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Abstract—The problem of positioning an unknown target is
studied for a cooperative wireless sensor network using hybrid
two-way time-of-arrival and time-difference-of-arrival measure-
ments. A maximum likelihood estimator (MLE) can be employed
to solve the problem. Due to the non-linear nature of the cost
function in the MLE, a numerical method, e.g., an iterative search
algorithm with a good initial point, should be taken to accurately
estimate the target. To avoid drawbacks in a numerical method,
we instead linearize the measurements and obtain a new two-step
estimator that has a closed-form solution in each step. Simulation
results confirm that the proposed linear estimator can attain
Cramér-Rao lower bound for sufficiently high SNR.

Index Terms– Cooperative positioning, linear estimator, wire-
less sensor networks.

I. INTRODUCTION

Positioning information is a vital requirement for every
wireless sensor network (WSN). Most studies in the literature
assume that there are some reference nodes, also called anchor
nodes, that can be used to estimate the position of an unknown
target node [1]. In general, there are various positioning
algorithms based on time-of-arrival (TOA), time-difference-of-
arrival (TDOA), received signal-strength , and angle-of-arrival
that can be used in different applications [1].

Two-way TOA (TW-TOA) has been considered as an ef-
fective approach in the literature (e.g., [2]), mainly because
of its relatively high accuracy and lack of synchronization
requirements. In this approach, a reference node sends a signal
to a target node, and waits for a response from it. The round-
trip time delay between the reference node and the target
node gives an estimate of the distance between them. As the
number of reference nodes in a WSN increases, the position
of the target node can be estimated more accurately via TW-
TOA estimation. Since, in practice, there are some limitations
on increasing the number of reference nodes due to power
and complexity constraints, the idea of cooperation between
reference nodes is proposed in [3] to decrease the number
of transmissions, and its theoretical analysis is presented
in [2]. In this method, some reference nodes, called primary
reference nodes (PRNs), initiate range estimation by sending
a signal. The target replies to received signals by sending an
acknowledgement. Suppose that there are some other reference
nodes, which can listen to both signals, and are called as
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secondary reference nodes (SRNs). It has been shown that
the SRNs can help the PRNs to estimate the target position
more accurately [2]. In fact, it is possible to get the same
performance with fewer PRNs when measurements from the
SRNs are involved in the positioning process. The model con-
sidered here is based on cooperation between reference nodes,
which is different from targets’ cooperation in a cooperative
network [4].

In this work, it is assumed that the SRNs are able to
receive signals from both the target and the PRNs. Therefore,
the SRNs are able to measure the TDOA between the target
signal and the signals of the PRNs. In this case, a maximum
likelihood estimator derived in [2] can be employed to improve
the positioning accuracy compared to the non-cooperative
approach. However, due to the non-linear nature of the cost
function in the MLE, a numerical method, e.g., an iterative
search algorithm with a good initial point, should be used
to obtain an accurate estimate of the target’s position. There
might be some drawbacks in using a numerical method in prac-
tice. For example high complexity or convergence problem can
limit the use of the numerical methods. To avoid drawbacks in
numerical method, using two different linearization techniques
we obtain a two-step linear estimator. In the first step, using
a non-linear pre-processing similar to some previous work for
conventional networks, a coarse estimator is obtained. In the
second step, using the first step estimation, another linear set of
measurements different to the first step is derived. The second-
step estimator is a regularized least squares which refines
the first estimate. In addition, in every step, a closed-form
solution is derived. Simulation results show that for sufficiently
large SNR, the estimator attains the Carmér-Rao lower bound
(CRLB).

The remainder of the paper is organized as follows. Sec-
tion II explains the system model considered in this paper.
The linear estimator is derived in Section III and simulation
results are discussed in Section IV. Finally Section V makes
some concluding remarks.

II. SYSTEM MODEL

Let us consider a two-dimensional network1 with N +
M reference nodes located at known positions, xi =
[xi,1 xi,2]

T ∈ R
2, i = 1, ..., N + M . Suppose that N PRNs

1The generalization to a three-dimensional scenario is straightforward, but
is not explored here.



are used to measure the TW-TOA between the PRNs and the
target to be located and that M SRNs are able to listen and
measure signals transmitted by the PRNs and the target. For
simplicity, we assume that the first N sensors are the primary
nodes and the remaining M sensors are the secondary nodes.

Let C = {(i, j)| PRN i and SRN j are connected} be the
set of all pairs with one primary node and one secondary node
which are connected. In this paper for simplicity, we assume a
fully connected network. The TW-TOA measurement between
primary node i and the target, located at coordinates θ =
[θ1 θ2]

T ∈ R
2, can be written as [2]

t̂i =
ri

c
+

ñT,i

2
+

ñi,T

2
, i = 1, ..., N, (1)

where c is the speed of propagation, ri = ‖xi − θ‖ is the
distance between the ith PRN and the point θ, ñi,T is the TOA
estimation error at the target node for the signal transmitted
from the ith PRN, and ñT,i is the TOA estimation at the
ith PRN for the signal transmitted from the target node.
The estimation errors are modeled as zero-mean Gaussian
random variables with variances σ2

T,i/c2 and σ2
i,T /c2; i.e.,

ñT,i ∼ N (0, σ2
T,i/c2) and ñi,T ∼ N (0, σ2

i,T /c2) [2].
Suppose that the SRNs are able to measure the TOA based

on the received signal from the target and the PRNs. The TOA
estimate of the ith PRN in the jth SRN is

t̂i,j = Toi
+

ri,j

c
+ ñi,j , (i, j) ∈ C, (2)

where the ith PRN sends its signal at time instant Toi
, that is

unknown to the SRN, ri,j = ‖zi−zj‖ is the distance between
primary node i and secondary node j, and ñi,j is modeled
as a Gaussian random variable ñi,j ∼ N (0, σ2

i,j/c2). Suppose
that the response signal from the target to this signal is also
received by the jth SRN. The TOA estimate for this signal is
given by

t̂i,T,j = Toi
+

ri

c
+

rj

c
+ ñi,T + ñT,j , (i, j) ∈ C. (3)

Having these two measurements in the SRN, namely, mea-
surement in (2) and in (3), we are able to measure the TDOA
between the ith PRN and the target which corresponds to the
distance from the ith PRN to the target plus the distance from
the target to the jth SRN.

III. POSITIONING ALGORITHMS

To gain some insight into the problem, let us consider
Fig. 1(a), where one PRN performs TW-TOA estimation with
the target. Namely, the PRN sends a signal to the target, and
the target replies to this signal. Here, we assume that either an
estimate of the turn-around time is available [2] or the turn-
around time is extremely small such that it can be neglected.
Suppose that two other nodes (SRN1 and SRN2) listen to both
signals. Since the distances between the reference nodes are
known, it is possible in the secondary node to estimate the
time reference from (2); Hence, the SRNs are able to estimate
the overall distance from the PRN to the target and the target
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Fig. 1. (a) A primary node initiates positioning by transmitting a signal to
the target whereupon the target replies to the received signal. Both signals
are received in the secondary nodes (b) TW-TOA and TDOA for PRN1 and
SRN2.

to the SRN as follows (see Fig. 1(b)):

zj
i = c(t̂i,T,j − T̂oi

)

= ri + rj + nT,j + ni,T − ni,j , (i, j) ∈ C, (4)

where T̂oi
is an estimate of Toi

, e.g., T̂oi
= t̂i,j − ri,j/c =

Toi
+ ñi,j , and ni,T = c ñi,T , ni,T = c ñi,T , and ni,j = c ñi,j .

From (1), the distance estimate to the target in the ith PRN is
expressed as

zi = ct̂i = ri +
ni,T

2
+

nT,i

2
, i = 1, ..., N. (5)

In the sequel, we consider the vector of measurements z as
follows

z = [z1 . . . zN z1
1 . . . zM

1 . . . z1
N . . . zM

N ]T . (6)

A. Maximum likelihood estimator algorithm

It is clear that the vector z can be modeled as Gaus-
sian random vector z ∼ N (µ, C), where mean µ =
[µ1 . . . µN µ1

1 . . . µM
1 . . . µ1

N . . . µM
N ]T and covariance

matrix C are computed as follows2 [2],

µi = ri, µj
i = ri + rN+j ,

C = E{(z − µ)(z − µ)T } =

[

C11 C12

C21 C22

]

, (7)

where matrices C11 ∈ R
N×N , C12 = CT

21 ∈ R
N×NM , and

C22 ∈ R
NM×NM can be obtained as follows

C11 = diag
((

σ̃2
1

4
+

σ2
1

4

)

, . . . ,

(

σ̃2
N

4
+

σ2
N

4

))

,

C12 =







vT
1 . . . 0
...

. . .
...

0 . . . vT
N






, vi =

σ̃2
i

2
1M ,

C22 = blkdiag
(

W1, . . . , WN

)

, 1M = [1 . . . 1]T

Wi = σ̃2
i 1M 1T

M

+ diag
(

σ2
N+1 + σ2

i,N+1, . . . , σ
2
N+M + σ2

i,N+M

)

.

where (blk)diag(X1, . . . , XN) is a (block) diagonal matrix
with diagonal element X1, . . . , XN .

The MLE is obtained by the following optimization prob-
lem [5]

θ̂ = argmin
θ∈R2

(z − µ)T C−1(z − µ). (8)

2For simplicity of notation, we assume σT,i = σi and σi,T = σ̃i.



With some manipulations, (8) can be expressed as [2]

θ̂ = argmin
θ∈R2

N
∑

i=1

{

( 2

σ2
i

−
1

siσ4
i

)(

zi − ri

)2

−
1

si

(

N+M
∑

j=N+1

zj
i − ri − rj

4σ2
j

)2

−
zi − ri

siσ2
i

N+M
∑

j=N+1

(zj
i − ri − rj)

2σ2
j

+

N+M
∑

j=N+1

(zj
i − ri − rj)

2

2σ2
j

}

, (9)

where si , 1/(2σ̃2
i )+1/(2σ2

i )+
∑N+M

j=N+1
1/(4σ2

j ). As can be
seen, there is no closed-form solution for the ML estimate and
we are forced to use numerical method, e.g., iterative search
with good initial point. Note that for the conventional network,
i.e., a network consisting of only primary nodes, MLE changes
to [2]

θ̂ = argmin
θ∈R2

N
∑

i=1

2

σ2
i

(

zi − ri

)2

. (10)

B. Linear estimator algorithm

To obtain a closed-form solution to the positioning prob-
lem, which avoids MLE’s drawback, we apply linearization
technique to the measurements in both PRNs and SRNs. The
estimator is implemented in two steps; coarse and fine. Note
that it is required to have at least three non co-linear reference
nodes for this estimator.

1) Coarse estimation: One way to obtain a linear model
versus the target position is to apply a pre-processing on
measurements. Suppose that the level of noise is small, for
the ith PRN, squaring both sides of (5) yields

z2
i ≈ ‖θ‖2 − 2xT

i θ + ‖xi‖
2 + 2riϑi

=
[

− 2xT
i 1

]

ψ + ‖xi‖
2 + 2riϑi , i = 1, ..., N, (11)

where ϑi = ni,T /2 + nT,i/2 and ψ =
[

θT ‖θ‖2
]T . For

simplicity of notation let us define

z̄i = z2
i − ‖xi‖

2 =
[

− 2xT
i 1

]

ψ + 2riϑi , i = 1, ..., N.

For the TDOA measurement in the jth SRN, i.e., (4), let us
first arrange a new set of measurements as follows

z̃j
i = zj

i − zi = rj + εi,j , (i, j) ∈ C, (12)

where εi,j = nT,j + ni,T /2 − nT,i/2 − ni,j . Now similar to
(11), we can linearize (12) to get

(

z̃j
i

)2
≈

[

− 2xT
j 1

]

ψ + ‖xj‖
2 + 2rjεi,j , (i, j) ∈ C. (13)

Again for simplicity of notation let us define

z̄j
i =

(

z̃j
i

)2
− ‖xj‖

2 =
[

− 2xT
j 1

]

ψ + 2rjεi,j , (i, j) ∈ C.

A linear set of equations can be written as

d = Aψ + ν, (14)

where vectors d and ν, and matrix A are obtained as follows

d =
[

z̄1 . . . z̄N z̄1
1 . . . z̄N

1

]T
,

ν = 2
[

r1ϑ1 . . . rNϑN rN+1εi,N+1 . . . rN+M εi,N+M

]T
,

A =











A1

A2

...
A2











, A1 =







−2xT
1 1

...
...

−2xT
N 1






, A2 =







−2xT
N+1 1

...
...

−2xT
N+M 1






,

Suppose that the matrix A is full-rank, then the unknown
parameter ψ can be estimated by using weighted least squares
method [5, Ch. 8],

ψ̂ = (AT C−1
ν A)−1AT C−1

ν d , (15)

where the covariance matrix Cν of the zeros mean noise vector
ν is computed as follows

Cν = E
{

ννT
}

=

[

Cν11
Cν12

Cν21
Cν22

]

, (16)

where matrices Cν11
∈ R

N×N , Cν12
= CT

ν21
∈ R

N×NM , and
Cν22

∈ R
NM×NM are given by

Cν11
= diag

(

r2
1(σ̃

2
1 + σ2

1) . . . r2
N (σ̃2

N + σ2
N )

)

,

Cν12
=







rT
1 . . . 0
...

. . .
...

0 . . . rT
N






, Cν22

=







R1 . . . 0
...

. . .
...

0 . . . RN






,

ri = ri

[

rN+i(σ̃i
2 + σ2

i ) . . . rN+M (σ̃i
2 + σ2

i )
]T

,

Ri =
(

σ̃2
i + σ2

i

)







rN+1

...
rN+M







[

rN+1 ... rN+M

]

+ 4diag
(

r2
N+1

(

σ2
N+1 + σ̃2

N+1

)

, . . . , r2
N+M

(

σ2
N+M + σ̃2

N+M

)

)

, (17)

where IM is the M by M identity matrix. The covariance
matrix of ψ̂ is given by [5]

cov(ψ̂) = (AT C−1
ν A)−1. (18)

To compute the covariance matrix Cν the real distances
between reference nodes to the target are required. Since in
practice, the real distances are not available, we instead use
the measured distances. It has been shown in [6] that the
degradation of replacing the estimated distances instead of the
real distances is negligible. The linear estimator obtained in
(15) shows good performance when the measurement noise is
small. The first step estimation gives a coarse estimate and to
improve it we obtain a refining estimator.

2) Fine estimation: Let us apply the first order Taylor-series
expansion about θ̂ = [ψ̂]2×1 for the ith measurement in the
PRNs, i.e., (5), to get

zi = ri + ∇T ri|
θ̂
(θ − θ̂) + ϑi , (19)

where the gradient is computed as ∇T ri|
θ̂

= (θ̂ −

xi)
T /‖θ̂− xi‖.



For the measurement in the SRN similar to measurement in
PRN, we get

zj
i = ri|

θ̂
+ rj |

θ̂

+ ∇T ri|
θ̂
(θ − θ̂) + ∇T rj |

θ̂

(θ − θ̂) + ϑj
i ,

(i, j) ∈ C, (20)

where ϑj
i = nT,j + ni,T − ni,j . A new linear set of data can

be written in matrix form as

h = G4θ + ζ , (21)

where 4θ = θ−θ̂ and vectors h, ζ, and matrix G are obtained
as follows

h =
[

z1 . . . zN z1
1 . . . zM

N

]T
,

G =



























∇T r1|
θ̂

...
∇T rN |

θ̂

∇T r1|
θ̂

+ ∇T rN+1|
θ̂

...
∇T rN |

θ̂
+ ∇T rN+M |

θ̂



























,

ζ =
[

ϑ1 . . . ϑN ϑN+1

1 . . . ϑN+M
N

]T
.

To obtain the estimation error from (21), i.e. 4θ, to be
small enough (if possible), we solve a regularized least squares
problem as follows

minimize
4θ

‖h − G4θ‖2

C−1 + γ ‖4θ‖2, (22)

where regularization parameter γ > 0 determines the tradeoff
between ‖h − G4θ‖2 and ‖4θ‖2, and ‖b‖2

P stands for
the weighted norm bT Pb. The solution to (22), Tikhonov
regularization problem, is given by [7, Ch. 6]

4̂θ =
(

GT C−1G + γI2
)−1

GT C−1h, (23)

where the covariance matrix of C−1 is given by (7).
The final estimate is expressed as

θ̃ = θ̂ + 4̂θ. (24)

Eq.(23) shows that the estimator is a biased estimator. It is
easy to show that for high SNR the estimator is an unbiased
estimator. In the simulation section, we examine the bias value
of the estimator.

As can be seen from (24), the estimator in the second step
tries to refine the previous estimate. Normally the second step
can be repeated in order to improve the accuracy, but as we
have observed in simulations, at high SNR, one step fine tuning
is enough to get very close to the CRLB.

Note that the method explained here can be similarly applied
to non-cooperative networks.

−50 0 50

−50
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50
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Fig. 2. Simulation environment with three primary nodes and one secondary
node. The coordinates are in the unit of meters.

IV. SIMULATION

In this section, computer simulations are performed to
evaluate the performance of the proposed estimator. To com-
pare different methods, we consider root mean-square error
(RMSE) and cumulative distribution function (CDF) of posi-
tioning error. The CRLB for the cooperative case computed
in [2] is re-derived in appendix A. Note that the CRLB
for non-cooperative mode can be easily obtained from the
cooperative case neglecting the secondary nodes’ contribution.
Fig. 2 shows the simulation environment where three PRNs
and one SRN involved in simulation are located on the corner
of a 100 m×100 m square area. The target is randomly placed
inside of the area over a grid of 19 × 19. In simulation, we
assume σ̃i = σi = σi,j = σ. For implementation of the MLE,
we used grid search inside the area. For the fine estimator
without any attempt to optimize γ, we simply set it equal to
0.01 for both conventional and cooperative network.

Fig. 3 shows the RMSE of the CRLB and the proposed
estimator for both cooperative and non-cooperative networks.
As can be seen, for both networks, the linear estimator, as well
as MLE, attains the CRLB for high SNR. As the variance
of noise increases, the gap between proposed estimator and
the CRLB also increases. It also shows that the cooperation
can improve the performance for low SNRs. It is seen that
the fine estimator outperforms the coarse estimator for both
networks. For this deployment, it is seen that the coarse
estimator for the cooperative case outperforms the optimal
unbiased estimator in the non-cooperative case. To further
evaluation, we consider the position error CDF for the linear
estimators in both cooperative and non-cooperative modes.
In this simulation, we consider the network of Fig. 2 and
set σT = σi = 10 m. Fig. 4 shows the position error
CDF for both cases. It can be seen that in the cooperative
mode the proposed estimator outperforms that one in the
non-cooperative mode. It also shows that the fine estimator
improves the estimation accuracy compared to the coarse
estimator for both networks. We further study the bias value of
proposed estimator. To evaluate the bias of the estimator, we
compute the root square of mean biased value (RSMB) which

we define as RSMB =

√

[

E{θ̂1 − θ1}
]2

+
[

E{θ̂2 − θ2}
]2

.
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Fig. 5 shows the RSMB of estimator for both conventional and
cooperative networks. As can be seen in cooperative mode the
bias value is extremely small compared to CRLB. Hence the
fine estimator for cooperative mode can be considered as an
unbiased estimator.
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V. CONCLUSION

In this paper, we considered the positioning problem in
cooperative sensor networks where hybrid two-way time of
arrival and time difference of arrival are measured by senor
nodes. Based on measurements collected by different nodes,
a maximum likelihood estimator (MLE) can be derived. Due
to the non-linear nature of the cost function in the MLE, a
numerical method, e.g., an iterative search algorithm with a
good initial point, should be taken. To avoid drawbacks in the
numerical method, we have used the linearization techniques
to obtain a two-step linear estimator. In the first step, a coarse
estimate is obtained and in the second step, it is refined. The
advantages of the proposed estimator are that it has a closed-
form solution in each step and also it attains the Carmér-
Rao lower bound for sufficiently high SNR. Simulation results
show that the proposed method is asymptotically efficient.

APPENDIX

A. CRLB

Considering the measurement vector (6) with mean µ and
covariance matrix C, i.e., (7), the fisher information matrix

can be computed as [5] [I ]nm =
[

∂µ
∂θn

]T

C−1
[

∂µ
∂θm

]

, n =

1, 2, m = 1, 2. Simple calculation considering θ = [θ1 θ2]
T

shows
[

∂µ

∂θn

]T

=

[

∂µ1

∂θn

, . . . ,
∂µN

∂θn

, . . . ,
∂µ1

N

∂θn

, . . . ,
∂µM

N

∂θn

]

,

∂µi

∂θ1

=
x − xi

ri

,
∂µj

i

∂θ1

=
x − xi

ri

+
x − xN+j

rN+j

, (i, j) ∈ C,

∂µi

∂θ2

=
y − yi

ri

,
∂µj

i

∂θ2

=
y − yi

ri

+
y − yN+j

rN+j

, (i, j) ∈ C.

The lower bound on any unbiased estimator is given by

E{‖θ̂ − θ‖2} ≥
[I ]22 + [I ]11

[I ]11[I ]22 − [I ]212
(25)
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