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ABSTRACT

Received signal strength (RSS)-based single source localization
when there is not a prior knowledge about the transmit power of the
source is investigated. Because of nonconvex behavior of maximum
likelihood (ML) estimator, convoluted computations are required
to achieve its global minimum. Therefore, we propose a novel
semidefinite programming (SDP) approach by approximating ML
problem to a convex optimization problem which can be solved very
efficiently. Computer simulations show that our proposed SDP has
a remarkable performance very close to ML estimator. Linearizing
RSS model, we also derive the partly novel least squares (LS) and
weighted total least squares (WTLS) algorithms for this problem.
Simulations illustrate that WTLS improves the performance of LS
considerably.

Index Terms— Received signal strength (RSS), localization,
semidefinite programming (SDP), weighted total lease squares
(WTLS), transmit power

1. INTRODUCTION

Wireless sensor network (WSN) has been emerged in many appli-
cations for monitoring, controlling, and tracking. The localization
of a source sensor in a WSN is always the key problem. In a WSN
localization problem, known-position sensors (anchor sensors) try
to estimate the position of unknown-location sensors (source sen-
sors) via noisy measurements [1]. Based on application require-
ments, accuracy, and efficiency, different types of measurementsare
employed in localization such as time-of-arrival, time-difference-
of-arrival, received-signal-strength (RSS), and angle- of-arrival [1].
RSS is always an interesting method mainly because of its low com-
plexity and cost of devices [1].

There are many localization techniques based on RSS measure-
ments in the literature. The maximum likelihood (ML) estimator
and the Craḿer-Rao lower bound (CRLB) were derived in [2]. In
addition, RSS linear estimators were studied in [3]. To compute ML
solution, it is required to minimize a nonconvex cost function which
is computationally intensive. Convergence problems of the ML es-
timator can be addressed by using semidefinite programming (SDP)
techniques, in which the ML cost function is approximated with a
convex function [4, 5, 6].

RSS-based localization requires a calibration between the source
and anchors [1]. Since, in the RSS model, the measurement is a
function of transmit power, finding the location of the source is not
feasible as far as its transmit power is not available at anchors. Con-
sequently, the source must transfer its transmit power to the anchors
during RSS measurements which needs additional hardware in both
source and anchors [1].

In this work, we assume that the anchors are not aware of the
source transmit power. Dealing with this problem, in general, we in-
troduce two methods. In the first method, we estimate the unknown
transmit power along with source location (we call this method

URSS). In the second method, the dependency of the unknown
transmit power in RSS model is eliminated from all measurements
by using RSS difference between two anchors and a suitable es-
timator is applied in consequence; hereafter we call this method
DRSS. For both methods, we propose a novel SDP approach to
transform the ML or the nonlinear least squares (NLS) cost function
to a convex one by using approximations and relaxation techniques.
Our proposed SDP approach is different from those studied in [4, 5]
since there is no information about the transmit power. We further
linearize the measurement model and apply the least squares (LS)
solution to the linear model. We also derive the novel weighted total
least squares estimator to enhance the performance of LS [7, 8].
Although RSS localization algorithms are generally biased [2, 4],
we employ the corresponding CRLB as a benchmark to compare the
performance of proposed algorithms.

2. SYSTEM MODEL

Let xs = [xs, ys]
T ∈ R

2 be the coordinates of the source to be
determined. Denote byC = {1, . . . ,M} the set of indices of the
anchors connected to the source and byxi = [xi, yi]

T ∈ R
2, i ∈ C

the known location of anchor nodes. Under the log-distance path
loss and log-normal shadowing model, the average received power
(in dB) atith anchor,Pi, is modeled as [2]

Pi = P0 − 10β log
10

di
d0

+ ni, i ∈ C, (1)

whereP0 is the reference power at reference distanced0 (which de-
pends on the transmit power),β is the path loss exponent,di =
‖xs−xi‖2 is the true distance between the source and theith anchor,
‖ · ‖2 denotes̀ 2 norm, andni for i ∈ C are the log-normal shad-
owing term modeled as independent and identically distributed (iid)
zero-mean Gaussian random variables with varianceσ2

dB . Without
loss of generality, it is assumed thatd0 = 1 m.

3. MAXIMUM LIKELIHOOD ESTIMATOR

Let θ = [xT
s , P0]

T be the unknown parameter vector to be esti-
mated, the ML estimator based on the measurements in (1) is com-
puted by following nonconvex optimization problem [9]

θ̂ML = argmin
θ

∑

i∈C

(Pi − P0 + 10β log
10

di)
2 . (2)

We can express (2) alternatively as

θ̂ML = argmin
θ

∑

i∈C

log2
10

hiλi

α
, (3)

wherehi , d2i , λi , 10Pi/5β , andα , 10P0/5β . The solution of
(3) is not closed-form, but can be approximated, for instance, by the
Gauss-Newton (GN) method [9]. The drawback of the GN method
is that it requires a good initialization to make sure that the algorithm
converges to the global minimum [9].



4. SEMIDEFINITE PROGRAMMING

The cost function of the ML is severely nonlinear and nonconvex,
therefore, finding its global minimum requires convoluted computa-
tions. By using SDP relaxation, we convert the ML problem to a
convex optimization problem. The advantage of SDP problem over
ML is that it can be solved with efficient computational methods that
certainly converge to its global minimum [10].

As we mentioned earlier, we have two methods to deal with our
problem. Let us start with the first method. Consider (1), by rear-
ranging and diving both side by5β, it can be reformulated as

log
10

d2iλi =
P0

5β
+

ni

5β
, i ∈ C. (4)

Taking power of 10 from both side yields

d2iλi = α10ni/5β , i ∈ C. (5)

For sufficiently small noise, the right hand side of (5) can be approx-
imated using the first-order Taylor series expansion as

d2iλi = α

(

1 +
ln 10

5β
ni

)

, i ∈ C. (6)

This can be rewritten as

hiλi = α+ n′
i, i ∈ C, (7)

wheren′
i is a zero-mean Gaussian random variable with variance

(ln10)2α2σ2

dB/25β
2. Now, corresponding ML estimator of (7) is

x̂s = argmin
xs,α

∑

i∈C

(hiλi − α)2 . (8)

To progress, we have to use another approximation. The ML esti-
mator of (8) tries to minimize thè2 norm of the residual error. For
sufficiently small residual error, we can approximate (8) by using`1
norm rather thaǹ2 norm [10]

x̂s = argmin
xs,α

∑

i∈C

|hiλi − α| . (9)

Indeed, we approximately convert the original ML cost function of
(3) to another cost function (9). The cost function (9) is still nonlin-
ear and noncovex. In the next step, an auxiliary variabley is defined

hi = d2i = ‖xs − xi‖
2

2 = y − 2xT
i xs + x

T
i xi, i ∈ C (10)

wherey = xT
s xs. The minimization problem (9) can be relaxed to

an SDP optimization problem as [10]

min
xs,α,ti,hi,y

∑

i∈C

ti (11a)

s. t. − ti < hiλi − α < ti, (11b)

hi = y − 2xT
i xs + x

T
i xi, (11c)

y ≥ x
T
s xs. (11d)

Solution of (11) can be found effectively with optimal algorithms
such as interior point method [10]. Moreover, convergence to the
global minimum is guaranteed in SDP optimization problems [10].

Note, in (11), we have used the inequality constraint (11d) in-
stead of the equality to relax our problem to a convex problem [10].
The inequality (11d) can be written as a linear matrix inequality
(LMI) using the Schur complement [10]

[

y xT
s

xs I2

]

� 03. (12)

Here, we continue with describing the SDP algorithm for the
second method. We select an anchor as a reference (with indexr ∈
C) and calculate DRSS measurements. Hence (1) can be expressed
as

Pr,i = Pr − Pi = 10β log
10

di
dr

+mi , i ∈ C, i 6= r, (13)

wherePr is the received power at the reference anchor,dr is the
distance between the reference anchor and the source, andmi =
nr − ni is a zero-mean Gaussian random variable with variance
2σ2

dB . Since the noise of reference anchor appears in all DRSS mea-
surements, they are correlated, which makes it difficult to relax the
ML problem into an SDP problem. For this reason, we proceed with
the NLS estimator instead. The NLS solution of (13) is [9]

x̂s = argmin
xs

∑

i∈C,i 6=r

(

Pr,i − 10β log
10

di
dr

)2

. (14)

Using the procedure mentioned for previous case, we can approxi-
mate solution of (14) with the following optimization problem,

x̂s = argmin
xs

∑

i∈C,i 6=r

∣

∣d2iϑi − d2r
∣

∣ . (15)

whereϑi , 10Pr,i/5β . The minimization problem (15) can be re-
laxed to an SDP optimization problem as [10]

min
xs,ti,hi,hr ,y

∑

i∈C,i 6=r

ti (16a)

s. t. − ti < hiϑi − hr < ti, (16b)

hi = y − 2xT
i xs + x

T
i xi, (16c)

hr = y − 2xT
r xs + x

T
r xr, (16d)

y ≥ x
T
s xs. (16e)

Now, we have to pick up one of anchors as a reference. Note that the
effect of log-normal shadowing is multiplicative to the distance in
(1) [2], hence, long measured distances have higher error than short
ones [2]. Consequently we select the nearest anchor to the source
(the anchor with the highest RSS) as a reference anchor to prevent
raising more errors in equations.

In summary, to apply the SDP solution for our localization prob-
lem, we have approximated the original cost function of ML (or
NLS) to another cost function and then relaxed it to a convex prob-
lem. In the first step, we have substituted the function

∑

|λihi −α|
for the function

∑

log2
10
(λihi/α). Fig. 1a depicts two mentioned

functions versus unknown parametersh andα (λ is a known param-
eter). To compare the cost functions of (3) and (9), we have used one
realization. Five anchors are randomly placed in a square of20×20
meters and a source located at[10, 10]T . The standard deviation of
the log-normal shadowing is 3 dB. Fig. 1b shows the cost function
of the ML estimator given in (3) versusx andy coordinates when
we have fixed the value ofP0 at the true value. It can be seen that the
ML cost function has a global minimum at[10.5, 11.5]T (the step of
mesh grid is 0.5) and some local minima and saddle points (e.g., a
local minimum at[2.5, 17.5]T ). The cost function of (9) is shown
in Fig. 1c which is much smoother than (3) and has a global mini-
mum at[10, 11.5]T . Fig. 1c still requires to be relaxed to a convex
shape. In the next step, by using SDP relaxation of (11d), we trans-
form function (9) to a convex function (11). Solution of (9) and (11)
for source location will coincide, if the minimum of (11) occurs for
y = xT

s xs or if rank 1 condition fory is satisfied.
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Fig. 1: (a) depiction of functions|λh − α| andlog2
10
(λh/α) versus unknown variablesh andα (for simplicity, λ = 1). (b) cost function of

(3), (c) cost function of (9) versusx andy coordinates, the minimum of the cost functions is indicated with white color.

5. LEAST SQUARES

In this section, we describe linear estimators for our localization
model (1). Similar to the previous cases, we have two methods to
deal with the unknown transmit power.

Consider (1), in the absence of noise, we can reformulate it as

d2i = ζiα, i ∈ C, (17)

whereζi , 10−Pi/5β . Let θ1 = [xT
s ,x

T
s xs, α]

T be the unknown
vector to be estimated, andki = xT

i xi. Expanding and rearranging
(17), we can express (17) in matrix form as

Aθ1 = b, (18)

where

A =







2xT
1 −1 ζ1

...
...

...
2xT

M −1 ζM






,b =







k1
...

kM






. (19)

The LS solution of (18) is [9]

θ̂1,LS1 = (AT
A)−1

A
T
b. (20)

Now, we derive the LS estimator for the second method. Con-
sider (13), we pick up an anchor as a reference and calculate the
DRSS from the other anchors. In the absence of noise, (13) would
be expressed as

d2iϑi = d2r, i ∈ C, i 6= r, (21)

Let θ2 = [xT
s ,x

T
s xs]

T be the unknown vector to be estimated, then
(21) can be expressed in matrix form as

Pθ2 = q, (22)

where

P=









...
...

(2ϑixi−2xr)
T (1− ϑi)

...
...









,q =









...
ϑiki − kr

...









, i ∈ C, i 6= r.

(23)
The LS solution of (22) is [9]

θ̂2,LS2 = (PT
P)−1

P
T
q. (24)

The reference anchor is selected as mentioned before for SDP-DRSS
algorithm.

6. WEIGHTED TOTAL LEAST SQUARES

When we have measurement noise in the formulation of LS esti-
mators, the disturbances appear in both data matrix and observation
vector. However, LS only respects disturbances in the observation
vector [9]. The more general case of LS is total least squares (TLS)
which can tolerate disturbances in both data matrix and observation
vector [11]. TLS assumes that errors in the data matrix and observa-
tion vector are equally sized, independent and identically distributed.
However, this assumption is not valid in our expressions (18) and
(22). The new approach, called weighted total least squares (WTLS),
allows us to have unequally sized errors in both data matrix and ob-
servation vector [11]. The full details about finding the solution of
a WTLS problem is given in [7, 8]. Briefly, the WTLS solution of
(18) is obtained by the following optimization problem [7]

θ̂1,WTLS1 = argmin
θ1

∑

i∈C

r2i
ui

, (25a)

s.t. ri = a
T
i θ1 − bi, (25b)

ui = θ
T
1 W11,iθ1 − 2θT

1 W12,i +W22,i, (25c)

whereai andbi are theith row ofA and theith element ofb, re-
spectively, and covariance matrices are

W11,i = E[aT
i ai] = Var(ζ̂i) diag[0, 0, 0, 1], (26a)

W12,i = E[biai] = [0, 0, 0]T , (26b)

W22,i = E[b2i ] = 0, i ∈ C. (26c)

Consider (18), the noise only appears inζi. Let ζ̂i be the value of
ζi corrupted by the noise given (1), then we haveζ̂i = ζi10

ni/5β .
Sinceni is Gaussian random variable,ζ̂i has a log-normal distribu-
tion with variance

Var(ζ̂i) = ζ̂2i

(

e2σ
2

ζ + eσ
2

ζ

)

, σζ =
σdB ln 10

5β
, i ∈ C. (27)

The cost function of WTLS (25) is nonlinear and has not any closed-
form solution [7]. Solution of (25) can be obtained approximately
by iterative optimization algorithms [7].

The corresponding WTLS solution of (22) can be derived in a
similar manner.
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Fig. 2: The RMSE of the proposed algorithms.

7. SIMULATION RESULTS

In this section, we compare the performance of proposed algorithms
through computer simulations. Twenty anchors were placed on the
sides of a square of20m × 20m in equal distances and a source
was randomly distributed inside the square. The values ofP0 andβ
were set to 30 and 4, respectively. Deriving the CRLB is straightfor-
ward and is not included here. The root mean square error (RMSE)
of the proposed algorithms and CRLB were computed by averaging
over all experiments. The cost function of ML and WTLSs were
minimized by MATLAB routinefminsearch, with default set-
ting, which uses Nelder-Mead Simplex method. The proposed SDP
problems were solved byCVX toolbox [12].

The RMSE of the proposed algorithm versus the standard devia-
tion of the log-normal shadowing is depicted in Fig. 2. The ML and
WTLS algorithms were initialized with the true values to increase
the probability of convergence to the global minimum. Fig. 2 shows
that the performance of the LS algorithms are very poor since they do
not respect errors appearing in the data matrix. As we expected, the
WTLS estimators perform substantially better than LSs because they
respect unequally sized disturbances in both the data matrix and ob-
servation vector. However, RMSE of WTLS-URSS is slightly lower
than WTLS-DRSS. The reason is that in the derivation of WTLS,
we assume that disturbances in each row of data matrix and observa-
tion vector are independent (row-wise WTLS [11]), but this assump-
tion is not valid for WTLS-DRSS algorithm since the measurement
noise of reference anchor appears in all rows and consequently the
rows of data matrix and observation vector are correlated. Further-
more, Fig. 2 demonstrate that the ML has a superior performance to
other algorithms and is only slightly worse than CRLB at low SNR.
SDP-URSS performs remarkably, having a negligible gap with ML.
SDP-DRSS performance is moderately worse than SDP-URSS be-
cause our SDP-DRSS does not handle the noise correlation due to
the reference anchor. Fig. 3 depicts the cumulative density function
(CDF) of the location error‖x̂s − xs‖2 of the proposed algorithms
when the log-normal shadowing standard deviation is fixed at 3 dB.
The order of the proposed algorithms is the same as in Fig. 2.

8. CONCLUSION

The single source RSS localization problem when the source trans-
mit power is not available at anchors was treated in this paper. Two
methods were introduced to deal with this problem: eliminating or
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Fig. 3: The CDF of the proposed algorithms,σdB = 3 dB.

estimating the transmit power. A novel SDP approach by apply-
ing approximations and relaxations to ML (or NLS) estimator was
derived. Although the ML estimator outperforms other algorithms,
finding its global minimum involves complex computations and re-
quires a good initialization. However, the proposed SDP approaches
having an insignificant gap with ML performance can be solved effi-
ciently without any initialization. Moreover, by linearizing the mea-
surement equations, we derived the corresponding LS and WTLS
estimators, and simulation results demonstrated that the WTLS has
a notably better performance than LS.
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