fokker-Planck equation,
cf. Eq. (9). If the restoring force of the oscillator is weakly
nonlinear, i.e., the oscillator potential is weakly nonparabolic,
the major effect of this nonlinearity is that the oscillator
frequency depends on the vibration amplitude. Also, if the
friction force is nonlinear, the friction coefficient is amplitude
dependent; in this latter case the form of the operator that

describes the effect of the thermal noise associated with friction
changes compared to Eq. (9).

In the absence of diffusion of an attached particle, the
Fokker-Planck equation for a weakly nonlinear oscillator in
slow variables was derived earlier for both microscopic and
phenomenological models.30,31 Because of the diffusion the
oscillator parameters slowly vary in time. On the other hand,
the diffusion itself may depend on the vibration amplitude.

For the analysis below it is convenient to introduce the slow
variables in such a way that they are independent of the drive
frequency,

q(t) = u0 exp(iω0t) + u∗
0 exp(−iω0t),

(26)
q̇ = iω0[u0 exp(iω0t) − u∗

0 exp(−iω0t)].

In these variables the Fokker-Planck equation reads

∂tρ = LFP [ρ] − [(F/2iMω)eitδω∂u0ρ + c.c.], (27)

where

LFP [ρ] = −[∂u0 (K(|u0|2,x)u0ρ) + c.c.]

+ kBT

Mω2
0

∂2
u0u

∗
0
[�nl(|u0|2,x)ρ] + LD[ρ]. (28)

In the RWA, functions K and �nl depend only on the scaled
squared vibration amplitude |u0|2, but not on u0 and u∗

0
taken separately.30,31 This can be understood from Eq. (26):
prior to averaging over the period 2π/ω0 in the RWA, the
corresponding terms would be proportional to fast oscillating
factors exp(±iω0t), and therefore in the RWA they average to
zero. The real part of K describes dissipation due to coupling
to a thermal reservoir, whereas the term ∝kBT �nl describes
fluctuations induced by the reservoir.

Functions K and �nl can also parametrically depend on the
particle position x. We assume that this dependence is such that
the fluctuation-dissipation relation between K and �nl holds
for any x,

−ReK(r,x) − �nl(r,x) + kBT

2Mω2
0

∂r�nl = 0, (29)

where r = |u0|2.
The diffusion operator LD can depend on the |u0|2. We note

that in Eq. (27), in contrast to the Fokker-Planck equation (9),
K does not depend on ω, but the term ∝F has a time-
dependent factor. Respectively, the solutions of Eqs. (9)
and (27) for ρ are also different even if we use the same model
of the oscillator as in Eq. (9); however, they are connected by
a simple canonical transformation.

In the absence of modulation the power spectrum of the
oscillator near resonance (ω ≈ ω0) is31,32

Q(ω) ≡ π−1Re
∫ ∞

0
dteiωt 〈q(t)q(0)〉F=0

≈ π−1Re
∫ ∞

0
dteitδω

∫
du0 du∗

0 dxu∗
0ρu0 (t). (30)

Here, δω = ω − ω0, ρu0 (t) ≡ ρu0 (u0,u
∗
0,x; t). The function

ρu0 (t) is given by Eq. (27) with F = 0. The initial condi-
tion is ρu0 (t = 0) = u0ρeq, where ρeq ≡ ρeq(u0,u

∗
0,x) is the
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equilibrium distribution for F = 0. Formally, from Eq. (27)
one can write

ρu0 (t) = exp(LFP t)u0ρeq, LFP [ρeq] = 0, (31)

with the operator LFP given by Eq. (28). This, combined with
Eq. (30), provides a formal expression for the oscillator power
spectrum.

On the other hand, from Eqs. (5), (6), and (27), scaled
resonant susceptibility χ (ω) is determined by the average value
of u∗

0(t) which, to first order in F , is given by the linearized
solution of Eq. (27),

χ (ω) = −i

∫ ∞

0
dt eitδω

∫
du0du∗

0dx u∗
0

× exp(LFP t)∂u∗
0
ρeq. (32)

The fluctuation dissipation relation for the scaled suscepti-
bility means that, near resonance, there should hold

Im χ (ω) = (
2πMω2

0/kBT
)
ReQ(ω).

A comparison of Eqs. (30) and (31), on the one side, and
Eq. (32), on the other side, shows that this relation applies
if ∂u∗

0
ρeq = −CT u0ρeq, with CT = 2Mω2

0/kBT . In turn, this
condition holds if functions Re K and �nl are related by the
fluctuation-dissipation theorem Eq. (29) and operator LD is
independent of |u0|2. Indeed, from Eq. (29) it follows that,
for fixed x, the equilibrium distribution of the oscillator over
u0,u

∗
0 is of the Boltzmann form, ρeq ∝ ρB(u0,u

∗
0),

ρB(u0,u
∗
0) = Mω2

0

πkBT
exp

( − 2Mω2
0|u0|2/kBT

)
. (33)

Here, 2Mω2
0|u0|2 = 1

2 (Mω2
0q

2 + Mq̇2) is just the oscillator
energy, neglecting small nonlinear corrections. When LD is
independent of |u0|2, the equilibrium distribution over x is
determined by a factor P (x), LD[P ] = 0; for the model of
diffusion used in this paper P (x) is given by Eq. (12). The
whole equilibrium distribution is multiplicative; it is a product
of functions P (x) and ρB (u0,u

∗
0), which depend on x and u0,u

∗
0

separately.

A. Convolution representation

The calculation is significantly simplified in the important
case where the susceptibility can be written as a convolution,

χ (ω) =
∫

dω′χosc(ω′)χD(ω − ω′),
(34)

χD(ω) =
∫

dxχD(x; ω).

Here, χosc(ω) is the susceptibility in the absence of diffusion
and χD(x; ω) is the susceptibility that describes the effect
of diffusion independently from the oscillator dynamics.
This representation applies, in particular, for the models of
frequency fluctuations discussed in this paper, with χosc(ω) =
(ω0 − ω − i�)−1 and with χD calculated from Eq. (12) for
� = 0.

The representation (34) is particularly helpful if there
holds the fluctuation-dissipation relation between χ (ω) and
Q(ω), which allows using the power spectrum to find the

susceptibility. Still, the very applicability of the fluctuation-
dissipation relations does not guarantee that Eq. (34) would
apply. We now provide the sufficient condition.

Finding Q(ω) requires solving the Fokker-Planck equation
∂tρu0 = LFP [ρu0 ]. From Eq. (28) one can see that the solution
can be sought in the form

ρu0 (u0,u
∗
0,x; t) = u0ρ̄(|u0|2,x; t).

Equation (34) will apply if function ρ̄ is a product,

ρ̄(|u0|2,x; t) = ρ̄osc(|u0|2; t)ρ̄D(x; t), (35)

i.e., in the equation that follows from the Fokker-Planck
equation for ρ̄ one can separate variables |u0|2 and x. A
straightforward analysis shows that this happens if

∂x�nl = Re∂xK = 0, Im∂2
rxK(r,x) = 0. (36)

In other terms, �nl and Re K should be independent of x,
whereas Im K should be a sum of terms that depend on x

and |u0|2 separately, Im K = Im Kosc(|u0|2) + �D(x). These
conditions hold in the model discussed in the main part of
the paper. We note that, for a nonlinear oscillator, χosc(ω) is
non-Lorentzian and can be asymmetric.31

B. Relation to dephasing in two-level systems

In the case where the oscillator dynamical variables separate
from the coordinate of the diffusing particle, the function
ρ̄D(x; t) is given by the equation ∂t ρ̄D = −i�D(x)ρ̄D +
LD[ρ̄D]. A formal solution of this equation is

ρ̄D(x; t) =
∫

dxiP (xi)ρ̃D(x; t |xi ; 0),
(37)

ρ̃D(x; t |x(0); 0) = 〈
e−i

∫ t

0 dt ′�D(x(t ′))δ[x(t) − x]
〉
ξD

,

where x(t) is given by the Langevin equation (3) and the
averaging is done over realizations of the noise ξD(t) that
drives the diffusing particle. From Eqs. (34), (35), (37) and the
fluctuation-dissipation relation we obtain

χD(ω) =
∫ ∞

0
dteitδω

〈
e−i

∫ t

0 dt ′�D(x(t ′))〉, (38)

where the averaging is now done both over the realizations of
ξD(t) and over the stationary distribution of x(0).

Equation (38) has the same form as the expression for the
susceptibility of a two-level system with fluctuating frequency
that was studied in the celebrated papers by Anderson24

and Kubo and Tomita25,26 assuming that the system was in
thermal equilibrium. In particular, the averaging in Eq. (38)
is simplified if frequency fluctuations are Gaussian, in which
case one can efficiently use the cumulant expansion. This is
the case for diffusion in a parabolic potential with d�D/dx =
const, where the frequency fluctuations correspond to the
Ornstein-Uhlenbeck noise.18 The methods of Refs. 24–26
and 18 (see also Ref. 34) do not immediately apply to other
cases studied in this paper. As we showed in Secs. II–V, in
all cases of interest the solution is naturally obtained using
the method of coupled partial susceptibilities. We note that
this method applies also if the system is far from thermal
equilibrium and the fluctuation-dissipation relation between
the susceptibility and the power spectrum does not hold.
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VII. CONCLUSIONS

We have studied resonant susceptibility of an underdamped
oscillator whose eigenfrequency continuously fluctuates in
time. The analysis is based on the method of partial sus-
ceptibility density. Such density corresponds to a given
eigenfrequency value in the limit of very slow eigenfrequency
variations. The variations lead, on the one hand, to the finite
lifetime of states with different eigenfrequencies, and, on the
other hand, to the interference of the susceptibility densities
for close eigenfrequencies. The resulting overall spectrum
depends on the interrelation between the bandwidth � of the
eigenfrequency variations and the correlation time of these
variations, tc.

We have developed a method that allowed us to study the
susceptibility for an arbitrary tc�. It involves deriving and
solving a differential equation for the partial susceptibility den-
sity. The specific results are formulated for nanomechanical
resonators whose frequency can fluctuate if they have particles
diffusing along them and thus changing their effective mass.

Explicit results have been obtained for three models:
(i) a particle diffusing in a small region centered at a general
position on the nanoresonator; (ii) a particle diffusing about the
antinode of the vibrational node, and (iii) a particle uniformly
diffusing along the nanobeam. The shape of the absorption
peak Im χ (ω) is different in all these cases, varying from
symmetric non-Lorentzian in (i), to asymmetric in (ii), to
symmetric but possibly double peaked in (iii). In all these
cases the shape strongly depends on the interrelation between
� and t−1

c .
Another general result refers to the interrelation between

the oscillator susceptibility and the power spectrum. We
have found the conditions where the standard fluctuation-
dissipation relation applies in the presence of phase fluc-
tuations even where these fluctuations are nonequilibrium.
In addition, we have established where the spectrum of a
generally nonlinear underdamped oscillator is a convolution
of the spectrum in the absence of phase fluctuations and
the spectrum broadened by phase fluctuations only. The
latter broadening can be also described, at least in principle,
using the methods developed by Anderson24 and Kubo and
Tomita25,26 for two-level systems with a fluctuating transition
frequency. These methods are particularly convenient where
the frequency fluctuations are Gaussian, and our results for
case (i) above are equivalent to those obtained using them.18

The fluctuations discussed in cases (ii) and (iii) are non-
Gaussian and have not been previously studied, to the best

of our knowledge, nor the method of coupled partial spectral
densities has been used.

The results of the paper have immediate relation to mass
sensing with nanoresonators. For the particle that is being
analyzed and that diffuses along a nanoresonator, parameter �

is proportional to the particle mass, whereas tc is determined
by either the particle confinement, as in cases (i) and (ii) above,
or is inversely proportional to the diffusion coefficient D, as
in case (iii). The shape of the spectrum provides important
additional information about the attached particle and its
dynamics, compared to the conventionally considered shift
of the spectral line.

Observation of the effects of particle dynamics is possible
for comparatively large diffusion coefficients. Fast diffusion
can happen along carbon nanotubes35 or for particles inside
low-viscosity nanochannels embedded into cantilevers5,8 or
on solid-state nanobeams at elevated temperatures. In par-
ticular, for carbon-nanotube-based nanoresonators of length
∼1 μm,36 we get from Eq. (24) the correlation time tc <

10−5 s for D ∼ 10−4 cm2/s. Such D is smaller than the
calculated values of the diffusion coefficients for different
simple molecules; see Refs. 35 and 37. This suggests using
spectral measurements of nanoresonators to determine the
diffusion coefficient in carbon nanotubes. This makes it also
possible to use temperature as an additional means of the
analysis of diffusion in nanoresonators.

After this paper was completed, we learned of the work
by Yang et al.,38 where phase fluctuations due to diffusion
of particles along a nanoresonator were observed already for
T � 80 K (in contrast to the present paper, the diffusion was
not confined to the nanoresonator itself, and there was an
influx of particles to keep their mean number constant). We
note that fluctuations of the nanoresonator frequency can be
due to other reasons, for example, to fluctuations of the charge
on the substrate above which the nanoresonator is located or
to charge fluctuations in the nanoresonator.2,3 The analysis of
this paper can be extended to this case.
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