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Co-propagating Bose-Einstein condensates and electromagnetic radiation:
Emission of mutually localized structures
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We have studied the details of the formation of mutually guided and localized structures of co-propagating
coherent electromagnetic radiation and a Bose-Einstein condensate (BEC). In the limit of zero temperature and
large detuning, we have used a semiclassical model based on Maxwell equations coupled to the Schrödinger
equation which includes the back action of the atoms on the radiation. Following numerically the two systems,
we have found that a variety of effects can be displayed depending on the initial conditions: The formation of
single-hump mutually guided structures of atoms and radiation seems to be only one of the possible outcomes
of the interaction. Other effects we have observed via numerical simulations are, for instance, the creation of
atom-laser solitarylike structures which are then symmetrically ejected from the initial central peak or similar
symmetrical structures trapped in a bound state and thus oscillating about the central point in a way somehow
reminiscent of purely nonlinear optics effect.
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I. INTRODUCTION

With the realization of Bose-Einstein condensates (BECs)
and of coherent atomic beams all the questions inherent to
the manipulation of such systems have acquired a certain
importance. In particular, early studies such as [1,2] have
started an interest in the manipulation of atomic structures
via their interactions with coherent electromagnetic radiation.
These studies could be of importance not only for applications
such as atom interferometry; they also offer a possible test of
the analogies between optics and quantum matter waves. In
fact, BECs provide us with a quantum system where matter
waves can be realized on macroscopic scales and which, under
the approximations of zero temperature, low densities, weak
interactions, and within the limits of validity of a mean-field
theory, is amenable to a mathematical description based on
the Gross-Pitaevskii equation, completely akin to the basic
equation of nonlinear optics (i.e., the nonlinear Schrödinger
equation [3]). The Kerr-like nonlinearity is given for the atoms
by the atom-atom interactions. It has been demonstrated that
it is possible to reproduce typical optical and nonlinear optical
phenomena with a BEC, from the generation of solitons to
four-wave mixing, from parametric amplification to second
harmonic generation, to mention only a few (for a review, see
[4] and references therein). It is possible to push the analogy
even further and consider the electromagnetic radiation as
the medium that allows for nonlinear interactions between
atoms as discussed initially in [1]. This corresponds exactly
to the optics case where the medium through which radiation
propagates can bring about nonlinear effects for the electro-
magnetic field: Nonlinear effects in the dynamical evolution
of the atoms and of the radiation are then a consequence of
the atom-light interactions. Models of this interaction were
presented by several authors. References [2,5] and Krutitsky
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et al. [6] gave a full derivation of the equations describing
the interaction, starting from the first principles within the
framework of quantum field theory. This last work [6] showed
the emergence of a resonant nonlinear term in the system
dynamics as a consequence of the laser-atom dipole-dipole
interaction, besides the well-known Kerr-like nonlinearity. The
same equation for the atoms and, consequently, a coupled
system of equations for the laser-atom system were rederived
in [7], this time starting from a semiclassical theory. It was
found there that the response of the “medium,” that is, of the
laser radiation, to the dynamics of the condensate could play
an important role in the coupled evolution and even allow
for the formation of mutually localized atom-laser structures
capable of propagating with no changes in the atom density
and laser intensity, in spite of the assumed repulsive atom-atom
interaction. Such solitarylike structures are of interest because
of their properties of self-localization and robust propagation
and the effects of these interactions can also be seen in relation
to the creation of meta-lenses and comoving potentials to
refocus atom waves [8]. Their emergence as a result of the
coupling during propagation of atoms and laser was studied
in [7] while the stationary states of the coupled system and
their stability properties were introduced in [9]. However, little
is known about their actual mechanism of formation. In the
optics case of a focusing nonlinearity, we would expect an
initial bell-shaped structure to shed away the radiation which
cannot be accommodated and to adjust asymptotically to a
soliton wave. It is interesting to see whether the same happens
in the present case of coupled atom-laser propagation and how,
since the coupling may lead to novel effects. We have therefore
studied numerically the process through which such coupled
solitonlike objects are formed, providing evidence of the
occurrence of a phenomenon reminiscent of soliton emission
in nonlinear optics [10]. In fact, the equations analyzed here,
predict the formation of solitarylike structures for both atoms
and light which can move away from the region where they
were generated. Although in our case there is no external
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trapping but only the self-consistent interaction of atoms and
laser, these results are suggestively similar to escaping solitons
described and observed in completely different environments,
for instance, in nematic liquid crystals [11].

We will briefly review the basic physics of the semiclassical
model and the limitations to be considered in Sec. II. Section III
presents an investigation of the initial evolution of the coupled
system which will then be studied numerically in Sec. IV.

II. SEMICLASSICAL MODEL AND SETUP
OF THE PROBLEM

The basic physics of atom-laser interactions in the simplest
dipole approximation is given by photons exciting atoms which
in turn re-emit photons absorbed by other atoms, thus giving
rise to a long-range interatomic interaction [12]. Details of
the semiclassical derivation of both the atom and the laser
equations are given in [7,9]; here we will only briefly review
the two model equations and reintroduce the notation. In a
semiclassical derivation, the force exerted by the light on
the atoms is written as the gradient of a potential and this
potential is used as the atom-laser interaction term in the
Hamiltonian for the Schrödinger equation of the atoms. Such
a force term is a generalization of the ponderomotive force
and takes into account the possibility of an inhomogenoeus
gas. The existence of stationary solutions is physically crucial
so we will study a far-off resonant monochromatic field,
E(r,t) = Re[E(r) exp(−iωLt)] [where E(r) is the complex
amplitude of the laser field]. The time-averaged force (over
laser cycles) is F = 1

16π
∇[|E|2 ∂ε

∂n
] = −∇Vd. Here ε(ω,n) is

the medium dielectric constant with atom density n and is given
by ε(ω,n) = 1 + 4παn

1− 4π
3 αn

, where, as derived from quantum

theory, α(ω) = −d2/h̄� is the atomic polarizability at the laser
frequency ωL, with � = ωL − ωa being the detuning from the
nearest atomic resonance frequency ωa , and d is the dipole
matrix element of the resonant transition [6,13]. The relative
simplicity of the semiclassical derivation comes at the price of
restricting the validity of the model to a well-defined range of
parameters: The concept of force is purely classical, therefore
quantum fluctuations, stochastic heating, and any incoherent
process are to be neglected. This limits the validity of this
model to large detunings |�| � � (� is the natural line width
of the atoms) and to laser frequencies strongly detuned from
the atomic resonance frequency ωa so that we can neglect any
resonant phenomena. Under these limitations, the potential
Vd can be inserted into the atom Gross-Pitaevskii equation
where it describes the laser-induced dipole-dipole interaction
between the atoms:

ih̄
∂�

∂t
= Ĥ0� +

[
U0|�|2 − α

4

|E|2(
1 − 4π

3 α|�|2)2

]
�. (1)

Here Ĥ0 is the linear single-particle Schrödinger Hamiltonian,
the wave function � is normalized as N = ∫ |�|2dr with
N denoting the total number of atoms, so that the gas density
is n = |�|2, U0 = 4πh̄2as/m, m is the atom mass, and as is the
s-wave scattering length (which will be assumed positive as
for repulsive atom-atom interactions). Furthermore, since we
are interested in the stationary behavior of the system and we
have already assumed a stationary form for the electromagnetic

field, we will consider �(r,t) = 	(r) exp(−iω0t). The atom
equation was already derived in [6] within a fully quantum
model and it is important to underline that, once the limitations
of the semiclassical reasoning are taken into account, the two
derivations lead to the same equation.

To describe the role played by the electromagnetic field and
the effect of the atoms on such a field, it is necessary to include
a field equation. Maxwell’s equations for the propagation of
radiation in a medium [7,13,14] yield a wave equation which,
under the assumption of Ln � λL and ∇ε · E � 0 (Ln is the
characteristic length scale of transverse density modulations
and λL is the radiation wavelength), gives the three scalar
equations (ωL = kLc),

∇2E + k2
L

(
1 + 4πα|	|2

1 − 4π
3 α|	|2

)
E = 0. (2)

When the input field distributions do not match the exact
stationary solutions (which can be found numerically [9]),
propagation effects of some sort are to be expected. As
demonstrated in [7], in the case of red detuning, the system
settles down asymptotically to a stationary state with mutually
localized atom-laser structures: Starting from a Gaussian atom
density profile and a super-Gaussian laser intensity one, the
interaction leads to the formation of two bell-shaped structures
which propagate unchanged thereon. This means that atoms
and radiation in excess will be shed away, which is the process
we would like to elucidate here. Choosing z as the propagation
coordinate and limiting the investigation to slow envelope
variation, we consider

E(r) = a(x,z) exp(ikLz)e, (3)

	(r) = ψ(x,z) exp(ikaz), (4)

where x denotes the dimension transverse to the propagation
direction z (one transverse dimension only for simplicity),
e is the polarization vector of the field, and ka is the atom wave
number. The coupled system of Eqs. (1) and (2) can then be
written in normalized variables as

iµ
∂ψ̃

∂z̃
= −1

2

d2ψ̃

dx̃2
+ 1

2
βcoll|ψ̃ |2ψ̃ − s

2

|ã|2
(1 − s|ψ̃ |2)2

ψ̃, (5)

i
∂ã

∂z̃
= −1

2

d2ã

dx̃2
− 3s

2

|ψ̃ |2ã
1 − s|ψ̃ |2 , (6)

where the following normalization has been used: x̃ = xkL

for the atom wave function ψ̃ = ψ/ψ∗, with (4π |α|/3)ψ2
∗ = 1

for the laser ã = a/a∗, with m|α|a2
∗/(2h̄2k2

L) = 1, s = sgn(α),
µ = ka/kL (for simplicity we will assume µ = 1 hereafter),
and βcoll = 6as/(k2

L|α|). The tilde will be dropped hereafter
unless otherwise stated. The red detuning case studied here
will correspond to s = +1. Notice that no mutual localization
is possible in the blue detuning case. While the classical
description for the laser field is justified by the choice of
the intensity regime, for a mean-field model to be valid for
the atom wave function, we must consider not only a zero
temperature limit but also a low density limit with na3

s � 1;
see [3]. Furthermore, a low-density regime is required in order
to avoid the singularity of the model and consequent spurious
collapselike phenomena.
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III. INITIAL EVOLUTION

As done previously, we will start assuming an initial laser
intensity profile in super-Gaussian form much wider than the
Gaussian initial atom density profile, both of them significantly
different from the stationary solutions of the system thus
ensuring a dynamical evolution:

ψ(x,0) = ψ0e
(−x2/2d2

a ), (7)

a(x,0) = a0e
−(x2/2d2

L)g , (8)

where g is the super-Gaussian parameter (g = 10 in the
simulations). The flat-top laser profile eliminates gradient
forces on the atoms at the very initial stage. However, the flat
top is immediately modified due to the natural evolution of the
system and the initial steps will be the seed of the subsequent
structure generation. The atoms will imprint a chirp on the laser
with the effect of creating a central intensity peak with two
lateral troughs [7]. This can be formally seen via a perturbative
solution of the first propagation stage (i.e., for z � λL). With
|ψ |2 � 1, the denominators in Eqs. (5) and (6) can be ex-
panded keeping terms up to the order ∼ |ψ |2. Separating am-
plitude and phase as a(x,z) = A(x,z) exp[iθ (x,z)],ψ(x,z) =
B(x,z) exp[iφ(x,z)] the two equations give, upon separation
of real and imaginary parts,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂φ

∂z
= 1

2

[
1

B

∂2B

∂x2
−

(
∂φ

∂x

)2 ]
+ A2

2
− B2

(
β

2
− A2

)
,

∂B2

∂z
= − ∂

∂x

(
B2 ∂φ

∂xi

)
,

∂θ

∂z
= 1

2

[
1

A

∂2A

∂x2
−

(
∂θ

∂x

)2 ]
+ 3

2
B2,

∂A2

∂z
= − ∂

∂x

(
A2 ∂θ

∂x

)
.

(9)

Consider a perturbative expansion F (x,z) = F0(x) +
F1(x)z + F2(x)z2 and G(x,z) = G1(x)z + G2(x)z2 up to sec-
ond order in z where F stands for the functions A and B while
G stands for θ and φ and the zeroth-order terms are the initial
functions (7) and (8). Identifying powers of z, a solution is
obtained for the amplitudes:

A2 = A2
0(x)

[
1 − 3

2

B2
0 (x)

d2
a

(
2x2

d2
a

− 1

)
z2

]
, (10)

B2 = B2
0 (x)

[
1 + 1

2

β ′(x)

d2
a

B2
0 (x)

(
2x2

d2
a

− 1

)
z2 − z2

2d4

]
,

(11)

where β ′(x) = β − 2A2
0(x). This solution has the features

observed in the initial evolution of the coupled system: The
laser intensity profile changes in such a way as to peak in
the center and at the same time two troughs are created on
each side of the rising peak. The atom density profile shows
the well-known nonlinear defocusing behavior—the center is
depressed and two humps are created on both sides of the
depression. This is the beginning of the creation of the stable
mutually localized structures discussed in [7], in a solitonlike
process the nonlinearity in the atom equation can act as a
self-generated trapping potential for the BEC.

IV. STRUCTURE EMISSION

As a consequence of the initial evolution stage, provided
the strength of the focusing dipole-dipole interaction and that
of the defocusing collisional nonlinearity are initially not
completely out of balance, some atoms start to broaden away
from the central structure while a part of the initial distribution
remains trapped there. The radiation reacts to this process
because of the dependence of the refractive index on the
density profile and part of it is focused around the peak of
the atom density. However, if the trap induced by the laser
is much wider than the atom wave function, the atoms lost
from the central core can still be trapped. What initially was
a hump of dispersing atoms, can get trapped in a secondary
self-generated potential well and induce mutual localization
on the wings. The generation of these secondary mutually
localized structures, keeping the initial laser width and peak
intensity fixed, should depend on having enough atoms
escaping from the central peak since the escaping atoms must
affect the laser wings to provoke the formation of the secondary
trap. Therefore, we have numerically studied the coupled
evolution of (7) and (8) for fixed da = 5λL,dL = 8da and fixed
a0 = 0.1346 corresponding to an initial peak laser intensity of
0.0153 mW/cm2, but varying ψ0. In the simulations we have
β � 38 corresponding, for instance, to a detuning of 100 times
the decay rate for 87Rb atoms and s = +1.

As anticipated, for low ψ0, only a central density peak
remains, a phenomenon studied in [7]. The central atoms
affect the laser profile which creates a trapping potential.
The atoms that escape this trap are not enough to modify the
natural evolution of the laser wings which undergo well-known
modulations before diffracting away. Increasing ψ0, the central
structure generated by the system will be obviously modified;
the balance of repulsive collisional interactions and attractive
dipole forces has changed. Furthermore, the effect of escaping
atoms becomes stronger to the point that the same trapping
mechanism can now be realized on the sides of the central
peak. Figure 1 shows the results of such an interaction for
two values of ψ0. The laser, as one would expect, forms
analogous localized structures in correspondence of the atom
density peaks. There is actually a formation of localized
structures even for low ψ0; the very low density of escaping
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FIG. 1. (Color online) Structure formation for (a) ψ0 = 0.0316
(corresponding to an initial peak atom density n0 = 1.7 × 1019 m−3)
and (b) ψ0 = 0.06645 (corresponding to n0 = 7.51 × 1019 m−3).
Dotted line, initial density distribution. The propagation distance
is indicated on the plots. All other parameters as specified in the
text. All quantities normalized as in the text; x,z measured in units
of λL.
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FIG. 2. (Color online) Details of the process of structure for-
mation for ψ0 = 0.06645 (n0 = 7.51 × 1019 m−3). Solid line, atom
wave function; dotted line, laser-induced potential acting on the
atoms (divided by 10 to make the figure more easily readable). The
propagation distance is indicated on the plots. All other parameters
as specified in the text. All quantities normalized as in the text; x,z

measured in units of λL.

atoms can focus extremely weak laser peaks, and the process
creates continuous families of mutually localized solutions.
However, for low ψ0 they are hardly visible. What is interesting
about these structures is their fate. They are self-consistently
formed due to the effect they have on the laser radiation.
Atoms focus the radiation, and the radiation, in turn, exerts
a focusing action on the atoms counterbalanced by their own
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FIG. 3. (Color online) (a) Emitted structure position versus
propagation distance for ψ0 = 0.06645 (n0 = 7.51 × 1019 m−3). Red,
laser jet position; blue, atom jet position. The two curves are
indistinguishable since atoms and laser wave packets move together
as a result of the mutual guiding of the two systems. (b) Peak atom
density of the emitted structures for the same case. All quantities
normalized as in the text; z measured in units of λL.
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FIG. 4. (Color online) Jet positions for different initial values
of the atom peak density ψ0. All other parameters are the same
as for Fig. 1. The identification of the different lines from top to
bottom is made at the very end of the propagation length. (a) ψ0 =
0.052 (fourth line from top), (b) ψ0 = 0.054 (second line from top),
(c) ψ0 = 0.0662 (last line from top, slowest jet), (d) ψ0 = 0.0664
(third line from top), (e) ψ0 = 0.0668 (first line from top, fastest jet).
All quantities normalized as in the text; z measured in units of λL.

defocusing interaction and their kinetic energy. During the
initial transient, which lasts until the atom-laser structures
are mutually adjusted to their own localized form, the lateral
peaks are oscillating around the point where they have been
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FIG. 5. (Color online) Propagation and fusion for ψ0 = 0.0669
(n0 = 7.62 × 1019 m−3). Solid line, atom wave function; dotted line,
laser-induced potential acting on the atoms (divided by 10 to make
the figure more easily readable). Propagation distance as indicated
on the plots. All quantities normalized as in the text; x,z measured in
units of λL.
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FIG. 6. (Color online) Structure emission for ψ0 = 0.092 (n0 =
7.62 × 1019 m−3). Solid line, atom wave function; dotted line, laser-
induced potential acting on the atoms (divided by 10 to make the
figure more easily readable). Propagation distance as indicated on the
plots. All quantities normalized as in the text; x,z measured in units
of λL.

trapped. They are kept there by the presence of the laser
trap; laser wings have not yet completely adjusted to the
newly born structures and they still act as an external trap
for the atoms. Figures 2(a) and 2(b) show the intermediate
stage of this transient for the same paramaters as in Fig. 1(b).
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FIG. 7. (Color online) Integral of the jets wave functions N =∫ ∞
−∞ |ψ(x,z → ∞)|2 dx (solid line) and of the central peak wave

function (dotted line) versus the integral of the initial wave function
N = ∫ ∞

−∞ |ψ(x,z = 0)|2 dx. The points where the solid line is broken
correspond to merging and fusion and therefore no emission of jets
at all. All quantities normalized as in the text.
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FIG. 8. (Color online) Structures emitted for ψ0 = 0.2 (n0 =
6.81 × 1020 m−3). Propagation distance as indicated on the plot. All
quantities normalized as in the text; x,z measured in units of λL.

The structures are oscillating within the laser-induced trap
which is being formed [Figs. 2(c) and 2(d)] and once the laser
has completely adjusted nothing keeps the atom-laser peaks
oscillating around a fixed position anymore and the structures
are free to move away [Figs. 2(e) and 2(f)]. For the parameters
of Fig. 2, they are ejected from the initial interaction region
and proceed propagating with constant velocity as solitarylike
waves. This could be explained by the repulsion due to the
central peak: The two lateral peaks cannot proceed moving
inward because they cannot overcome the repulsive barrier
due to the central peak. The position of the lateral peaks as a
function of the propagation distance for the same parameters of
Fig. 2 is shown in Fig. 3(a), from which it is clear that, after an
initial transient during which it is quite difficult to keep track
of the structures’ positions, the two “jets” are propagating at
constant velocity. It is also evident how laser and atoms jets
move together. Figure 3(b) shows the peak value of the atom
density of the emitted structures which tend to stabilize on a
stationary value. In a way, this phenomenon is reminiscent of
the emission of solitons engineered in nonlinear optics with
the aim, for instance, of implementing all-optical switching
and directional couplers [10]. Whereas in the optics case the
emission is stimulated only on one side, we obtain two moving
structures because of the symmetry of the configuration. We
must underline that we refer to the emitted structures as
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FIG. 9. (Color online) Evolution of the central atom density
calculated as |ψ(x = 0)|2 as a function of the propagation distance
for ψ0 = 0.196 (n0 = 6.54 × 1020 m−3). All quantities normalized as
in the text; z measured in units of λL.
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FIG. 10. (Color online). Contour plot of the evolution of the atom
wave function for ψ0 = 0.196 (n0 = 6.54 × 1020 m−3) showing a
characteristic oscillatory behavior. All quantities normalized as in the
text; x,z measured in units of λL.

solitarylike waves because of their ability to propagate with
unchanged shaped but we have not yet proved their collisional
properties; preliminary results indicate a behavior strongly
suggestive of a solitonlike nature.

The analogy is also suggestive of the possibility of soliton
steering. In fact, the properties of the structures ejected (peak
density, velocity, and number of jets) depend on the initial
conditions. Therefore, changing the initial value of ψ0, we
have found jets emitted at different angles with respect to
the propagation direction z and with different peak densities
and peak laser intensities, as can be seen from Fig. 4 which
shows jet positions for a few different cases. This last figure
also shows the anomalous behavior of the structures emitted
starting from ψ0 = 0.0668. They initially move clearly inward
before being ejected. For growing initial peak density, there
seems to be a stronger central trapping capable of attracting
the lateral peaks toward the center. Notice from Fig. 4 how, for
higher initial ψ0, the jets tend to be born closer and closer to
the central peak, where they are likely to experience a stronger
interaction with it, due to a larger overlap [compare cases
(a) and (b) in that figure with cases (c) and (d) which have
larger ψ0]. There is a critical combination of parameters, which
in our case occurs for ψ0 = 0.0669, such that the two jets
are drawn backward until they collide and fuse at the center
(Fig. 5). It is known that the result of a collision between two
solitons depending on the relative phase can lead to the fusion
of the two objects [15] and references therein, however, the
nature of the collision within the model presented here needs
further studies. After the merging, the remaining central peak
stabilizes and does not undergo any subsequent dynamical
changes, but it is very likely that such a structure will not be
realized due to the additional effects that are not considered
within this model and that could play an important role during
the collision. For higher values of ψ0 no central peak is left
while two lateral peaks are again symmetrically ejected. This
could suggest an instability of the central peak as a possible
explanation of the merging shown by the previous case. If
the central peak is unstable against diffraction or defocusing
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FIG. 11. (Color online) Snapshots of the evolution of the atom
wave function for ψ0 = 0.196 (n0 = 6.54 × 1020 m−3). Propagation
distance as given in the plots. All quantities normalized as in the text;
x,z measured in units of λL.

and the laser-induced force is not able to keep it trapped, its
atoms will broaden away with two possible outcomes for the
jets: Either the repulsive interaction between the jets and the
centrally dispersing atoms is not strong enough to prevent the
jets from merging in the center, or it is important enough to
push them away; compare Figs. 6 and 5.

It is interesting to notice how the integral of the jets wave
function (N = ∫ ∞

−∞ |ψ(x)|2 dx in Fig. 7) seems to tend to a
finite value as a function of the integral of the initial wave
function (N0 in Fig. 7). This would be acceptable from the
point of view of soliton behavior: The emitted solitarylike
structures can accommodate a given number of atoms; atoms
in excess will go and form extra jets (an example is shown in
Fig. 8).

A final note concerns one more analogy with optical soliton
behavior. It seems, in fact, possible to excite a structure very
similar to the bound system observed for optical solitons in
which two pulses perform an oscillatory motion by bouncing
back and forth in their own potential well [15]. In a repeated
dance, under particular conditions, the optical solitons pass
through each other, move apart, and come to a halt to move
back together. This is what can be seen for a given choice of
initial parameters for the system under analysis here. Figure 9
shows the value of the atom density at x = 0 as a function of the
propagation distance for ψ0 = 0.196 and oscillations which
would agree with the presence of a bound soliton state are
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quite evident. A contour plot of the evolution of this particular
case is shown in Fig. 10 with corresponding snapshots given
in Fig. 11.

V. CONCLUSIONS

In conclusion, proceeding from the idea that laser-BEC
dipole-dipole interactions can lead to mutually localized
structures, we have analyzed in detail the mechanism of
formation of such structures concentrating on the process
through which the structures shed away the excess atoms
and radiation. Numerical simulations seem to indicate the
possibility of generating and emitting secondary solitarylike
wave packets in a jetlike fashion. Although the model used here
is strongly simplified and any comparison with experiment will

require major refinements (in particular a full-time dependent
analysis is needed as well as a study of different scenarios in
higher dimensionality), the equations we have used enlighten
the main physical effects and it seems possible to choose
parameter regimes in which the effects neglected here will
not destroy these results. This processes could be a further
evidence of the analogy between matter waves and optical
waves and even open the discussion about applications such
as soliton stirring in BECs.
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