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1. Introduction

The high demand for increasing the data rate of fiber-opticalchannels has attracted tremendous efforts to design signal
sets with higher spectral efficiencies [1,2]. Among the fiber-induced impairments, nonlinear phase noise (NLPN) is a
major limitation particularly in long-haul transmission [3]. NLPN is caused by the interaction between the signal and
amplified spontaneous noise (ASE) via the fiber Kerr nonlinearity. Different approaches have been investigated for
combating the effect of NLPN, e.g., optical hardware methods, electronic compensation with predistortion, and post
compensation. Lau and Kahn [4] proposed a maximum likelihood (ML) detector for phase-shift keying modulated
signals and a two-stage detector for the 16-QAM constellation. Although this method performs close to the ML
detector in the highly nonlinear regime, there is no consideration about optimizing the 16-point constellation.

In this paper, we consider the nonlinear postcompensator proposed in [4] for a fiber link with a distributed ampli-
fication. A ring constellation with 16 points is optimized for this system to make it robust against the residual phase
noise after the nonlinear compensator. For this purpose, different geometrical shapings are examined in terms of the
minimization of the average symbol error rate (SER) for a wide range of transmitted powers. The numerical results
show that the radii of the rings can be chosen so that 2.4 and 2 dB performance improvements are achieved in the
linear and nonlinear regime, respectively. This is an extension of previous results which were limited to the nonlinear
regime [5].

2. System Model

We consider a fiber-optical link with SPM produced via the Kerr effect, exploiting a distributed amplification which
compensates the fiber loss completely [4]. The system uses a 16-point ring constellation consisting ofI rings withKi,
i = 0, . . . , I, equally spaced phase points with a nonreturn-to-zero (NRZ) pulse shape. The vector(r1, ...,rI) represents
the scaled radius distribution of the constellation such that ∑I

i=1 Kir2
i = 16Pt, wherePt is the average transmitted

power. In this paper, we use(K1−K2 . . .−KI) to represent a ring constellation withK1, . . . ,KI points in rings 1, . . . , I,
respectively. According to the proposed block diagram in Fig. 1(a), the mapperM produces complex I/Q symbol
rie jzk , wherezk =

2kπ
Ki

, 0≤ k ≤ Ki −1. The optical I/Q modulator (IQM) transforms the generatedcomplex symbol to
an I/Q modulated signal. The ASE noise generated by inline amplifiers is modeled as complex zero-mean circularly
symmetric Gaussian random variables with varianceσ2 [4] in two polarizations for a fiber link with the total length
L. As in [6] and [4], we also assume that the sole impairment is the noise within the bandwidth of the optical signal,
neglecting the effect of chromatic dispersion.

The normalized received amplituder is defined as the amplitude of the received electric field at the output of the
coherent receiver, divided byσ . The amplitude-dependent phase rotationθc(r) (caused by SPM) of the received signal
is removed by the nonlinear maximum likelihood NLPN compensator [4] (as shown in Fig.1(a)). Finally a two-stage
detector extracts the transmitted information bits by firstdetecting the ring and then the phase from the compensated
received signal. Due to exploiting this suboptimal detector, any phase offset between the rings doesnot change the
performance of the system. Here, using the results in [4], the joint probability density function (pdf) of the normalized
amplitude (r) and compensated phase (θ ′) for a received symbol from anM-PSK constellation with transmitted phase
θ0 and transmitted powerPt, is obtained by

fR,Θ′(r,θ ′) =
fR(r,ρ)
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Fig. 1. a) The system block diagram. b) The pdf of the complex signal re jθ ′
, with contour values

10−3,10−2.5, . . . ,1 (L = 5000 km andPt = 0 dBm).
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Fig. 2. Ring constellations from [1,4]

where fR(r,ρ) is the Ricean pdf of the received amplitude,ρ = Pt/σ2 is the signal-to-noise ratio (SNR), and the
Fourier coefficientsCm(r) are given in [4]. This pdf was derived for a large number of fiber spans (N > 32).

3. SER of 16-point Ring Constellations

In this section, we analyze the SER of a 16-point ring constellation exploiting the two-stage detector [4]. In this de-
tection method, the annular sector (see Fig.1(b)) is used instead of the exact Voronoi region as the decision region
in the detector. Since the distribution of noise in the radius direction is Ricean, the ML decision boundary circles
with radii µi, i = 1, . . . , I − 1, between rings are obtained by intersecting the two Ricean pdf’s. Here, µi is the ra-
dius of the circle which is the ML decision boundary between rings i andi+1 (normalized byσ ). We compute the
probability of correct detection of a transmitted symbolsi = rie j0 selected from ringi and initial phaseθ0 = 0 by
Pci = Pr{R ∈ [µi−1,µi)∧Θ′ ∈ [−π/Ki,π/Ki)}, wherei = 1, . . . , I, µ0 = 0, andµI = ∞. Using the symmetry of the ring
constellation, it is readily seen that the total SER of a16-point ring constellation is SER= 1−∑I

i=1 KiPci/16.
This probability can be computed by taking the integral of the pdf over the annular sector of the symbols in different

ringsi and eventually we obtain
SER= 1− 1
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andQ(x,y) is the MarcumQ function [7].

4. Optimizing the 16-point Ring Constellation for a Fiber Channel with NLPN

We carry out the optimization of a ring constellation with 16points in two steps: First, we decide the number of
points in each ring. In the second step, exploiting a numerical optimization technique, the radius distribution of the
constellation is determined for a given SNR in order to minimize the SER of the system. Since large amplitude values
contribute more NLPN, for high transmitted power (i. e., in the nonlinear regime), it is advantageous to have few points
in the outer rings. On the other hand, the inner rings are morevulnerable to noise at low transmitted power (in the
linear regime). Overall, the 16-point constellations shown in table1 are selected in the first step based on the structures
introduced in [1,4] (see Fig.2).



Table 1. The optimized16-point ring constellations forL = 3500 km.

Ring constellation Linear regime radius distribution Nonlinear regime radius distribution
(K1, . . . ,KI) (r1, . . . ,rI)/

√
Pt , Pt =−10 dBm (r1, . . . ,rI)/

√
Pt , Pt = 0 dBm [ref]

(1-3-5-7)-Fig.2(a) (0, 0.49, 1.03, 1.64) (0, 0.82, 1.13, 1.44) [1]
(4-4-4-4)-Fig.2(b) (0.28, 0.63, 0.98, 1.6) (0.283, 0.625, 0.981, 1.6) [1]
(4-8-4)-Fig.2(c) (0.36, 0.88, 1.45) (0.27, 0.66, 1.58) [4]
(8,8)-Fig.2(d) (0.67, 1.25) (0.82, 1.15) [1]
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Fig. 3. a) The optimized radii of (4-8-4), (1-3-5-7), and (8-8) versusPt . b) The SERs of the optimized
ring constellations.

Fig. 3(a) shows the SERs of the numerically optimized ring constellations introduced in table1 based on the op-
timization in linear (Pt = −10, solid lines) and nonlinear (Pt = 0, dashed lines) regime for three of the constellations
introduced in table1. As expected, constellations having few symbols in the inner ring is best in the linear limit,
whereas few symbols in the outer ring is optimal in the nonlinear regime. Moreover, the radius distribution of the ring
constellations (4-8-4) and (4-4-4-4) for different transmitted powers have been shown in Fig.3(b). In the simulations,
we assumeda bandwidth of the optical signal 42.7 GHz, a spontaneous emission factor of 1.41 [4] at a wavelength of
1550 nm, an attenuation coefficient of 0.25 dB/km, and a fiber length of 3500 km. As seen in Fig.3(a), the performance
of the (4,8,4) constellation can be improved by 2.4 and 2 dB byusing a suitable radius distribution in the linear and
nonlinear regime, respectively at SER = 10−4.

5. Conclusions

Optimization of some 16-point ring constellations have been performed in order to minimize the symbol error rate.
This optimization is performed for a two-stage detector, which is suitable for practical implementation. The results
illustrate that one may gain 2.4 dB SER performance in the linear regime by exploiting the radius distribution in this
regime rather than nonlinear limit. It can also be noticed that in the nonlinear regime 2 dB gain is achieved with this
approach in a dispersion-managed fiber channel limited by nonlinear phase noise.
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