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Abstract— For systems and devices, such as cognitive radio and
networks, that need to be aware of available frequency bands,
spectrum sensing has an important role. A major challenge in
this area is the requirement of a high sampling rate in the
sensing of a wideband signal. In this paper a wideband spectrum
sensing method is presented that utilizes a sub-Nyquist sampling
scheme to bring substantial savings in terms of the sampling
rate. The correlation matrix of a finite number of noisy samples
is computed and used by a NLLS estimator to detect the occupied
and vacant channels of the spectrum. We provide an expression
for the detection threshold as a function of sampling parameters
and noise power. Also, a sequential forward selection algorithm
is presented to find the occupied channels in a low complexity.
The method can be applied to both correlated and uncorrelated
wideband multichannel signals. A comparison with conventional
energy detection using Nyquist-rate sampling shows that the
proposed scheme can yield similar performance for SNR above
4 dB with a factor of 3 smaller sampling rate.

I. INTRODUCTION

The scarcity of the available frequency spectrum and the in-
creasing demand, caused by the emerging wireless applications
for mobile users, motivate to use cognitive radio and networks.
They aim to enhance the utilization of the radio frequency
(RF) spectrum through dynamic spectrum access. Due to the
current static spectrum licensing scheme, spectrum holes or
spectrum opportunities arise. Spectrum holes are defined as
frequency bands which are allocated to, but in some locations
and sometimes not utilized by, licensed users, and, therefore,
could be accessed by unlicensed users [1]. As such, the first
cognitive task is to develop wireless spectral detection and
estimation techniques for sensing and identification of the
available spectrum [2].

Some well-known spectrum sensing techniques are energy
detection (ED) [3], matched filter and cyclostationary feature
detection [4] that have been proposed for narrow band sensing.
In these techniques, the received signal is filtered with narrow-
band band-pass filters and sampled uniformly at the Nyquist
rate. A decision then is made, based on the signal properties,
to detect presence (H1) or absence (H0) of a primary user in
the considered band [5].

Future cognitive radios should be capable of scanning a
wideband of frequencies, in the order of few GHz [6]. In the
wideband regime, the radio front-end can employ a bank of
band-pass filters to select a frequency band and then exploit

the existing techniques for each narrowband, but this method
requires a large number of RF components [2].

Alternatively, in order to identify the locations of vacant
frequency bands, the entire wideband is modelled as a train of
consecutive frequency sub-bands [5] and the total wideband is
sampled classically. After estimation of the spectrum from the
obtained samples, the conventional spectrum sensing methods
such as ED would be applied to detect the signal in each band.
Classical sampling of a wideband signal needs high sampling
rate ADCs, which have to operate at or above the Nyquist rate.
Clearly, this is a major implementation challenge.

By using the fact that the wireless signals in open-spectrum
networks are typically sparse in the frequency domain, in
the previous work [7], we proposed a wideband spectrum
sensing method based on MUSIC algorithm that would bring
substantial saving in terms of the sampling rate. However, we
explore a method to work better in smaller samples and smaller
SNR.

In this work, the same sampling strategy as [7] is utilized
to reduce the sampling rate far below the Nyquist rate.
However, the estimator is replaced by a non-linear least square
(NLLS) algorithm that would be applied to both correlated
and uncorrelated multichannel signals. The frequency band
of interest is divided into a finite number of spectral bands,
and the occupied bands are estimated by considering the
correlation matrix of the sampled data using a NLLS estimator.
A theoretical expression is derived for detection threshold
based on the sampling parameters and noise power. Also, a
sequential NLLS algorithm is utilized to reduce the complexity
of implementation. In our method, estimation of the signal
spectrum is skipped, and we directly detect the occupied
channels from the sampled data in the time domain.

The outline of the paper is as follows. The next section
states the signal model and problem formulation. Section
III introduces the spectrum sensing method and explains the
functionality of each block in the model. In Section IV,
comparison with the ED method and simulation results are
presented and finally a conclusion is given in Section V.

II. PROBLEM STATEMENT

The received signal x(t) is assumed to be an analog
wideband sparse spectrum signal, bandlimited to [0, Bmax].
The Nyquist rate for this signal is equal to Bmax. However, the



discussion is easily adopted to real-valued signals supported
on [−Bmax

2 ,+Bmax

2 ]. Denote the Fourier transform of x(t)
by X(f). Depending on the application, the entire frequency
band is segmented into L narrowband channels, each of them
with bandwidth B, such that Bmax = L×B. The signal bands
could be either correlated or uncorrelated with each other. The
channels are indexed from 0 to L − 1. Then, the frequency
elements of the signal in each spectral band is represented
by X(f + rB), f ∈ [0, B] where 0 ≤ r ≤ L − 1 is the
channel index. Those spectral bands which contain part of the
signal spectrum are termed active channels, and the remaining
bands are called vacant channels. Denote the number of such
active channels by N . The indices of the N active channels
are collected into a vector

b = [b1, b2, . . . , bN ] (1)

which is referred to as the active channel set.
In the considered system, N and b are unknown. However,

we know the maximum channel occupancy which is defined
as

Ωmax =
Nmax

L
(2)

where Nmax ≥ N is the maximum possible number of
occupied channels. The Landau’s lower bound [8] for this
signal is equal to Ωmax×Bmax. Figure 1 depicts the spectrum
of a multiband signal at the sensing radio, which contains
L = 32 channels, each with a bandwidth of B = 10 MHz.
The signal is present in N = 6 channels, and the active channel
set is b = [8, 16, 17, 18, 29, 30].

The problem is, given Bmax, B and Ωmax, to find the
presence or absence of the signal in each spectral band or
equivalently find the active channel set, b, at a sub-Nyquist
sample rate.

III. WIDEBAND SPECTRUM SENSING MODEL

The proposed model for wideband spectrum sensing is
illustrated in Figure 2. The analog received signal at the
sensing cognitive radio is sampled by the multicoset sampler
at a sample rate lower than the Nyquist rate. The sampling
reduction ratio is affected by the channel occupancy and
multicoset sampling parameters. The outputs of the multicoset
sampler are partially shifted using a multirate system, which
contains the interpolation, delaying and downsampling stages.
Next, the sample correlation matrix is computed from the finite
number of obtained data. Finally, a NLLS estimator is used to
discover the position of the active channels from the sample
correlation matrix. In this section each block of the model is
described in detail.

A. Multicoset sampler

The analog wideband signal x(t) is sampled using a mul-
ticoset sampling scheme introduced in [9]. The multicoset
sampler provides p data sequences for i = 1, ..., p, given by

xi(m) = x[(mL + ci)/Bmax],m ∈ Z, (3)
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Fig. 1. Spectrum of a wideband signal received at the sensing radio with
L = 32 total bands and N = 6 active channels. The active channel set is
b = [8, 16, 17, 18, 29, 30].

where {ci}, is a randomly selects p numbers out of the set
L = {0, 1, ..., L− 1} [9].

The average sample rate of this scheme is favg = αBmax,
[9] where α = ( p

L) is termed the sub-Nyquist factor. Accord-
ing to Landau’s lower bound [8], α is lower bounded to the
maximum channel occupancy, α ≥ Ωmax.

The number of data sequences, p, should be chosen greater
than the maximum number of active channels Nmax, to satisfy
the Landau’s lower bound and provide enough equations to
find the unknown parameters.

B. Sample correlation matrix

The main purpose of this section is to relate the problem of
spectrum sensing with the problem of parameter estimation.
Towards this goal, the correlation matrix of a special config-
uration of sampled data is computed. In order to achieve this,
the following configurations are applied on the sampled data.

First, each xi(m) sequence is over-sampled by a factor L,
such that

xui [n] =

{
xi(

n
L ), n = mL,m ∈ Z

0, otherwise

and then it is filtered to obtain xhi [n] = xui [n] ∗ h[n], where
h[n] is the interpolation filter with the frequency response of

H(f) =

{
1, f ∈ [0, B]

0, otherwise.
(4)

Next, the output filtered sequence is delayed with c i samples
such that

xci [n] = xhi [n− ci]. (5)

Let us define y(f) as the known vector of observations

y(f) =

⎡
⎢⎢⎢⎣
Xc1(f)
Xc2(f)

...
Xcp(f)

⎤
⎥⎥⎥⎦ (6)

where Xci(f) is the DFT of the sequence xci [n]. Also,
x(f), the unknown vector of the signal spectrum parameters
is defined as

x(f) =

⎡
⎢⎢⎢⎣
X(f + b1B)
X(f + b2B)

...
X(f + bNB)

⎤
⎥⎥⎥⎦ , f ∈ [0, B] (7)
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Fig. 2. Proposed wideband spectrum sensing model.

where X(f + biB), f ∈ [0, B], are the frequency elements of
the signal in the active band indexed by b i.

After applying Fourier transform on both sides of (5) and
expressing the result in matrix form, the data model in the
frequency domain is given by (Appendix A)

y(f) = A(b)x(f) + n(f), f ∈ [0, B] (8)

where A(b) ∈ Cp×N is the modulation matrix given by

A(b)(i, k) = B exp

(
j2πcibk

L

)
(9)

and n(f) is the frequency representation of the noise. For
simplicity, we assume that n(f) is a Gaussian complex noise
with distribution of N (0, σ2I), which is also uncorrelated with
the signal.

The model in (8) is a classical signal model that relates the
observation vector, y(f), with the unknown signal spectrum
vector, x(f), via the modulation matrix A(b). Note that the
unknown signal parameter b is also the active channel set that
is desired in the problem of spectrum sensing. Therefore, with
this configuration, the problem of wideband spectrum sensing
is turned into the problem of finding the model parameter
b with minimum length N , subject to the data model (8).
This is a combined detection-estimation problem, where we
want to estimate the number as well as the parameters of the
signals. An approach based on the correlation matrix of the
observations is employed here for solving this problem.

The correlation matrix of observation vector is defined as

R = E[y(f)y∗(f)] = A(b)QA∗(b) + σ2I (10)

where ()∗ denotes the Hermitian transpose, and

Q = E[x(f)x∗(f)] (11)

is the correlation matrix of the signal vector.
Since the distribution of the signal is unknown, the real

correlation matrix R cannot be achieved. Hence, we estimate
R with an integration in the frequency domain as

R̂ =

B∫
0

y(f)y∗(f)df

However, y(f) is a vector of Fourier transform of xci samples,
then from Parseval’s identity R̂ can be computed directly in
the time domain from the sequences xci [n] at the sample
rate of Bmax. Since each xci [n] sequence is the output of a
narrowband filter, the reduced bandwidth output signal can be

easily accommodated within a lower output sample rate. This
means that the computations do not need to be performed at
the high sample rate, Bmax. Thus, the sequences are down-
sampled by L, the reduced bandwidth factor, such that

xdi(m) = xci [mL] (12)

The total process of oversampling, filtering, delaying and
downsampling from xi(m) to xdi(m) is viewed as a fractional
shifting of the sequence xi(n). The process also could be
implemented in a very efficient way using polyphase filters
[10]. Defining the snapshot vector xd(m) as

xd(m) =

⎡
⎢⎢⎢⎣
xd1(m)
xd2(m)

...
xdp(m)

⎤
⎥⎥⎥⎦ ,

the p × p sample correlation matrix from M samples of the
partially shifted sequence is computed from the formula

R̂ =
1

M

M∑
m=1

xd(m)x∗
d(m). (13)

Under suitable assumptions R̂ → R when M → ∞.

C. Least squares-based spectral estimation

The sparse model in (8), to find a vector b with N elements
for some signals x(f), can be solved using a NLLS approach
by minimizing the least square error (LSE) criterion as

J(b,x(f)) =

∫ B

0

‖y(f)−A(b)x(f)‖22df (14)

where ‖‖2 is the 2-norm vector. This is a separable least-
squares problem, and for fixed (but unknown) b, the solution
with respect to the linear parameter x(f) is

x̂(f) = A+y(f) (15)

where A+ = (A∗A)−1A∗ is the Pseudoinverse of A(b).
Substituting (15) into (14) leads to [11]

J(b) = tr{(Ip −A(b)A+)R̂} (16)

where Ip denotes the identity matrix with dimension p × p.
Replacing R̂, by the true value (10), shows that the minimum
LSE is given by

Jmin = tr{(Ip −AA+)(AQA∗ + σ2I)}
= tr{(Ip −AA+)σ2I}
= σ2(tr{Ip} − tr{AA+})
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Fig. 3. The result of the sequential NLLS algorithm for a typical wideband
system with p = 10, N = 6, σ2 = 1.

It should be noted that A ∈ Cp×N , A∗ ∈ CN×p and hence

tr{AA+} = tr{A+A}
= tr{(A∗A)−1A∗A}
= tr{IN} = N

therefore,
Jmin = σ2(p−N) (17)

where σ2 is the noise power. Therefore, with choosing Jmin

as a detection threshold, the vector b̂ with the smallest length
N̂ that satisfies the condition

tr{(Ip − ÂA+)R̂}+ N̂σ2 ≤ pσ2 (18)

where Â = A(b̂), is the solution of the spectrum sensing
problem using NLLS method.

The exhaustive search for finding b̂, at least needs
∑N

i=1

(
L
i

)
evaluations of (18), that is solvable only for small N and
L. A practical approach at a reasonable cost is to employ
a sequential forward selection [12] where one channel of the
spectral bands is selected at the time. The algorithm starts
from the empty set, bi = [∅], and sequentially adds the channel
index, b+, that minimizes J(bi∪b). Meanwhile, the cell b+ is
augmented to the set; the value of least square criterion dimin-
ishes monotonically. The process is repeated until the criterion
of (18) is satisfied at the perfect estimation point. Since the
order of the model is unknown, the detection threshold in each
step is determined by the expression (p− i)σ2, where i is the
step index. The total number of evaluations in this way is less
than (LN). The process is summarized in the Algorithm 1.

Figure 3 illustrates some important values of the sequential
NLLS algorithm for a typical wideband system with N = 6,
p = 10 (Figure 1). The exact detection threshold is shown by
the horizontal line which is Jmin = (10 − 6) = 6 dB for the
noise variance of σ2 = 1. The LSE criterion starts at around
18 dB and decreases monotonically, with adding any new cell
to bi, until it surpasses the threshold level at i = 6 which is

Algorithm 1: Sequential Forward NLLS

Input: R̂

Output: b̂, N̂

1: Set i = 0,bi = [∅]

2: Find b+ = arg min
b/∈bi

J(bi ∪ b)

3: Update bi+1 = bi ∪ b+, i = i+ 1

4: Go to step 2 if J(bi+1) > (p − i)σ2

5: return b̂ = bi+1, N̂ = i

the final estimation point. The estimated vector in each step
for the multichannel signal of Figure 1 are listed below:

b1 = [18]

b2 = [18, 29]

b3 = [8, 18, 29]

b4 = [8, 17, 18, 29]

b5 = [8, 17, 18, 29, 30]

b6 = [8, 16, 17, 18, 29, 30]

Where N̂ = 6 and b̂ = b6 are the outputs.

IV. COMPARISON AND SIMULATION RESULTS

In this section, we illustrate the performance of the proposed
scheme by comparing to an ED technique and also the
previous method [7] using Monte Carlo simulations.

The received signal at the cognitive radio sensing is gener-
ated from the model

x[n] =

N∑
i=1

(ri[n] ∗ h[n]) exp(j2πfin/Bmax) + w[n]

where ∗ shows a convolution between ri[n] ∼ N (0, σ2
i ) and

h[n], the low pass filter defined in (4). The output of the
convolution is placed at the carrier frequency f i, and corrupted
by w[n] ∼ N (0, 1), the additive white Gaussian noise.

The wideband of interest is in the range of [0, 320] MHz,
containing 32 channels of equal bandwidth of B = 10MHz.
The signal variance is chosen such that the received SNR of
all active channels are equal. Figure 1 depicts the spectrum of
the signal model with N = 6 active bands located at different
unknown carriers. Given Bmax = 320MHz, Ωmax = 0.25 and
B = 10MHz, it is desired to find the positions of occupied
and vacant channels at a sub-Nyquist sampling rate.

A multicoset sampler with parameters L = 32, p = 10
is used to sample the signal at the average sample rate of
favg = 100 MHz, which is α ≈ 0.3 of the Nyquist rate.
Ten ci numbers are selected randomly out of the set L. The
correlation matrix is computed from M = 64 configured
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Fig. 4. Block diagram of the conventional ED method.

samples and then the sequential NLLS algorithm is applied
to estimate the vector b̂.

The block diagram of the conventional ED model is il-
lustrated in Figure 4. As it is seen, the input signal is
sampled conventionally at the Nyquist rate and then is filtered
using a filter bank consisting of L = 32 non-overlapping
filters. The centre frequency of each filter corresponds to one
spectral band in the signal spectrum. Then, the output signal
energy is estimated from M samples and is compared with a
threshold, η, to decide if a signal is present (H1) or not (H0).
The threshold is determined to meet the given false alarm
probability Pfa as [13]

η = σ2

(
1 +

Q−1(Pfa)√
M/2

)

where σ2 is the noise power and Q−1 is the inverse Q-function.
Here, it is computed for Pfa = 0.01, σ2 = 1 and M = 64
samples.

The detection performance is evaluated by computing the
probability of detecting the signal occupancy as

Pd =
1

N

N∑
i=1

Pr(bi ∈ b̂|bi ∈ b) (19)

and the false alarm probability as

Pf =
1

L−N

L−N∑
i=1

Pr(bci ∈ b̂|bci ∈ bc) (20)

where bc = L− b is the complement set of b.
In a comparison test, using 1000 Monte Carlo simulations,

the same signal at various values of SNR is applied on all
methods. The sensing period of three techniques is also the
same. We compute the empirically observed Pd and Pf. The
result is shown in Figure 5 and Figure 6. We use the result of
ED method as a bench mark. It is seen that the performance
of NLLS method is much superior than the MUSIC method
and improves monotonically with increasing SNR. At α =
0.3 of the Nyquist rate, after SNR=4dB, the NLLS method is
able to detect the occupied channels with high probability. At
α = 0.5 of the Nyquist rate, this would improve especially
for lower SNR and get closer to the ED result. Moreover, the
corresponding Pf values show almost a similar performance
for SNR above the 4dB. It should be noted that the empirical
Pf is averaged over the total vacant channels, hence it is lower

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

α=0.3, NLLS

α=0.5, NLLS
ED
MUSIC

P
d

SNR, [dB]

Fig. 5. Detecting probability of the proposed model and the ED method
versus SNR for the simulated wideband system.

than the desired value, (Pfa = 0.01), of a single channel. No
need to say, in addition to a high sample rate, the requirement
of a large number of filters with different centre frequencies
make serious implementation challenges in the ED method.
This is replaced by a simple low pass filter in our method.

V. CONCLUSION

We proposed a method of wideband spectrum sensing to
mitigate the limitations of high sampling rate. The proposed
technique utilizes a multicoset sampling scheme that can use
arbitrarily low sampling rates close to the channel occupancy.
With low spectrum utilization assumption, this would bring
substantial savings in terms of the sampling rate. We modelled
the problem as an overcomplete linear model with a sparse
solution. We solved this sparse regression problem by a step-
wise forward selection method. For model order selection we
used the theoretical assumptions for multiple snapshots. The
simulation results show a reasonable detection performance
compare to a conventional ED technique. In our method, for
a typical wideband system with Ωmax = 0.25 at SNR=5 dB
and α ≈ 0.3 of the Nyquist rate, Pd = 0.98 and Pf = 0.004
are achieved.

APPENDIX A
PROOF OF (8)

Assume Bmax = 1 then B = 1/L, the sampling sequences
are given by

xi(m) = x(mL + ci)

Taking DFT from the above expression gives

Xi(f) =
1

L

L−1∑
r=0

X(
f

L
+

r

L
) exp(

j2πcif

L
) exp(

j2πcir

L
)

where Xi(f) is the DFT of xi(m) sequence. Oversampling
each sequence by L, such that

xui [n] =

{
xi(

n
L ), n = mL,m ∈ Z

0, otherwise



−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

 

 

α=0.3, NLLS

α=0.5, NLLS
ED
MUSIC

P
f

SNR, [dB]

Fig. 6. False alarm probability of the proposed model and the ED method
versus SNR for the simulated wideband system.

in the frequency domain we have

Xui(f) = Xi(Lf)

= B

L−1∑
r=0

X(f + rB) exp(j2πcif) exp(
j2πcir

L
)

where Xui(f) is the DFT of the oversampled sequence xui .
Filtering Xui(f) with H(f), limits the output signal frequency
range such that

Xhi(f) = Xui(f), f ∈ [0, B]

and then delaying each sequence with c i samples gives

Xci(f) = Xhi(f) exp(−j2πcif)

= B

L−1∑
r=0

X(f + rB) exp(
j2πcir

L
), f ∈ [0, B]

where Xci(f) is the DFT of the delayed sequence xci .
Assume the input signal x(t) is perturbed by Gaussian noise

w(t), with Fourier transform W (f). In the above equation, the
right hand side expression is repeated for noise such that

Xci(f) = B

L−1∑
r=0

X(f + rB) exp(
j2πcir

L
)

+B

L−1∑
r=0

W (f + rB) exp(
j2πcir

L
), f ∈ [0, B]

where the term X(f + rB), 0 ≤ r ≤ L − 1, denotes the
frequency elements of the signal in each channel which is zero
for the vacant channels. So the equation is rewritten as

Xci(f) = B
∑
r∈b

X(f + rB) exp(
j2πcir

L
)

+B

L−1∑
r=0

W (f + rB) exp(
j2πcir

L
), f ∈ [0, B]

Expressing the results in the matrix form for Xci(f), i =
1, . . . p, we have

y(f) = A(b)x(f) + n(f), f ∈ [0, B]

where y(f),x(f) and A(b) are defined earlier and n(f) is
equivalent to the noise part.
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