
Chalmers Publication Library            

 

 

 

 

 

Copyright Notice 

 

 

©2011 IEEE. Personal use of this material is permitted. However, permission to 
reprint/republish this material for advertising or promotional purposes or for creating new 
collective works for resale or redistribution to servers or lists, or to reuse any copyrighted 
component of this work in other works must be obtained from the IEEE.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This document was downloaded from Chalmers Publication Library (http://publications.lib.chalmers.se/), 
where it is available in accordance with the IEEE PSPB Operations Manual, amended 19 Nov. 2010, Sec. 
8.1.9 (http://www.ieee.org/documents/opsmanual.pdf) 

 
(Article begins on next page) 

http://publications.lib.chalmers.se/�
http://www.ieee.org/documents/opsmanual.pdf�


Bounds and Algorithms for Multiple Frequency
Offset Estimation in Cooperative Networks

Hani Mehrpouyan, Member, IEEE, and Steven D. Blostein, Senior Member, IEEE,

Abstract—The distributed nature of cooperative networks may
result in multiple carrier frequency offsets (CFOs), which make the
channels time varying and overshadow the diversity gains promised
by collaborative communications. This paper seeks to address
multiple CFO estimation using training sequences in space-division
multiple access (SDMA) cooperative networks. The system model
and CFO estimation problem for cases of both decode-and-forward
(DF) and amplify-and-forward (AF) relaying are formulated and new
closed-form expressions for the Cramer-Rao lower bound (CRLB) for
both protocols are derived. The CRLBs are then applied in a novel
way to formulate training sequence design guidelines and determine
the effect of network protocol and topology on CFO estimation.
Next, two computationally efficient iterative estimators are proposed
that determine the CFOs from multiple simultaneously relaying
nodes. The proposed algorithms reduce multiple CFO estimation
complexity without sacrificing bandwidth and training performance.
Unlike existing multiple CFO estimators, the proposed estimators are
also accurate for both large and small CFO values. Numerical results
show that the new methods outperform existing algorithms and reach
or approach the CRLB at mid-to-high signal-to-noise ratio (SNR).
When applied to system compensation, simulation results show that
the proposed estimators significantly reduce average-bit-error-rate
(ABER).

Index Terms—Cooperative communications, synchronization, car-
rier frequency offset estimation, Cramer-Rao Lower Bound (CRLB),
MUltiple SIgnal Characterization (MUSIC).

I. INTRODUCTION

COOPERATIVE multiplexing and diversity, which are
achieved when multiple terminals collaborate through dis-

tributed transmissions, are shown to increase capacity and relia-
bility in wireless networks [1]–[5]. However, the majority of the
analysis in the area of cooperative communications is focused
on improving capacity and reliability while assuming perfect
frequency synchronization [1]–[5].

The presence of multiple carrier frequency offsets (CFOs) in
distributed cooperative networks arises due to simultaneous trans-
missions from spatially separated nodes with different oscillators
and Doppler shifts. The CFOs result in the rotation of the signal
constellation causing signal to noise ratio (SNR) loss. The amount
of SNR loss and channel estimation accuracy are highly dependent
on CFO estimation precision at the receiver [6]. Thus, accurate
CFO estimation is key to successful deployments of cooperative
networks.
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In [7]–[9] and references therein, space time coding techniques
are proposed that provide full spatial diversity in the presence of
CFOs. However, the schemes outlined in [7]–[9] require CFOs to
be estimated and equalized at the destination and do not address
CFO estimation.

Previously proposed multiple CFO estimation methods for
frequency-flat multiple-input-multiple-output (MIMO) systems in-
clude [10]–[13]. In [10], a maximum-likelihood estimator (MLE)
is presented that requires exhaustive search and performs poorly
when the CFOs are close to one another. In [11], a correlation-
based estimator (CBE) is proposed using orthogonal training
sequences transmitted from different antennas. However, the CBE
suffers from an error floor, requires the use of correlators at
the receiver, and performs very poorly when normalized CFO
values are larger than 0.05. In [12] and [13], iterative schemes
are proposed to eliminate the CBE’s error floor. However, since
CBE is used as the initial estimator, the estimators in [12] and [13]
also perform poorly at large CFO values. While the assumption
of small CFO values in [11]–[13] might hold for point-to-point
MIMO systems, it is not justifiable for cooperative systems with
distributed nodes and independent oscillators. In addition, the
estimators in [10]–[14] cannot be directly applied to the case of
amplify-and-forward (AF) relaying networks due to the different
training signal model.

In [15] a maximum a posteriori (MAP) CFO estimator for
single-relay frequency-flat 3-terminal decode-and-forward (DF)
networks is presented. However, the approach in [15] is limited
to the case of DF relaying and suffers from the same shortcomings
as in [10]. While a multiple CFO estimator for DF relaying
cooperative networks is proposed in [16], no specific performance
analysis is provided. In [17], CFO estimation in two-way AF
relaying networks is investigated. However, the system model
consists of a single relay only and the effect of Doppler shift
is ignored. In [18], CFO estimation in multi-relay orthogonal
frequency division multiple access (OFDMA)-based cooperative
networks is addressed. However, to simplify the CFO estimation
problem, it is assumed in [18] that at any given time only a single
relay transmits its signal to the receiver. Finally, CFO estimation
in AF relaying single-relay orthogonal frequency division multi-
plexing (OFDM)-based cooperative networks has been analyzed
in [19], where similar to [18], it is assumed that the received
signal is affected by only a single CFO.

The Cramer-Rao lower bound (CRLB) [20] has been used as a
quantitative performance measure for CFO estimators and can be
applied to determine the effects of network protocol and topology
on CFO estimation accuracy in cooperative systems. The CRLB
for CFO estimation in MIMO point-to-point systems is derived in
[10]. In [15], the CRLB for 3-terminal DF cooperative networks is



presented. However, the analysis in [15] is limited to single-relay
DF networks and the results are based on an assumed Gaussian
distribution for the CFO, which is not realistic, given that the
sources of CFO do not undergo significant changes, as shown
in [10]–[13], [21], [22]. To the best of the authors’ knowledge
there are no CRLB results in the literature for joint estimation
of multiple CFOs and channel gains in a multi-relay cooperative
network.

The MUltiple SIgnal Characterization (MUSIC) algorithm is a
spectral estimation method that has been applied to the estimation
of parameters of a received signal, including CFO and direction-
of-arrival in point-to-point systems [23]. The application of the
MUSIC algorithm to CFO estimation in multi-relay or multi-user
networks is difficult, however, due to the following shortcomings:
i) estimating closely-spaced CFO values, and ii) no method of
assigning each CFO to its source. In the case of OFDMA-based
systems, the MUSIC algorithm has been proposed as a suitable
method of estimating each user’s CFO [24], [25]. However, to
address the shortcomings of MUSIC, the algorithms in [24], [25]
are based on the assumptions that in OFDMA systems, the users’
carrier frequencies are well spaced and each user has a specific set
of subcarriers assigned to it. Both of these assumptions are not
applicable to space-division multiple access (SDMA) networks,
where multiple relays simultaneously transmit their signals over
the same frequency band [4], [5], [9].
Under the consideration of frequency-flat fading channels, this
paper seeks to extend the results in [26] so as to derive more
general expressions of the CRLB, provide a more comprehensive
investigation of the performance of the proposed estimators,
and gain insight on the effect of CFO estimation accuracy on
the performance of cooperative networks. The contributions and
organization of this paper can be summarized as follows:
• In Section II, a system model for CFO estimation in DF
and AF relaying networks is outlined. Flat-fading channels are
considered, which is motivated by pioneering work in the area of
multiple CFO and channel gain estimation for MIMO and cooper-
ative networks [10]–[13], [15], [16]. In addition, consideration of
frequency-selective channels for multi-relay cooperative networks
would require estimation of very large numbers of parameters and
is beyond the scope of this paper.

• In Section III, new closed-form CRLB expressions for CFO
estimation for AF and DF multi-relay cooperative systems are
derived. In addition to serving as a benchmark for assessing the
performance of CFO estimators, the CRLBs are used in a novel
way to quantitatively determine the effect of network protocol
and number of relays on CFO estimation accuracy.

• Section IV proposes an algorithm that uses linearly independent
training sequences transmitted from each relay to address certain
shortcomings of MUSIC and accurately estimate and assign each
CFO to its corresponding relay. Unlike the algorithms in [10]–
[13] the proposed estimators have accuracies that are maintained
over the full range of possible CFO values. Moreover, it is
shown that the proposed CFO estimators are also applicable to
AF relaying networks. Finally, a complexity analysis for both
estimators is presented.

• In Section V, numerical results are presented showing that the
proposed estimators either reach or approach the CRLB at mid-to-

high SNR. By combining the proposed CFO estimation technique
with the CFO compensation method in [27], it is also shown that
frequency synchronization and significant performance gains in
cooperative networks may be achieved.

Notation: italic letters (x) are scalars, bold lower case letters (x)
are vectors, bold upper case letters (X) are matrices, Xk,m rep-
resents the kth row and mth column element of X, I denotes the
identity matrix, ⊙ stands for Schur (element-wise) product, and
(·)∗, (·)T , (·)H , and Tr(·) denote conjugate, transpose, conjugate
transpose (hermitian), and trace, respectively.

II. SYSTEM MODEL

A half-duplex SDMA cooperative network consisting of a
source and destination pair and a cluster of R relay nodes is con-
sidered, where the relays are assumed to be distributed throughout
the network as shown in Fig. 1. Multiple CFO estimation using
a training sequence (TS) is analyzed, where during the training
interval, the CFOs and channel gains corresponding to R relay
nodes are estimated. These estimates can be applied in the data
transmission interval to improve system performance. Throughout
this paper, the following set of assumptions and system design
parameters are considered:

1

2

R

Fig. 1. The system model for the cooperative network and scheduling diagram
for training and data transmission intervals.

1) In Phase I the source broadcasts its TS to the relays and
in Phase II the relays transmit R linearly independent and
orthonormal TSs simultaneously to the destination, as in Fig.
1.

2) Without loss of generality, it is assumed that unit amplitude
phase-shift keying (PSK) TSs are transmitted.

3) Quasi-static and flat-fading channels are considered, where
the channel gains are assumed not to change over the length
of a frame of symbols but to change from frame to frame.

4) CFOs are modeled as unknown non-random parameters.
5) Similar to most CFO and channel estimation methods, it

is assumed that nodes within the network are synchronized



in time [10]–[13]. In addition, it is noted in [10], [21]
that timing offset estimation can be decoupled from CFO
estimation.

Note that Assumptions 2, 3, and 4 are in line with previous CFO
estimation analyses in [10]–[13], [21] and are also intuitively
justifiable, since the main sources of CFO are oscillator mismatch
and Doppler shift. In addition, oscillator properties, Doppler shifts,
and channel gains are assumed not to change significantly during
a transmission block consisting of TS and data.

A. Training Signal Model for DF Relaying Cooperative Networks

1) Training Signal Model at the Relays: For DF relaying, the
signal at the relays is down-converted to baseband, matched-
filtered, and decoded [1], [2], [9], [28]. Thus, the CFO from the
source to the kth relay, ν[sr]

k , for k = 1, 2, · · · , R, needs to be
estimated at each relay, similar to that of a single-input-single-
output (SISO) system. The baseband received training signal,
rk(n) at the kth relay node at time n, for n = 1, · · · , L and
k = 1, · · · , R, is given by

rk(n) = hke
j2πnν[sr]

k t[s](n) + vk(n), (1)

where:
• L denotes the length of the TS,
• t[s] ,

[
t[s](1), · · · , t[s](L)

]T
is the known TS broadcast from

the source to the relay nodes,
• ν[sr]

k , ∆ν[sr]
k T is the normalized CFO from the source to

the kth relay with T as the symbol duration,
• hk represents the unknown channel gain from the source to

the kth relay, and
• vk(n) is the zero-mean additive white Gaussian noise

(AWGN) at the kth relay with variance σ2
vk

and denoted by
CN (0, σ2

vk
).

Given that CFO estimation in SISO systems has been ex-
tensively addressed in the literature, estimation of ν[sr] ,[
ν[sr]
1 , · · · , ν[sr]

R

]T
is not discussed further. Instead the reader is

referred to [6].
2) Training Signal Model at the Destination: The baseband

received training signal model at the destination, y, for a DF
cooperative network consisting of R relay nodes is given by

y(n) =

R∑
k=1

gke
j2πnν[rd]

k t
[r]
k (n) + w(n), n = 1, · · · , L (2)

where:

• t
[r]
k ,

[
t
[r]
k (1), · · · , t[r]k (L)

]T
is the distinct and known TS

transmitted to the kth relay,
• gk denotes the unknown channel gain from the kth relay to

the destination,
• ν[rd]

k , ∆ν[rd]
k T is the normalized CFO from the kth relay to

the destination, and
• w(n) is the AWGN at the destination with CN (0, σ2

w).

According to (2), the CFOs ν[rd] ,
[
ν[rd]
1 , · · · , ν[rd]

R

]T
, and

channel gains, g , [g1, · · · , gR]T , need to be jointly estimated
at the destination.

B. Training Signal Model for AF Relaying Cooperative Networks

1) Training Signal Model at the Relays: Since signals traveling
through different channels experience different Doppler shifts and
different oscillator offsets, the received signal at the destination is
affected by multiple CFOs even if the relay does not convert the
signal to baseband. Hence, to achieve frequency synchronization
in an AF relaying network, we propose the baseband processing
structure in Fig. 2 at each relay. In practice, AF relaying networks
typically require signals at the relays to be converted to base-
band [1], [4]. We remark that the proposed baseband processing
structure of Fig. 2 does not increase hardware complexity at
the relays and is significantly simpler than that of DF networks,
which require relays to be equipped with a matched filter, decoder,
detector, and pulse shaping filter for retransmission.

Fig. 2. The baseband processing structure at the relays in the case of AF relaying
multi-relay networks (f [r]

k denotes the carrier frequency at the kth relay).

2) Training Signal Model at the Destination: For AF relaying,
the signal model is given by

y(n) =
R∑

k=1

ζkgkhke
j2πnν

[sum]
k t̃

[r]
k (n)t[s](n)︸ ︷︷ ︸

desired signal

+

R∑
k=1

ζkgke
j2πnν[rd]

k t̃
[r]
k (n)vk(n) + w(n)︸ ︷︷ ︸

overall noise

, (3)

where ζk is a scaling factor that is used to satisfy the kth relay’s
power constraint, ν[sum]

k , ν[rd]
k + ν[sr]

k , t̃[r]k (n) is used to modulate
the received TS, t[s](n) to ensure the kth relay has a specific TS.

Eq. (3) follows from the fact that the received signal, rk(n),
is amplified and forwarded without being decoded. Note that in

(3), t̃[r]k =
[
t̃
[r]
k (1), · · · , t̃[r]k (L)

]T
does not change the statistical

properties of the noise, vk, assuming unit-amplitude PSK training
symbols.

According to (3), 2R quantities containing CFOs are present

in the signal model: 1) ν[sum] ,
[
ν
[sum]
1 , · · · , ν[sum]

R

]T
, which

result in rotation of the signal constellation and 2) ν[rd] ,[
ν[rd]
1 , · · · , ν[rd]

R

]T
, which affect the noise at the relays. Since

components of ν[rd] only phase-shift the noise in (3) and do not
affect signal detection, the terms ν[sum] are the only CFO-related
quantities that influence system performance. From the above, we
conclude that it suffices to estimate ν[sum] at the destination.

Note that it has been shown in [29] that for effective signal
detection at the destination in the case of AF relaying coopera-



tive networks, only the overall channel gains from source-relay-
destination links, gkhk, for k = 1, · · · , R, need to be estimated
at the destination, whereas the channel gains h , [h1, · · · , hR]

T

and g , [g1, · · · , gR]T do not need to be estimated separately.

III. CRAMER-RAO LOWER BOUND

In this section, the CRLBs for joint CFO and channel estimation
in multi-relay networks are derived.

A. Amplify-and-Forward Cooperative Networks

The signal model in (3) can be rewritten as

y(n) =
R∑

k=1

(
ζkαke

j2πnν
[sum]
k ck(n) + βke

j2πnν[rd]
k ṽk(n)

)
+ w(n),

(4)

where αk , gkhk, βk , ζkgk, ck(n) , t̃
[r]
k (n)t[s](n), and ṽk ,

t̃
[r]
k (n)vk(n). Note that due to the assumption of unit-amplitude

PSK TSs, ṽk has the same statistical properties as vk.
Based on the signal model in Section IIB, the vector of

parameters of interest, λ[AF], is given by

λ[AF] ,
[
Re{α}T , Im{α}T ,

(
ν[sum])T ]T , (5)

where α = [α1, · · · , αR]
T , and Re{·} and Im{·} denote real and

imaginary parts, respectively.
Throughout this section AWGN at the relays and destina-

tion is considered, where vk = [vk(1), · · · , vk(L)]T , for k =
1, 2, · · · , R, and w = [w(1), · · · , w(L)]T are distributed accord-
ing to CN

(
0, σ2

vk
I
)

and CN
(
0, σ2

wI
)
, respectively. Moreover, vk,

vm, ∀k ̸= m, and w, are assumed to be mutually independent.
Based on the above set of assumptions, the vector of re-

ceived training signal, y = [y(1), · · · , y(L)]T , is distributed as
CN

(
µy,Σy

)
, where µy and Σy are given by

µy =
R∑

k=1

αke
[sum]
k , and (6)

[Σy]l,i =E

[(
R∑

k=1

βke
j2πlν[rd]

k t̃
[r]
k (l)vk(l) + w(l)

)

×

(
R∑

m=1

βmej2πiν
[rd]
m t̃[r]m (i)vm(i) + w(i)

)H
 (7a)

=
R∑

k=1

R∑
m=1

βkβ
∗
mE

[
ej2πlν

[rd]
k t̃

[r]
k (l)

(
ej2πiν

[rd]
m t̃[r]m (i)

)∗]
× E[vk(l)v

∗
m(i)] + E[w(l)w∗(i)] (7b)

=

{
0 i ̸= l∑R

k=1 |βk|2σ2
vk

+ σ2
w i = l

(7c)

where e
[sum]
k , ζk

[
ck(1)e

j2πν
[sum]
k , · · · , ck(L)ej2πLν

[sum]
k

]T
. Note

that (7b) follows from the fact that the noise at the destination
and kth relay, w and vk, respectively, are mutually independent,

∀k, and (7c) follows the AWGN assumption, where E[v(i)v(l)] =
E[w(i)w(l)] = 0 for i ̸= l. Thus, Σy is given by

Σy =

(
R∑

k=1

|βk|2σ2
vk

+ σ2
w

)
I. (8)

To determine the CRLB, the 3R × 3R Fisher’s Information
Matrix (FIM) needs to be determined. For parameter estimation
from a complex Gaussian observation sequence, the FIM entries
are given by [20]

FIM(λ)k,m =2Re

{
∂µH

y

∂λk
Σ−1

y

∂µy

∂λm

}

+ Tr
(
Σ−1

y

∂Σy

∂λk
Σ−1

y

∂Σy

∂λm

)
, (9)

where λ = λ[AF] is defined in (5). The corresponding components
of the CRLB are computed as

∂µy

∂ν[sum]
k

= jαkDLe
[sum]
k ,

∂µy

∂Re{αk}
= −j

∂µy

∂Im{αk}
= e

[sum]
k ,

(10)

where [DL]L×L , diag (2π, 4π, · · · , 2Lπ),

∂Σy

∂Re{αk}
=

α∗
k + αk

|hk|2
ζ2kσ

2
vk
I =

2Re{αk}
|hk|2

ζ2kσ
2
vk
I, (11a)

∂Σy

∂Im{αk}
= j

α∗
k − αk

|hk|2
ζ2kσ

2
vk
I =

2Im{αk}
|hk|2

ζ2kσ
2
vk
I. (11b)

After substituting the derivatives in (10), (11a), and (11b) into
(9) and after carrying out straightforward algebraic manipulations
for k,m = 1, · · ·R, we arrive at

FIMk,m =
2

σ2
n

Re
{(

e
[sum]
k

)H
e[sum]
m

}
+ 2L

Re{αk}Re{αm}
|hk|2|hm|2

σ2
vk
σ2
vm

ζ2kζ
2
m

σ4
n

, (12)

FIMk,R+m =− 2

σ2
n

Im
{(

e
[sum]
k

)H
e[sum]
m

}
+ 2L

Re{αk}Im{αm}
|hk|2|hm|2

σ2
vk
σ2
vmζ2kζ

2
m

σ4
n

, (13)

FIMk,2R+m = − 2

σ2
n

Im
{
αm

(
e
[sum]
k

)H
DLe

[sum]
m

}
, (14)

FIMR+k,R+m =
2

σ2
n

Re
{(

e
[sum]
k

)H
e[sum]
m

}
+ 2L

Im{αk}Im{αm}
|hk|2|hm|2

σ2
vk
σ2
vm

ζ2kζ
2
m

σ4
n

, (15)

FIMR+k,2R+m =
2

σ2
n

Re
{
αm

(
e
[sum]
k

)H
DLe

[sum]
m

}
, (16)

FIM2R+k,2R+m =
2

σ2
n

Re
{
α∗
kαm

(
e
[sum]
k

)H
D2

Le
[sum]
m

}
, (17)

Note that (11a) and (11b) follow (8) due to the fact that ∂a
∂(ab)

= 1
b

.



where σ2
n ,

∑R
k=1 |βk|2σ2

vk
+ σ2

w. Rewriting (12)-(17), the FIM
can be rewritten in compact form as shown in (18) at the bottom
of this page. In (18),

• [Dα]R×R , diag(α1, · · · , αR),
• [Eν [sum] ]L×R , [e

[sum]
1 , · · · , e[sum]

R ], and

• ρ =
√

L
σ2
n

[
α1ζ

2
1σ

2
v1

|h1|2 ,
α2ζ

2
2σ

2
v2

|h2|2 , · · · , αRζ2
Rσ2

vR

|hR|2

]T
.

Next, using partitioned matrix inverse in a similar manner to that
in [10], [30], a closed-form expression for the CRLB for CFO
estimation in the case of AF relaying cooperative networks can
be derived as shown in (19) at the bottom of this page. In (19),

• [Υ]R×R , DH
αEH

ν [sum]D2
LEν [sum]Dα,

• [Π]R×R , EH
ν [sum]DLEν [sum]Dα, and

• F2R×2R is the first 2R rows and 2R columns of the FIM
in (18).

In order to derive the CRLB for the estimation of the combined
real and imaginary parts of channel gains, α, the set of parameters
of interest, λ[AF], is modified as

λ
[AF] ,

[
I jI 0
0 0 I

]
︸ ︷︷ ︸

,J

λ[AF], (20)

where λ
[AF]

=
[
αT ,

(
ν[sum]

)T ]. The CRLB for the estimation of

λ
[AF]

is given by [20]

CRLB
(
λ
[AF]
)
= JCRLB

(
λ[AF]

)
JH . (21)

Using (18) and (21) the CRLB for the estimation of channel gains
is given in (22) at the bottom of this page. In (22), J , [I jI]
and Φ is defined in (19).

B. Decode-and-Forward Cooperative Networks

According to the received signal model in (2), the CFOs, ν[rd],
and channel gains, g = [g1, · · · , gR], need to be jointly estimated

at the destination. Therefore, the parameter vector of interest is

λ[DF] ,
[
Re{g}T , Im{gT },

(
ν[rd])T ]T . (23)

In addition, under the assumption of additive Gaussian noise
the received signal vector, y = [y1, · · · , yL]T is distributed
as CN (µy,Σy), where µy =

∑R
k=1 gke

[rd]
k , Σy = σ2

wI, and

e[rd]
k ,

[
t
[r]
k (1)ej2πν

[rd]
k , · · · , t[r]k (L)ej2πLν

[rd]
k

]T
.

Using (9) and similar steps as in Section III A., the CRLBs
for the estimation of the CFOs, ν[rd], and channel gains, g, in DF
relaying cooperative networks are given by

CRLB
(
ν[rd]) = σ2

w

2

(
Re
{
Dg

HEH
ν [rd]DLΞν [rd]DLEν [rd]Dg

})−1

︸ ︷︷ ︸
,Θ

,

(24)

and (25) at the bottom of this page, respectively. In (24) and (25),
[Eν [rd] ]L×R , [e[rd]

1 , · · · , e[rd]
R ], [Dg]R×R , diag(g1, g2, · · · , gR),

[Ξν [rd] ]L×L , I − Eν [rd]

(
EH
ν [rd] Eν [rd]

)−1
EH
ν [rd] , and

[
Π
]
R×R

,
EH
ν [rd]DLEν [rd]Dg.

The following remarks are in order:
Remark 1: Fig. 3 presents numerical evaluations of the CRLBs

for DF and AF cooperative networks based on (24) and (19),
respectively, where h = [0.2790 − 0.9603i, 0.8837 + 0.4681i]T

and g = [0.7820 + 0.6233i, 0.9474− 0.3203i]T , ν[rd] = ν[sum] =
[0.1, 0.2, 0.3, 0.4], R = 4, L = 24, and Walsh-Hadamard codes
are used as the TSs. Numerical results in Fig. 3 show that in order
to reach the same CFO estimation accuracy compared to DF, an
AF relaying network requires link SNRs to be at least 5dB higher.

Remark 2: When the CFO values corresponding to source-
relay-destination links are identical, e.g., in the absence of
Doppler shift, since it is assumed that linearly independent and
orthonormal TSs are transmitted from the relays, it can be shown
through straightforward algebraic manipulations that the matrices

FIM =
2

σ2
n

 Re
{
EH

ν [sum]Eν [sum]

}
+ Re {ρ}Re {ρ}T −Im

{
EH

ν[sum]Eν [sum]

}
+ Re {ρ} Im {ρ}T −Im

{
EH

ν [sum]DLEν [sum]Dα

}
Im
{
EH

ν [sum]Eν [sum]

}
+ Im {ρ}Re {ρ}T Re

{
EH

ν [sum]Eν [sum]

}
+ Im {ρ} Im {ρ}T Re

{
EH

ν [sum]DLEν [sum]Dα

}
−Im

{
EH

ν [sum]DLEν [sum]Dα

}T
Re
{
EH

ν [sum]DLEν [sum]Dα

}T
Re
{
DH

αEH
ν [sum]D2

LEν [sum]Dα

}


(18)

CRLB
(
ν[sum]) =σ2

n

2

(
Re {Υ}+

[
Im {Π}T − Re {Π}T

]
F−1

2R×2R

[
−Im {Π}
Re {Π}

])−1

︸ ︷︷ ︸
,Φ

(19)

CRLB
(
α[AF]) =σ2

n

2

[
JF−1

2R×2RJ
H
+ JF−1

2R×2R

[
−Im {Π}
Re {Π}

]
Φ
[
Im {Π}T − Re {Π}T

]
F−1

2R×2RJ
H
]

(22)

CRLB (g) =
σ2
w

2

(
2
(
EH

ν [rd]Eν [rd]

)−1
+
(
EH

ν [rd]Eν [rd]

)−1
ΠΘΠ

H (
EH

ν [rd]Eν [rd]

)−1
)

(25)
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Fig. 3. CRLB for the estimation of νrd and νsum in DF and AF relaying
cooperative networks, respectively. ν[rd] = ν[sum] = {0.1, 0.2, 0.3, 0.4}, and
L = 24.

EH
ν [sum]Eν [sum] , EH

ν [sum] ,DLEν [sum] , and EH
ν [sum]D2

LEν [sum] in (18) are
diagonal. Therefore, the FIM is not singular and the CRLBs for
both channel and CFO estimation can easily be determined. On the
other hand, if linearly dependent training sequences are transmit-
ted the matrices DH

αEH
ν [sum]D2

LEν [sum]Dα and EH
ν [sum]DLEν [sum]Dα

in the FIM in (18) will have linearly dependent rows resulting in a
singular FIM. According to [31] a singular FIM, indicates that an
unbiased estimator does not exist that can jointly estimate ν[sum].
This motivates the choice of orthogonal TSs for transmission and
the baseband processing structure in Fig. 2.

IV. PROPOSED CFO ESTIMATORS

In this section we propose two estimators based on multi-
ple signal characterization (MUSIC), namely, iterative-MUSIC
(I-MUSIC) and iterative correlation-based-MUSIC (I-C-MUSIC)
and highlight their novelty.

A. I-MUSIC for DF Networks

For notational clarity ν[rd] is denoted by ν throughout this
subsection. Let us partition the TS, t

[r]
k , of length L symbols

into M blocks of length N symbols (M = L/N ). Under
the assumptions of constant channels gains over the length of
each block and narrow band transmitted signals, the temporal
covariance matrix of the received signal, y, in (2) is given by

Qy =E
[
y(m)yH(m)

]
= Γ(ν)SΓH(ν) + σwI, (26)

where
• [Γ(ν)]N×R , [γ(ν1), · · · ,γ(νR)] with γ(νk) =[

ej2π(m+1)νk , · · · , ej2π(m+N)Nνk
]T

,
• y(m) , [y(m+ 1), · · · , y(m+N)]T ,
• S = E

[
s(m)sH(m)

]
, and

• s(m) , [s1(m), · · · , sR(m)]T , with kth element given by
sk(m) , gkt

[r]
k (m).

Let ς1 ≥ ς2, · · · ,≥ ςN denote eigenvalues of Qy. If the CFO
values are distinct, rank (Γ(ν)SΓH(ν)) = R and it follows that
ςk > σw for k = 1, · · · , R and ςk = σw for k = R + 1, · · · , N .
Denote the unit-eigenvectors corresponding to ςR+1, · · · , ςN as[
Ψ[N ]

]
N×(N−R)

, [ψR+1, · · · ,ψN ]. Using steps in [26], the

MUSIC estimate of νk, ν̂k, for k = 1, · · · , R, is given by

ν̂k = arg max
νk∈[−ϵ:∆νk:ϵ)

(
γH(νk)Ψ

[N ]
(
Ψ[N ]

)H
γH(νk)

)−1

,

(27)

where [−ϵ, ϵ) and ∆νk represent the range and step size of the 1-
dimensional maximization for the kth relay, respectively. In (27)

the matrix multiplication Ψ[N ]
(
Ψ[N ]

)H
needs to be calculated

only once, since Ψ[N ] is not a function of νk. The temporal
covariance matrix Qy can be estimated by time averaging over
MF blocks of training and data symbols

Q̂y =
1

MF

MF∑
m=1

y(m)yH(m), (28)

where MF = LF /N and LF is the number of symbols in a frame.
Though accurate, the above MUSIC-based CFO estimator, similar
to MLE, cannot distinguish among close-spaced CFO values [26],
[32] and does not associate estimated CFOs to corresponding
relays, which is necessary for equalization and detection at the
destination. These shortcomings are addressed below by utilizing
the linearly independence of the TSs transmitted from each relay.

1) Initialization of I-MUSIC: Let q denote the number of
distinct CFOs present in y, where q can be estimated using the
algorithms in [33]–[35]. The following two possible scenarios are
considered:

Scenario 1) q=R: Given that y is distributed as CN (µy, σ
2
wI),

the negative log likelihood function (LLF) of the CFO vector and
the channel gains is proportional to

δ(ν,g) = ∥y − Eνg∥2, (29)

where for a given ν, the minimizer of (29) and the ML estimates
of the channel gains, ĝ, are given by

ĝ = (EH
ν Eν)

−1EH
ν y, (30)

where ĝ , [ĝ1, · · · , ĝR]T and Eν , Eν [rd] .
To estimate the CFOs, the MUSIC algorithm is used, where

in (27) the search is performed for R maxima. Next, using
(30) and the first M − 1 blocks of the received training signal,
y[c] , [y(1), · · · , y((m−1)N)]T , the channel gain corresponding
to each CFO is determined. Given that linearly independent TSs
are transmitted from each relay node, the M th block of received
training signals, y[n-c] , [y((m − 1)N + 1), · · · , y(mN)]T and
the LLF in (29) are used to assign the pairs ν̂ and ĝ to specific
relays by carrying out the minimization

ν̂[A], ĝ[A] = argmin
ν̂,ĝ

δ(ν,g), (31)

where ν̂[A] and ĝ[A] denote the sets of estimated CFOs and
channel gains corresponding to each relay node, respectively. Note
that in this case (31) needs to be carried out R! times.



Scenario 2) q<R: The set of q estimated CFOs in combination
with the orthonormal TSs are used to estimate and assign the
CFOs and channel gains to each path. See the algorithm in Table
I.

TABLE I
INITIALIZATION STEPS FOR I-MUSIC AND I-C-MUSIC

Step 1) Initialization
Using the method in [33]–[35], determine q.
Using (27), determine the set of q distinct CFOs, ν̂[q].

Step 2) CFO and Channel Gain Assignment
For o = 1, 2, · · · ,

(R
q

)
• Construct (ν̂)[o] = ν̂[q] ∪(

ν̂[R-q])[o], where ν̂[R-q] is a
set of frequencies selected from ν̂[q].

• Using (30), determine (ĝ)[o] corresponding to
(ν̂)[o].

• Using (31), determine
(
ν̂[A])[o] and

(
ĝ[A]

)[o].
Select

(
ν̂[A])[o] and

(
ĝ[A])[o] that result in the smallest LLF

value, δ
((

ν̂[A])[o]
,
(
ĝ[A]

)[o]
)

as ν̂[A] and ĝ[A],
the set of estimated CFOs and channel gains
corresponding to each relay node, respectively.

2) Iterative Step for I-MUSIC: Since the unit amplitude PSK
TSs are known, the effect of data modulation corresponding to
the ith node can be eliminated according to

ỹi(n) =y(n)
(
t
[r]
i (n)

)∗
=gie

j2πnν[rd]
i t

[r]
i (n)

(
t
[r]
i (n)

)∗
+

 R∑
k=1,k ̸=i

gke
j2πnν[rd]

k t
[r]
k (n) + w(n)

(t[r]i (n)
)∗

= gie
j2πnν[rd]

i︸ ︷︷ ︸
desired term

+
R∑

k=1,k ̸=i

gke
j2πnν[rd]

k t
[d]
k,i(n)︸ ︷︷ ︸

interference

+ w̃i(n)︸ ︷︷ ︸
noise

,

(32)

where t
[d]
k,i(n) = t

[r]
k (n)

(
t
[r]
i (n)

)∗
and w̃i(n) = w(n)

(
t
[r]
i (n)

)∗
.

Note that w̃i(n) has the same statistical properties as w(n), since
multiplication by

(
t
[r]
i (n)

)∗
only results in a phase shift of the

noise.
The initial estimates of ν[rd] and g,

(
ν̂[rd]

)[1]
and (ĝ)

[1],
respectively, are used to reduce the interference term in (32)
according to

fi(n) = ỹi(n)−
R∑

k=1,k ̸=i

ĝke
j2πnν̂[rd]

k t
[d]
k,i(n), (33)

where fi = {fi(1), · · · , fi(L)} is applied in the next iteration
to estimate the CFO corresponding to the ith node using (27).
This approach also transforms the joint CFO estimation problem
into multiple single-parameter estimation problems. In addition,
for closely-spaced CFO values the MLE in (30) does not perform
well since the term EH

ν Eν in (30) becomes nearly singular. To
address this shortcoming, at each iteration the ith relay’s channel

gain is estimated via

ĝi =
1

L

L∑
n=1

fi(n)

ej2πnν̂
[rd]
i

, (34)

which is based on the expectation conditional maximization
(ECM) algorithm [36]. The iteration stops when the absolute
difference between the LLF of two iterations is smaller than a
threshold value χ∣∣∣∥y − E(ν̂)[o+1] (ĝ)

[o+1] ∥2 − ∥y − E(ν̂)[o] (ĝ)
[o] ∥2

∣∣∣ ≤ χ, (35)

where (ν̂)
[o] and (ĝ)

[o] denote CFO and channel gain estimates
corresponding to the oth iteration.

B. I-C-MUSIC for DF Networks

By transforming the problem from R-dimensional to one-
dimensional estimation, a variety of CFO estimation methods
suitable for different scenarios may be applied to improve upon
the proposed algorithm [6], [37]. Here we apply the estimator in
[37], which consists of estimating the ith node’s CFO as

2πν̂[rd]
i =

L−1∑
n=1

ϖ(n)angle{f∗
i (n)fi(n+ 1)}, (36)

where ϖ(n) is a window designed to reduce the estimator’s
variance (see [37] for details). Similar steps as outlined in Section
IV A may be used to determine the CFO values, where (36) is
used instead of (27) in the iterative step (see [26] for details).

C. CFO Estimation in AF Networks

To apply the MUSIC algorithm for CFO estimation: 1) the
length of each block, N , needs to be larger than the number of
relays, 2) the additive noise needs to be zero-mean, and 3) the
additive noise needs to be white [23]. By simply choosing N to
be larger than R the first condition can be satisfied. According
to the signal model in Eq. (3) and based on the assumption of
zero-mean AWGN at the relays, the mean of the additive noise
at the destination can be shown to be

E

[
R∑

k=1

βke
j2πnν[rd]

k t̃
[r]
k (n)vk(n)

]
+ E[w(n)] =

R∑
k=1

(
βkE

[
ej2πnν

[rd]
k t̃

[r]
k (n)

]
E[vk(n)]

)
= 0, (37)

which satisfies the second condition. Finally, in (8), it is shown
that the overall noise at the destination is white, satisfying the
third condition. Thus, the proposed I-MUSIC and I-C-MUSIC al-
gorithms can also be applied to AF relaying cooperative networks.

D. Complexity of I-MUSIC and I-C-MUSIC

Throughout this section it is assumed that the step size in (27)
for all relays are the same, i.e., ∆ν = ∆ν1 = · · · = ∆νR, and
computational complexity is defined as the number of additions
plus multiplications. Accordingly, the computational complexity
of the initialization step for I-MUSIC and I-C-MUSIC, denoted



by CI , is calculated as shown in (38) at the bottom of this page.
In (38), ϑ = 2ϵ

∆ν , where ϵ is defined in (27).
Using (38), the computational complexity of I-MUSIC and I-

C-MUSIC can be determined as

CI-MUSIC =CI + κR
[
N2(N −R) + ϑ

(
2N2 + 1

)︸ ︷︷ ︸
(27)

+ 2MN + 1]︸ ︷︷ ︸
(34)

, and (39)

CI-C-MUSIC = CI + κR [2MN − 2︸ ︷︷ ︸
(36)

+ 2MN + 1]︸ ︷︷ ︸
(34)

, (40)

where κ represents the number of iterations. (39) and (40)
demonstrate that the computational complexity of I-MUSIC is
considerably higher than that of I-C-MUSIC for the same κ. A
numerical comparison of number of iterations versus performance
is provided in Section V.

The computational complexity of the MLE based on [10,
Eq.(22)] and implemented using the iterative alternating projection
method [38] is calculated as

CMLE =κMLERϑ
[
R3 + 2R2L+ (R+ 1)L2 + L

]
+R3 + 2R2L+RL2, (41)

where κMLE represents the number of iterations required by the
alternating projection method, which is between 3-4 [38]. Table II
represents a quantitative comparison between the computational
complexity of I-MUSIC, I-C-MUSIC, and MLE in [10]. As shown
in Table II, compared to MLE in [10], I-MUSIC and I-C-MUSIC
are on average 30 and 1800 times less computationally intensive,
respectively. In addition, the algorithm in [13] requires correlating
the received signal with each TS, which can be computationally
intensive and due to its poor performance when the CFOs are far
apart may not be applicable to the case of cooperative networks.
Therefore, a quantitative comparison between the computational
complexity of the algorithm in [13] and I-MUSIC and I-C-MUSIC
is beyond the scope of this paper.

TABLE II
NUMBER OF ADDITIONS AND MULTIPLICATION FOR I-MUSIC, I-C-MUSIC,

AND MLE [10] ×107

∆ν = 10−5, κ = 10, κMLE = 4 [38], q = R, and ϵ = 0.5.
MLE [10] I-MUSIC I-C-MUSIC

L = 24, R = 2, N = 8 156 27.1 1.3
L = 64, R = 2, N = 16 1030 108 5.1
L = 64, R = 4, N = 16 3620 210 5.1
L = 64, R = 8, N = 16 14600 416 5.8
L = 128, R = 8, N = 32 52600 1660 21.8

V. NUMERICAL RESULTS AND DISCUSSIONS

Throughout this section the propagation loss is modeled as [6],
β = (d/d0)

−m, where d is the distance between the transmitter
and receiver, d0 is the reference distance, and m is the path loss
exponent. The following results are based on d0 = 1km and m =
2.7, which corresponds to urban area cellular networks. ϵ = 0.5
in (27). Without loss of generality, Walsh-Hadamard codes are
used as the training sequences. Binary phase-shift keying (BPSK)
modulation is used for transmission of the training sequences.
Finally, σ2

v1 = · · · = σ2
vk

= σ2
w = 1/SNR.

A. Estimation Performance

Throughout this subsection, TS length, L = 24, block length,
N = 8, and R = 2 relays are considered. Without loss of
generality, only CFO estimation performance for the first node
is presented. The estimators’ performances are investigated for
both far-apart and closely-spaced CFO values.

1) DF cooperative networks: Fig. 4 compares the performance
of I-MUSIC and I-C-MUSIC for the estimation of ν[rd] in DF
relaying networks against the CRLB in Eq. (24), the MLE in
[10], and the estimator in [13]. In (35), the threshold is set to
χ = 0.001, which corresponds to approximately 6−20 iterations.
Similar to [10] and [13], the channel gains, h are drawn from
independent and identically distributed (i.i.d) zero-mean complex
Gaussian processes with unit variance. For our particular channels
h = [0.2790 − 0.9603i, 0.8837 + 0.4681i]T . Two sets of CFO
values are selected, ν[rd] = {0.1, 0.2} and ν[rd] = {0.2, 0.205},
which in Fig. 4 are represented by solid lines and dotted lines,
respectively.

For the case of ν[rd] = {0.1, 0.2}, simulation results reveal
that I-MUSIC is close to but does not reach the CRLB. This is
due to the inherent shortcoming of the MUSIC algorithm [32].
However, I-C-MUSIC reaches the CRLB at mid-to-high SNR but
exhibits poorer performance at low SNR. Fig. 4 also shows that
both algorithms outperform the MLE and the estimator in [13] at
mid-to-high SNR. The MLE, on the other hand, requires that only
one node transmits its training sequence at a time. Therefore, for
a fair comparison, in the case of MLE a training sequence length
of L/R is used, resulting in higher mean-square error (MSE).
As expected, the estimator in [13] fails since the initial CFO
estimates are extremely poor whenever the CFOs are larger than
0.05 (the results in [13] are based on normalized CFO values
of 0.01 and 0.015). For the case of closely-spaced CFO values(
ν[rd] = {0.2, 0.205}

)
, Fig. 4 illustrates that I-MUSIC and I-C-

MUSIC approach the CRLB but do not reach it.
Fig. 5 compares the number of iterations for I-MUSIC, I-C-

MUSIC, and the estimator in [13]. Note that both I-MUSIC and
I-C-MUSIC algorithms require very few iterations to reach or
approach the CRLB. As illustrated in Fig. 5 as the CFO values get

CI =


N2(N −R) + ϑ

(
2N2 + 1

)︸ ︷︷ ︸
(27)

+MFN
2 + 1︸ ︷︷ ︸

(28)

+R! (R+ 2)N︸ ︷︷ ︸
(29)

+R3 +R2MN +M2N2︸ ︷︷ ︸
(30)

q = R

N2(N −R) + ϑ
(
2N2 + 1

)︸ ︷︷ ︸
(27)

+MFN
2 + 1︸ ︷︷ ︸

(28)

+
(
R
q

)
[(R+ 2)N︸ ︷︷ ︸

(29)

+ R3 +R2MN +M2N2
]︸ ︷︷ ︸

(30)

q < R
(38)
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Fig. 4. The MSE of I-MUSIC and I-C-MUSIC for the estimation of ν[rd]
1 for

DF networks vs. the algorithms in [10] and [13] and the CRLB in Eq. (24) with
L = 24 and LF = 512.

close, I-MUSIC and I-C-MUSIC both require more iterations to
approach the CRLB, due to the rough initial estimates. However,
even for closely-spaced CFO values, both algorithms require
considerably fewer iterations and overhead compared to [13] at
all SNR values.
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DF Relaying
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Fig. 5. Average number of iterations for I-MUSIC, I-C-MUSIC, and the algorithm
in [13] for the estimation of ν[rd]

1 for DF networks with L = 24 and LF = 512.

2) AF cooperative networks: Fig. 6 compares the performance
of I-MUSIC and I-C-MUSIC for the estimation of ν[sum] in AF
networks against the CRLB in (19). Again, the threshold in (35),
χ = 0.001. The channel gains are h = [0.2790−0.9603i, 0.8837+
0.4681i]T and g = [0.7820 + 0.6233i, 0.9474 − 0.3203i]T . The
normalized CFOs are ν[sum]{0.1, 0.2} and ν[sum] = {0.21, 0.2},
which in Fig. 6 are represented by solid lines and dotted lines,
respectively.

In the case of AF relaying, I-C-MUSIC reaches the CRLB while
I-MUSIC is very close to the CRLB and demonstrates better

performance at low SNR values. Also, for the case of closely-
spaced CFO values, the performance gap between I-MUSIC and
I-C-MUSIC and the CRLB is larger for the case of AF compared
to that of DF. This can be explained by the fact that the noise
introduced by the relay nodes, which is amplified and forwarded
to the destination, cannot be removed by the iterative algorithm.
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Fig. 6. The MSE of I-MUSIC and I-C-MUSIC for the estimation of ν
[sum]
1 for

AF networks vs. the CRLB in Eq. (19) with L = 24 and LF = 512.

Fig. 7 compares the number of iterations of I-MUSIC and I-
C-MUSIC for AF cooperative networks, where it is illustrated
that both algorithms require fewer iterations to reach the CRLB
when the CFOs are not very close. I-C-MUSIC requires fewer
iterations to reach or approach the CRLB at low-to-mid SNR
compared to I-MUSIC, while this advantage is reversed as the
SNR increases. In Fig. 7, when the CFO values are close to
one another (dashed + marked and ◦ marked plots) at low SNR,
the average number of iterations required by I-MUSIC and I-C-
MUSIC is small, since the initial CFO and channel estimates are
quite poor and further iterations do not result in better estimates.
However, at high-SNR due to the shortcoming of the MUSIC
algorithm in distinguishing between closely-spaced CFO values,
the MSE of the initial CFO and channel estimates moves further
away from the CRLB as the SNR increases and more iterations
are required to reach the CRLB. Finally, in the case of AF, both
algorithms require considerably more iterations to approach the
CRLB for closely-spaced CFO values compared to the case of
DF. These results demonstrate that in addition to requiring higher
SNRs between the nodes, AF networks also require more time
and overhead to achieve frequency synchronization.

Fig. 8 plots the MSE for the estimation of the overall channel
gains from source-relay-destination links, α, for both I-MUSIC
and I-C-MUSIC in the case of AF relaying cooperative networks
versus the CRLB in (22). At mid-to-high SNR, both estimators
reach the CRLB for channel estimation. Since similar results are
obtained for the estimation of channel gains from relay-destination
links, g, in the case of DF relaying, they are not presented here.
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Fig. 7. Average number of iterations for I-MUSIC and I-C-MUSIC for the
estimation of ν[sum]

1 for AF networks with L = 24 and LF = 512.
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B. Cooperative Network Performance

During the data transmission interval BPSK modulation is used
with a frame length, LF , of 512 symbols and a synchronization
overhead of 12%. In the case of DF relaying an orthogonal
space-time block code (OSTBC) with a code rate of 3/4, [39],
is used for the transmission of the signals from R = 4 relays.
In the case of AF relaying, since application of OSTBC is not
straightforward [40], the algorithm in [4] is used to investigate
the performance of the cooperative networks. Quasi-static fading
channels are considered, where new channel gains are generated
from frame to frame (channel coefficients are complex Gaussian
random variables with mean zero and unit variance). For DF
relaying it is assumed that only relays that correctly decode the
received signal are selected for retransmitting the signal. Finally,
relays are uniformly distributed throughout the network such that
d[sr] ≤ 1km and d[rd] =

(
1− d[sr]

)
km.

For the DF relaying scenario, the time varying chan-
nel matrix GLF×R ,

[
g1ē

[rd]
1 , · · · , gRē[rd]

R

]
, where ē[rd]

k ,[
ej2πν

[rd]
k , · · · , ej2LFπν

[rd]
k

]T
in combination with the decoder in

[39] may be used to mitigate CFOs for decoding the received
signal at the destination. In this paper, the computationally
simpler method in [27] as referenced in Section V.B is used
instead. Unfortunately, lack of space precludes providing the
details of the CFO compensation method, which is available
in [27] and references therein. On the other hand, for AF re-
laying to mitigate the effect of CFOs the time varying chan-
nel matrix zLF×R ,

[
α1ē

[sum]
1 , · · · , αRē

[sum]
R

]
where ē

[sum]
k ,[

ej2πν
[sum]
k , · · · , ejLF 2πν

[sum]
k

]T
in combination with successive in-

terference cancelation (SIC) as described in [4] is used.
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Fig. 9. ABER plots for perfectly synchronized, estimated/imperfectly synchro-
nized via I-MUSIC and the MLE in [10], and unsynchronized systems with
normalized CFO in the range [−0.5, 0.5) per node for R = 4 relays, LF = 512.

Figs. 9 and 10 illustrate the average-bit-error-rate (ABER)
of DF and AF relaying SISO multi-relay cooperative networks,
respectively. Here, I-MUSIC is used to acquire the completely
unknown CFOs and channel gains. This result is compared
to an unsynchronized system with normalized CFOs uniformly
distributed in the range [−0.5, 0.5) per node, as well as to
perfectly synchronized systems. Figs. 9 and 10 reveal a significant
performance gap between ABER performances of practical coop-
erative networks that estimate and compensate multiple CFOs and
idealized systems that assume perfect synchronization at low-to-
mid SNR. Figs. 9 and 10 also demonstrate that compared to DF,
the performance of AF relaying networks is more significantly
impacted by CFOs. This outcome is anticipated, since CFO
estimation in the case of DF relaying can be performed more
accurately as predicted by the CRLB analysis in Fig. 3. Unlike DF
relaying, the ABER of an AF relaying network synchronized via
I-MUSIC does not reach that of a perfectly synchronized system
at high SNR due to this difference in estimation performance.
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Fig. 10. ABER plots for perfectly synchronized, estimated/imperfectly synchro-
nized via I-MUSIC, and unsynchronized systems with normalized CFO in the
range [−0.5, 0.5) per node for R = 4 relays, LF = 512.

VI. CONCLUSION

In this paper we have addressed the topic of CFO estimation
in multi-relay cooperative networks. The system model for DF
and AF relaying networks in the presence of multiple CFOs has
been presented and new CRLB expressions are derived, in closed-
form. Two novel multiple CFO estimators are outlined. Numerical
analyses demonstrate that the proposed estimators’ performances
reach or approach the CRLB at mid-to-high SNR and outperform
the existing algorithms. The performances of DF and AF relaying
cooperative networks in the presence of multiple CFOs has
been investigated showing that the application of the proposed
estimators result in significant performance gains. In addition, the
results in Section V reveal that up to an SNR of 12 and 15dB for
DF and AF relaying, respectively, there is a large performance gap
between the ABER of idealized cooperative systems that assume
perfect frequency synchronization and actual cooperative systems
that require the CFOs to be estimated and compensated for at the
receiver. Thus, it is important to consider the effect of imperfect
CFO estimation when assessing the performance of cooperation
methods, e.g., distributed beamforming and distributed space-time
coding.
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