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Abstract—We consider weighted nonbinary repeat multiple-
accumulate (WNRMA) code ensembles obtained from the serial
concatenation of a nonbinary rate-1/n repetition code and the
cascade ofL ≥ 1 accumulators, where each encoder is followed
by a nonbinary random weighter. We derive the exact weight
enumerator of nonbinary accumulators and subsequently give the
weight enumerators for WNRMA code ensembles. We formally
prove that the symbol-wise minimum distance of WNRMA code
ensembles asymptotically grows linearly with the block length
when L ≥ 3 and n ≥ 2, and L = 2 and n ≥ 3, for all powers of
primes q ≥ 3 considered, whereq is the field size. Thus, WNRMA
code ensembles are asymptotically good for these parameters.

I. I NTRODUCTION

Weighted nonbinary repeat accumulate (WNRA) codes were
introduced by Yang in [1] as theqary generalization of the
celebrated binary repeat accumulate (RA) codes. The encoder
consists of a rateRrep = 1/n nonbinary repeat code, a
weighter, a random symbol interleaver, and an accumulator
over a finite field GF(q) of size q. WNRA codes can be
decoded iteratively using the turbo principle, and in [1] simu-
lation results were presented that showed that these codes are
superior to binary RA codes on the additive white Gaussian
noise (AWGN) channel when the weighter is properly chosen.
In a recent work [2], Kimet al. derived an approximate
input-output weight enumerator(IOWE) for the nonbinary
accumulator. Based on that, approximate upper bounds on
the maximum-likelihood (ML) decoding threshold of WNRA
codes withqary orthogonal modulation and coherent detection
over the AWGN channel were computed for different values
of the repetition factorn and the field sizeq, showing that
these codes perform close to capacity under ML decoding for
large values ofn andq.

In [3], Pfister showed that the minimum distance (dmin) of
binary repeat multiple-accumulate (RMA) codes, built from
the concatenation of a repeat code with two or more accu-
mulators, increases as the number of accumulators increase.
In particular, it was shown in [3] that there exists a sequence
of RMA codes withdmin converging in the limit of infinitely
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many accumulators to the Gilbert-Varshamov bound (GVB).
The stronger result that the typicaldmin converges to the GVB
was recently proved in [4]. Also, in [5], it was conjectured
by Pfister that thedmin of RMA codes asymptotically grows
linearly with the block length, and that the growth rate is
given by the threshold where the asymptotic spectral shape
function becomes positive. More recently, it was shown in [4,
6] that RMA code ensembles with two or more accumulators
are indeedasymptotically good, in the sense that theirdmin

asymptotically grows linearly with the block length. A formal
proof was given in [4], and a method for the calculation of a
lower bound on the growth rate coefficient was given in [6].

In a recent paper [7], the authors considered weighted non-
binary repeat multiple-accumulate (WNRMA) code ensembles
obtained from the serial concatenation of a nonbinary repeat
code and the cascade ofL ≥ 1 accumulators, where each
encoder is followed by a nonbinary weighter, as theqary
generalization of binary RMA codes [3–6, 8]. Building upon
the approximate IOWE for nonbinary accumulators [2], it was
shown numerically in [7] that thedmin of WNRMA code
ensembles grows linearly with the block length, and the growth
rates were estimated. However, no formal proof was provided
in [7]. In this paper, we address this issue. We derive anexact
expression for the IOWE of a nonbinary accumulator which
allows us to derive an exact closed-form expression for the av-
erageweight enumerator(WE) of WNRMA code ensembles.
We then analyze the asymptotic behavior of the average WE
of WNRMA code ensembles, extending the asymptoticdmin

analysis in [4, 6] for binary RMA code ensembles to WNRMA
code ensembles. In particular, we prove that thedmin of
WNRMA code ensembles asymptotically grows linearly with
the block length whenL ≥ 3 and n ≥ 2, andL = 2 and
n ≥ 3, for all powers of primesq ≥ 3 considered. Hence,
WNRMA code ensembles are asymptotically good for these
parameters. The obtained growth rates are very close to the
GVB for practical values ofq.

II. ENCODERSTRUCTURE AND WEIGHT ENUMERATORS

The encoder structure of WNRMA codes is depicted in
Fig. 1. It is the serial concatenation of a rateRrep = 1/n
repetition codeCrep, with the cascade ofL ≥ 1 identical
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Fig. 1. Encoder structure for WNRMA codes.

rate-1, memory-one,qary accumulatorsCl, l = 1, . . . , L,
with generator polynomialsg(D) = 1/(1 + D) over a finite
field GF(q), through random interleaversπ1, . . . , πL. Each
encoder is followed by a nonbinary weighter, which multiplies
each symbol at its input by a nonzeroqary symbol. For
analysis purposes we consider random weighters (RWs). We
denote byC0 the (nK,K) outer block code obtained by
concatenating togetherK successive codewords ofCrep. The
overall nominal code rate (avoiding termination) is denoted
by R = K/N = 1/n, where N = nK is the output
block length. In more detail, a length-K information sequence
u0 = (u0,1, . . . , u0,K) of qary symbolsu0,i ∈ {0, 1, . . . , q−1}
is encoded by aqary repeat code. The output of the repeat
codex0 = (x0,1, . . . , x0,nK) is fed to a nonbinary weighter
which multiplies each symbolx0,i by a nonzeroqary symbol.
In [1], it was shown that a careful choice of the weighter can
significantly improve performance. The resulting sequenceis
encoded by a chain ofL nonbinary accumulators, preceded
by interleaversπ1, . . . , πL. Furthermore, each accumulator is
followed by a nonbinary RW.

A. Average WEs for WNRMA Code Ensembles

Let āCw,h be the ensemble-average nonbinary IOWE of the
code ensembleC with input and output block lengthK and
N , respectively, denoting the average number of codewords
of input Hamming weightw and output Hamming weighth
over C. Here, by Hamming weight, we mean the number of
nonzero symbols in a codeword. For convenience, we may
simply speak of weight. Also, denote bȳaCh =

∑K
w=0 ā

C
w,h

the ensemble-average nonbinary WE of the code ensembleC,
giving the average number of codewords of weighth over C.
Throughout the paper we will simply speak of IOWE and WE,
avoiding the term nonbinary, when the fact that they refer to
nonbinary distributions is clear from the context.

Benedettoet al. introduced in [9] the concept ofuniform
interleaver to obtain average WEs for concatenated code
ensembles from the WEs of the constituent encoders. Since
we are dealing with nonbinary codes, we need to extend
the approach from [9] to consider vector-WEs. In particular,

consider the ensemble of serially concatenated codes (SCCs)
obtained by connecting two nonbinary encodersCa andCb

through a uniform interleaver. The ensemble-average IOWE
of the serially concatenated code ensemble can be written as

āSCC
w,h =

∑

l

∑

l:
Pq−1

i=1 li=l

aCa

w,la
Cb

l,h
(

N
l1,l2,...,lq−1

)

where
(

N

l1, l2, . . . , lq−1

)

=
N !

l1! · · · lq−1!(N −
∑q−1

i=1 li)!
,

l = (l1, l2, . . . , lq−1) is the weight vector with entriesli giving
the number of symbolsi in a codewordx, and aCa

w,l is the
vector-IOWE of encoderCa, giving the number of codewords
of input weightw at the input ofCa and output vector-weight
l at the output ofCa, i.e., the codeword hasl1 1’s, l2 2’s, and
so on. Likewise,aCb

l,h is the vector-IOWE of encoderCb giving
the number of codewords of input vector-weightl and output
weighth. In general, it is very difficult to compute the vector-
IOWE of an encoder in closed-form. However, if encoderCa

is followed by a nonbinary RW, the following theorem (which
is proved in [10]) holds.

Theorem 1. Let C be the ensemble of codes over GF(q)
obtained by the serial concatenation of two nonbinary en-
codersCa andCb through a uniform interleaver. Furthermore,
encoderCa is followed by a nonbinary RW. Also, denote by
aCa

w,h and aCb

w,h the IOWE of encoderCa and encoderCb,
respectively. The ensemble-average IOWE of the ensembleC
can be written as

āCw,h =
∑

l

aCa

w,la
Cb

l,h
(

N
l

)

(q − 1)l
.

From Theorem 1 it follows that the ensemble-average IOWE
of WNRMA code ensembles can be computed, when each
constituent encoder is followed by a nonbinary RW, from the
IOWEs of the component encoders, which are easier to com-
pute in closed-form than the vector-IOWEs. Using Theorem 1
and the concept of uniform interleaver, the ensemble-average
IOWE of a WNRMA code ensembleCWNRMA can be written
as

āCWNRMA

w,h =
N

∑

h1=0

· · ·
N

∑

hL−1=0

aC0
w,nwa

C1

nw,h1
(

N
nw

)

(q − 1)nw

×

[

L−1
∏

l=2

aCl

hl−1,hl
(

N
hl−1

)

(q − 1)hl−1

]

aCL

hL−1,h
(

N
hL−1

)

(q − 1)hL−1

=

N
∑

h1=0

· · ·

N
∑

hL−1=0

āCWNRMA

w,h1,...,hL−1,h

(1)

whereāCWNRMA

w,h1,...,hL−1,h is called theconditional weight enumer-
ator (CWE) of CWNRMA.

The evaluation of (1) requires the computation of the
IOWEs of the constituent encoders, which is addressed below.



āCWNRMA

w,h1,...,hL−1,h =

(

K
w

)

(q − 1)w
∏L

l=1

∑⌊hl−1/2⌋
kl=max(1,hl−1−hl)

(

N−hl

kl

)(

hl−1
kl−1

)(

hl−kl

hl−1−2kl

)

(q − 1)
kl (q − 2)

hl−1−2kl

∏L
l=1

(

N
hl−1

)

(q − 1)hl−1

=

⌊h0/2⌋
∑

k1=max(1,h0−h1)

⌊h1/2⌋
∑

k2=max(1,h1−h2)

· · ·

⌊hL−1/2⌋
∑

kL=max(1,hL−1−hL)

āCWNRMA

w,h1,...,hL−1,k1,...,kL,h

(4)

B. IOWEs for Memory-One Encoders and the Repetition Code

An approximated expression for the IOWE of aqary accu-
mulator was given in [2]. In this section, we derive the exact
expression for the IOWE of aqary accumulator. We can prove
the following theorem [10].

Theorem 2. The IOWE for rate-1, memory-one,qary con-
volutional encoders over GF(q) with generator polynomials
g(D) = 1/(1 + D) and g(D) = 1 + D that are terminated
to the zero state at the end of the trellis and with input and
output block lengthN can be given in closed form as

a
1

1+D

w,h = a1+D
h,w =

⌊w/2⌋
∑

k=max(1,w−h)

(

N − h

k

)(

h− 1

k − 1

)(

h− k

w − 2k

)

× (q − 1)
k
(q − 2)

w−2k

(2)

for positive input weightsw, wherek is the number of error

events. Also,a
1

1+D

0,0 = a1+D
0,0 = 1.

Notice that the formula in (2) generalizes the closed-form
expression for the IOWE for rate-1, memory-one, binary
convolutional encoders from [11] to theqary case.

Theorem 3. The IOWE for the(nK,K) qary repetition code
C0 with input block lengthK can be given in closed form as

aC0
w,nw =

(

K

w

)

(q − 1)w. (3)

Proof: The number of binary vectors of lengthK and
weight w is

(

K
w

)

, and the result follows by multiplying this
number byw times the number of nonzero elements from
GF(q).

Using (2) and (3) in (1), we get the expression (4) at the
top of the page for the CWE (withw > 0) of WNRMA code
ensembles, where for concisenessh0 = nw andhL = h.

III. A SYMPTOTIC ANALYSIS OF THE M INIMUM DISTANCE

With regard to (4) at the top of the page, without loss of
generality we can write

w = αNa, hi = βiN
bi , i = 1, . . . , L− 1,

h = ρN c, ki = γiN
di, i = 1, . . . , L

where0 ≤ a ≤ b1 ≤ b2 ≤ · · · ≤ bL−1 ≤ c ≤ 1, 0 ≤ d1 ≤ a ≤
1, and0 ≤ di ≤ bi−1 ≤ 1, i = 2, . . . , L. These inequalities
can be derived from the binomial coefficients in the expression
in (4) combined with the fact that for a binomial coefficient
(

n
k

)

, n ≥ k ≥ 0. Also, α, β1, . . . , βL−1, γ1, . . . , γL, andρ are

positive constants. We must consider two cases: 1) at least
one of the quantitiesw, h1, . . . , hL−1, k1, . . . , kL, or h is of
ordero(N), and 2) all quantitiesw, h1, . . . , hL−1, k1, . . . , kL,
and h can be expressed as fractions of the block lengthN ,
i.e., a = b1 = · · · = bL−1 = d1 = · · · = dL = c = 1.
The following lemma (which is proved in [10]) addresses the
first case for weighted nonbinary repeat double-accumulate
(WNRAA) code ensembles.

Lemma 1. In the ensemble of WNRAA codes with block length
N andn ≥ 3, in the case where at least one of the quantities
w, h1, k1, k2, or h is of order o(N), N5āCWNRAA

w,h1,k1,k2,h −→ 0
asN −→ ∞ for all positive values ofh.

Lemma 1 can be generalized to the case of WNRMA code
ensembles withL ≥ 3. The proof is omitted for brevity.
As a consequence of Lemma 1, we can assume thatw,
h1, . . . , hL−1, k1, . . . , kL, and h are all linear in the block
length: The average number of codewords of weight at most
~, for some~, of WNRMA code ensembles is upper-bounded
by

N2L+1 max
w,h1,...,hL−1,k1,...,kL,h≤~

āCWNRMA

w,h1,...,hL−1,k1,...,kL,h

which from Lemma 1 tends to zero asN tends to infinity if at
least one of the quantities is of ordero(N). Thus, the average
number of codewords of sublinear weight of at most~ tends
to zero asN tends to infinity.

We now address the second case by analyzing the asymp-
totic spectral shape function. The asymptotic spectral shape
function is defined as [12]

r(ρ) = lim sup
N−→∞

1

N
ln āC⌊ρN⌋

wheresup(·) denotes the supremum of its argument,ρ = h
N

is the normalized output weight, andN is the code block
length. If there exists some abscissaρ0 > 0 such that
supρ≤ρ∗ r(ρ) < 0 ∀ρ∗ < ρ0, andr(ρ) > 0 for someρ > ρ0,
then it can be shown that, with high probability, thedmin

of most codes in the ensemble grows linearly with the block
lengthN , with growth rate coefficient of at leastρ0. On the
other hand, ifr(ρ) is strictly zero in the range(0, ρ0), it cannot
be proved directly whether thedmin grows linearly with the
block length or not. In [4], it was shown that the asymptotic
spectral shape function of RMA codes exhibits this behavior,
i.e., it is zero in the range(0, ρ0) and positive for someρ > ρ0.
By combining the asymptotic spectral shapes with the use of
bounding techniques, it was proved in [4, Theorem 6] that the



dmin of RMA code ensembles indeed grows linearly with the
block length with growth rate coefficient of at leastρ0.

We remark that in the rest of the paper, with a slight abuse
of language, we sometimes refer toρ0 as the exact value of the
asymptotic growth rate coefficient. However, strictly speaking,
ρ0 is only a lower bound on it.

Now, by using Stirling’s approximation for the binomial co-
efficient

(

n
k

)

∼ enH(k/n) for n→ ∞ andk/n constant, where
H(·) is the binary entropy function with natural logarithms,
and the fact thatw, h1, . . . , hL−1, k1, . . . , kL, andh can all
be assumed to be of the same order asN (due to Lemma 1,
generalized to the general case),āCWNRMA

w,h1,...,hL−1,h can be written
as

āCWNRMA

w,h1,...,hL−1,h =
∑

k1,...,kL

exp {f(α, β1, . . . , βL−1, γ1, . . . , γL, ρ)N + o(N)}

whenN −→ ∞, whereα = w
K is the normalized input weight,

βl = hl

N is the normalized output weight of codeCl, γl = kl

N ,
and the functionf(·) is given by

f(β0, β1, . . . , βL−1, γ1, . . . , γL, ρ)

=
H (β0)

n
−

L
∑

l=1

H (βl−1) +
L

∑

l=1

(1 − βl)H

(

γl

1 − βl

)

+

L
∑

l=1

βlH

(

γl

βl

)

+

L
∑

l=1

(βl − γl)H

(

βl−1 − 2γl

βl − γl

)

+ ln(q − 1)

L
∑

l=1

(γl − βl−1)

+ ln(q − 2)

L
∑

l=1

(βl−1 − 2γl) +
β0 ln(q − 1)

n

(5)

where for conciseness we definedβ0 = α and βL = ρ.
Finally, the asymptotic spectral shape function for WNRMA
code ensembles can be written as

rCWNRMA(ρ)

= sup
0≤βl−1≤1

max(0,βl−1−βl)≤γl≤
min(βl,1−βl,βl−1/2)

l=1,...,L

f(β0, β1, . . . , βL−1, γ1, . . . , γL, ρ).

(6)

Note that the objective function in (6), defined in (5), can
be rewritten into [7, Eq. (6)], since

L
∑

l=1

βlH

(

γl

βl

)

+

L
∑

l=1

(βl − γl)H

(

βl−1 − 2γl

βl − γl

)

=

L
∑

l=1

βlH

(

βl−1 − γl

βl

)

+

L
∑

l=1

(βl−1 − γl)H

(

γl

βl−1 − γl

)

.

Thus, the approximate asymptotic spectral shape function
given in [7, Eq. (7)] is indeed exact. Therefore, the growth
rate coefficients computed in this section coincide with those

in [7]. However, for finite block lengths, the IOWE of a
nonbinary accumulator as given by Theorem 1 in [7] using
the approximation forp(k) given in [7, Eq. (3)] (which is
taken from [2]) is not exact.

From (5) and (6) it can easily be verified that the asymptotic
spectral shape function of WNRMA code ensembles satisfies
the recursive relation

rCWNRMA(l)(ρ) = sup
0≤u≤1

[

rCWNRMA(l−1)(u) + ψ(u, ρ)
]

where rCWNRMA(l) , l > 0, is the asymptotic spectral shape
function with l accumulators,rCWNRMA(0)(ρ) = 1

n (H(ρ) +
ρ ln(q − 1)) is the asymptotic spectral shape function of a
repeat code, and

ψ(u, ρ) = sup
max(0,u−ρ)≤γ≤
min(ρ,1−ρ,u/2)

[

−H(u) + ρH

(

γ

ρ

)

+ (1 − ρ)H

(

γ

1 − ρ

)

+ (ρ− γ)H

(

u− 2γ

ρ− γ

)

+(γ − u) ln(q − 1) + (u− 2γ) ln(q − 2)] .

Lemma 2. The asymptotic spectral shape function of the
WNRMA code ensemble is nonnegative, i.e.,

rCWNRMA(l)(ρ) ≥ 0, ∀ρ ∈ [0, 1].

Proof: We haverCWNRMA(1)(ρ) ≥ ψ(0, ρ)+H(0)/n = 0.
The general case can be proved by induction onl.

To analyze the asymptoticdmin behavior of WNRMA code
ensembles, we must solve the optimization problem in (5)-
(6). The numerical evaluation of (5)-(6) is shown in Fig. 2
for WNRAA code ensembles, withn = 3 and q = 4, 8, 16,
and32. The asymptotic spectral shape function is zero in the
range(0, ρ0) and positive for someρ > ρ0. A similar behavior
is observed for weighted nonbinary repeat triple-accumulate
(WNRAAA) code ensembles. In this case, we cannot conclude
directly whether thedmin asymptotically grows linearly with
the block length or not. However, we can prove the following
theorem [10].

Theorem 4. Define ρ0 = max{ρ∗ ∈ [0, (q − 1)/q) :
rCWNRMA(ρ) = 0 ∀ρ ≤ ρ∗}. Then∀ρ∗ > 0

lim
N−→∞

Pr (dmin ≤ (ρ0 − ρ∗)N) = 0

whenL ≥ 3 andn ≥ 2, andL = 2 andn ≥ 3, for all powers
of primesq ≥ 3. Thus, ifρ0 > 0 and rCWNRMA (ρ) ≥ 0 ∀ρ
(see Lemma 2), then almost all codes in the ensemble have
asymptotic minimum distance growing linearly withN with
growth rate coefficient of at leastρ0.

We can now prove the following theorem [10].

Theorem 5. The typical dmin of WNRMA code ensembles
whenL ≥ 3 andn ≥ 2, andL = 2 andn ≥ 3, for all powers
of primes3 ≤ q ≤ 225, grows linearly with the block length.

The exact values ofρ0 are given in Table I for several values
of the repetition factorn and the field sizeq for WNRAA
codes. For comparison, we have also tabulated the asymptotic
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Fig. 2. Asymptotic spectral shape function of WNRAA codes with n = 3.

TABLE I
GROWTH RATE COEFFICIENTρ0 OF WNRAA CODES FOR DIFFERENT

VALUES OF THE REPETITION FACTORn AND THE FIELD SIZE q. THE
CORRESPONDING GROWTH RATES FROM THE ASYMPTOTIC NONBINARY

GVB ARE GIVEN IN THE PARENTHESES.
q = 4 q = 8 q = 16 q = 32

n = 3 0.2360 (0.2917) 0.3107 (0.3730) 0.3609 (0.4302) 0.3912 (0.4715)
n = 5 0.3820 (0.3977) 0.4840 (0.4987) 0.5518 (0.5664) 0.5967 (0.6131)
n = 10 0.5026 (0.5048) 0.6192 (0.6207) 0.6930 (0.6940) 0.7413 (0.7421)

dmin growth rate coefficient from the asymptotic GVB for
nonbinary codes computed from

R ≥

{

1 − Hq(ρmin) − ρmin logq(q − 1), if ρmin ≤ q−1
q

0, otherwise

where ρmin is the normalizeddmin, R is the asymptotic
rate, andHq(·) is the binary entropy function with base-q
logarithms. We observe that the gap to the GVB decreases
with increasing values ofn for a fixed value ofq. For a fixed
value ofn, the growth rate coefficient increases with increasing
values ofq, while the gap to the GVB stays approximately
constant. However, we observed that this behavior only holds
for small values ofq. In fact, the asymptotic growth rate
coefficient increases with the field sizeq up to some value, and
then it decreases again, after which the gap to the GVB also
increases. This is also consistent with the behavior observed
for nonbinary low-density parity-check codes in [13]. The
values of ρ0 for WNRAAA code ensembles are given in
Table II for selected values ofn and q. The growth rate
coefficients are very close to the GVB for WNRAA code
ensembles withn = 5 andn = 10 and for WNRAAA code
ensembles, for the considered values ofq. For WNRAAA code
ensembles withn = 5 andn = 10 the growth rates coincide
with the GVB, for the considered values ofq.

IV. CONCLUSION

In this paper, we analyzed the symbol-wise minimum dis-
tance properties of WNRMA code ensembles, where each en-
coder is followed by a nonbinary random weighter. We derived
an exact closed-form expression for the IOWE of nonbinary
accumulators. Based on that, we derived the ensemble-average
WE of WNRMA code ensembles and analyzed its asymptotic

TABLE II
GROWTH RATE COEFFICIENTρ0 OF WNRAAA CODES FOR DIFFERENT

VALUES OF THE REPETITION FACTORn AND THE FIELD SIZE q. THE

CORRESPONDING GROWTH RATES FROM THE ASYMPTOTIC NONBINARY
GVB ARE GIVEN IN THE PARENTHESES.

q = 4 q = 8 q = 16 q = 32

n = 3 0.2911 (0.2917) 0.3725 (0.3730) 0.4299 (0.4302) 0.4712 (0.4715)
n = 5 0.3977 (0.3977) 0.4987 (0.4987) 0.5664 (0.5664) 0.6131 (0.6131)
n = 10 0.5048 (0.5048) 0.6207 (0.6207) 0.6940 (0.6940) 0.7421 (0.7421)

behavior. Furthermore, we formally proved that the symbol-
wise minimum distance of WNRMA code ensembles asymp-
totically grows linearly with the block length whenL ≥ 3
andn ≥ 2, andL = 2 andn ≥ 3, for all powers of primes
q ≥ 3 considered. The asymptotic growth rate coefficient
of the minimum distance of WNRAA and WNRAAA code
ensembles for different values of the repetition factorn and
the field sizeq were also computed. The asymptotic growth
rates are very close to the GVB whenq is large, but not too
large.
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