
Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2010, Article ID 936195, 11 pages
doi:10.1155/2010/936195

Research Article

Interacting Urns Processes for Clustering of
Large-Scale Networks of Tiny Artifacts

Pierre Leone1 and Elad M. Schiller2

1 Computer Science Department, Centre Universitaire d’Informatique Battelle Bâtiment,
University of Geneva, A route de Drize 7, 1227 Carouge, Geneva, Switzerland

2 Distributed Computing and Systems Research Group, Department of Computing Science,
Chalmers University of Technology and Göteborg University Rännvägen, 6B S-412 96 Göteborg, Sweden

Correspondence should be addressed to Pierre Leone, pierre.leone@cui.unige.ch

Received 3 October 2008; Revised 31 January 2009; Accepted 30 May 2010

Copyright © 2010 P. Leone and E. M. Schiller. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We analyze a distributed variation on the Pólya urn process in which a network of tiny artifacts manages the individual urns.
Neighboring urns interact by repeatedly adding the same colored ball based on previous random choices. We discover that the
process rapidly converges to a definitive random ratio between the colors in every urn. Moreover, the rate of convergence of
the process at a given node depends on the global topology of the network. In particular, the same ratio appears for the case of
complete communication graphs. Surprisingly, this effortless random process supports useful applications, such as clustering and
computation of pseudo-geometric coordinate. We present numerical studies that validate our theoretical predictions.

1. Introduction

Designers of distributed algorithms often assume that
each node is computationally powerful, capable of storing
nontrivial amounts of data, and carrying out complex
calculations. However, recent technological developments in
wireless communications and microprocessors allow us to
establish networks consisting of massive amounts of cheap
and tiny artifacts that are tightly resource constrained. These
networks of tiny artifacts are far more challenging than
the traditional networks; on one hand, their relative scale
is enormous, while on the other hand, each tiny artifact
can only run a millicode that is aided by a miniature
memory. Such limitations are not crippling if the system
designer has a precise understanding of the tiny artifacts’
computational power and local interaction rules from which
global formation emerges.

1.1. Related Work. Urn processes (and more generally pro-
cesses with reinforcements) are a tool for modeling stochastic
processes that show emerging structures. Their aim is to
analyze the global structure of a given population given
the micromechanisms the particular entities are applying.
The global structure reflects the ability of the entities to

self-organize. Such models can explain the preferential-
attachment model in small-world networks, the process of
market sharing, interaction of biological entities, and so
forth, based on given micromechanisms. We refer to [1, and
references therein] for reinforcement processes, for models
based on urn models see [2], and for the emergence of
structure we refer to [3].

Tishby and Slonim [4] use random processes for network
clustering. The authors use a Markov process and the clusters
are built by considering the decay of mutual information.
The information changes with time, and during an appropri-
ate period, the mutual information is relevant for clustering.
After this period, the mixing property of the Markov process
destroys the emerged structure. The random processes we
suggest converge so slowly that the mixing property is useful
for tolerating various faults. Nevertheless, the process obtains
the significant values rapidly.

Angluin et al. [5] define urn automata that include a state
controller and an urn containing balls with a finite set of
colors. Tiny artifacts can implement the urn automata with
provable guarantees regarding their computational power
and, by that, allowing the exact analyses of the interaction
process among artifacts. This work aims at understanding the

2 International Journal of Distributed Sensor Networks

possibilities of the urn automata to emerging global forma-
tions using miniature algorithms and diminutive resources.

1.2. Our Contribution. In this paper our aim is to extend
the classical urn process to a network of interacting urn
processes and to analyze the emerging global formation,
which is carried out by a low-level interaction process. The
network of tiny artifacts repeats the following operations.
Each urn has a multiset of black and white balls, initially
one of each color. A given tiny artifact draws a ball from the
urn with uniform distribution and returns to the urn the ball
along with a new ball of the same color. (This is a classical
Pólya urn [6].) The tiny artifact interacts with its neighbors
on the network. Namely, after returning the two balls, the
tiny artifact announces the balls’ color to its neighbors, and
the neighbors add a new ball of that color to their urns.
The selection of the artifact drawing the ball from the urn
is random and uniform (any artifact might be selected with
the same probability).

Indeed, if we assume that, before drawing from the urn,
the tiny artifacts wait for a random time with λ-exponential
distribution, then globally, the tiny artifacts are going to be
selected uniformly without any global synchronization. (The
implementation of this assumption in distributed systems
is considered in Section 4.) Notice that the algorithm steps
are composed of the following operations: (1) an urn ball-
drawing operation, (2) a ball announcement operation, and
(3) an update of the urn by the drawing tiny artifact and
its neighboring urns. Concurrent steps should interleave
carefully; we require that at most one artifact among any set
of neighbors is accessing its urn at a time and announces its
ball drawing, and no neighboring artifact takes a step before
all neighboring artifacts update their urns.

This work presents the following.

(i) First is an analysis of the interacting urns process,
allowing us to demonstrate that the ratio between
the numbers of black and white balls in every
urn is converging and that these ratios, which are
obtained locally, provide global information about
the communication graph.

(ii) Second are the applications for large-scale networks
of tiny artifacts include clustering and the compu-
tation of pseudogeometric coordinates. We present
numerical studies that validate our theoretical pre-
dictions on the emerging global formations.

Self-stabilizing systems [7, 8] can recover after the
occurrence of transient faults. These systems are designed
to automatically regain their consistency from any starting
state. The property of self-stabilizing facilitates the require-
ments of self-organization in ad hoc networks [9–11].

(iii) The interacting urn process analysis assumes undis-
turbed steps and that all urns are selected with the
same probability. We explain how to implement the
interacting urn process in a self-stabilizing manner
(see [8]). We use existing self-stabilizing building
block that facilitates the announcement of ball draw-
ing on shared communication media.

1.3. Document Structure. We start by analyzing the process
(Section 2), before presenting the applications (Section 3),
and the implementation (Section 4). Lastly, we draw our
conclusions (Section 5).

2. The Interacting Urns Process

There is no unified way of analyzing the behavior over time of
the type of systems we consider in this paper. These systems
usually cannot be understood with Markovian formalism.
Indeed, the system behavior over time is Markovian but
describing the process in this way leads to an intractable
set of equations. Relative to these kinds of processes,
which are characterized by path-dependence or (negative)
reinforcement, we can find various ad hoc techniques. Many
references are available from the survey [1]. We show that
there is a connection between a time-based analysis of the
interacting urns process and multitype branching process
[12]. We use this connection and existing literature to that
the evolution equations of the interacting urns processed.

We start by establishing firmly how the tiny artefacts
randomly draw balls from their urn with a uniform prob-
ability. For the sake of presentation simplicity, we assume
in Lemma 1 that within a single operation that takes no
time, we can draw a ball and advertise it, that is, announce
the ball’s color to all neighboring urns. (In Section 4, we
consider a possible implementation that does not require this
assumption.)

Lemma 1. We consider N artefacts which repeatedly wait for
an λ-exponentially distributed random time independently of
each other before proceeding to a random draw. Then, the
probability that artefacts proceed to a random draw is uniform.

Proof. A λ-exponential waiting time can be facilitated by the
following p-persistence-like technique. Every artefact decides
with probability 1− λ · h to wait for a period of h time units
and not to draw a ball and with probability λ · h it decides to
draw a ball and announce the ball’s color to all neighboring
urns. The λ-exponential distribution is obtained as h → 0.
It is easy to check that as h → 0, the probability that two
artefacts draw a ball simultaneously vanishes. This proves the
lemma because during short period h time units, the artefacts
independently decide to draw a ball or not.

As a conclusion from Lemma 1, we say that the artefacts
wait independently for a random exponentially distributed
random time (with the same parameter λ) and then draw
and announce a random ball from their urns. Let N be the
number of artefacts composing the network. The state of the
interacting urns process is described by the vector:

Z(t) =
(
Z1(t), . . . ,ZN (t)

)T
(1)

with Zi(t) = (bit,w
i
t)
T , where the index i ∈ {1, . . . ,N} refers

to a particular artefact. (The T is the transpose operator
which is used to denote the vectors column-wise, as usual.)
(The presentation analysis uses urns’ indices. However, the
interacting urns are anonymous; that is, the urns do not

International Journal of Distributed Sensor Networks 3

know their indices and do not use unique identities in
their computations or communications.) To simplify the
presentation, we start by writing down the equations for the
total population belonging to the urns Zi(t) = bit +wi

t.
Every time the artefact owner or one of its neighboring

artefacts proceeds to a random draw, the population size in
a given urn i increases by one unit. Then, asymptotically, the
population size increases linearly with time and proportion-
ally to (deg(i) + 1).

In order to look at the evolution of our process described
by the state vector Z(t), we need to compute the probabilities
P(Z(t) = (j1, . . . , jN)) for each N-tuples (j1, . . . , jN), such
that ji ≥ 0, for all i = 1, . . . ,N . To manipulate the N-tuples,
we use classical conventions. We denote vectors with boldface
characters, for example, j = (j1, . . . , jn). We also expand the
notation for the exponential in the classical way. That is,

sj denotes the vector (s
j1
1 , . . . , s

jN
N) and similar notations for

vector-valued functions.
A convenient way of pursuing the computations is to use

the probability generating function given by

F(t, s) :=
∑

j=(j1,..., jN)≥0

sjP
(
Z(t) = j

)

= E
(

sZ(t)
)
= E

(
sZ

1(t)
1 · . . . · sZN (t)

N

)
,

(2)

where E(·) is the expectation operator. The function F(t, S)
is called the probability generating function since it is
possible to compute the probability function using it. In
order to prove the existence of F(t, s), we are now going to
characterize the function by computing the Fokker-Planck
equation [13, 14] (also known as Kolmogorov forward
equation). Moreover, we are using this characterization
to show that some results available in the literature are
applicable to our model and lead to a time-based description
of the interacting urn process.

In order to compute the probability generating function,
we first compute E(sZ(t+h) | Z(t)), where E(· | Z(t)) is
conditional expectation given that Z(t) is known. Using the
description of the λ-exponential random time used in the
proof of Lemma 1 shows that

Z(t + h)

=
⎧⎨
⎩

Z(t)+ nk ∀k = 1, . . . ,N with probability λh + O
(
h2
)
,

Z(t) with probability 1−Nλh + O
(
h2
)
,

(3)

where the jth entry of the vector nk is 0 or 1 to indicate
that the jth artefact is a neighbor or not of k, and the vector
nk is a line of the adjacency matrix describing the network
connections. We define that each artefact is its own neighbor.
(This is a slight departure from the conventional notation.)
In other words, adding the vector nk to the state vector Z(t)
corresponds to the situation where the artefact k proceeds

to a random draw and adds a ball in its urn as well as in its
neighbor’s urns. Then, we get

E
(

sZ(t+h) | Z(t)
)
= sZ(t) +

N∑

k=1

(
sZ(t)+nk − sZ(t)

)
λh + O

(
h2).

(4)

From (4), we obtain by computing the expectation on
both side and passing to the limit h → 0

dE
(

sZ(t)
)

dt
=

N∑

k=1

E
(

sZ(t)
)

(snk − 1)λ. (5)

Equation (5) is called the Fokker-Planck equation [13, 14]
(also known as Kolmogorov forward equation). Solving this
equation provides the complete knowledge of the probability
that the state vector Z(t) is in a given state at time t. We
are using this equation in order to derive another one which
describes the evolution of the expectation of the number of
balls in a given urn, that is, E(Zj(t)) = (∂/∂sj)F(t, s)|s=1, for

j = 1, . . . ,N and with 1 = (1, . . . , 1)T .
We first observe that mk(t) := (∂/∂sk)E(sZ(t))|s=1 =

E(Zk(t)sZ(t)−ek)|s=1. Secondly, by construction we have that
asymptotically as t → ∞ we have the approximation Zk(t) ≈
tλ(deg(k) + 1). We then have as the time t is large the
approximation

∂

∂sk
E
(

sZ(t)
)
≈ tλ

(
deg(k) + 1

)
s−1
k E

(
sZ(t)

)
. (6)

By differentiating both sides of (5) with respect to s j and
using the approximation above, we obtain that for large t,

dE
(

sZ(t)
)

dt
(t) ≈

N∑

k=1

1
t
(
deg(k) + 1

) (snk+ek − sk)
∂

∂sk
E
(

sZ(t)
)
.

(7)

We then obtain a differential equation for mj(t) by
differentiating both sides of this last equation with respect
to ∂/∂sj and evaluating the expression at s = 1. This leads to

dmj

dt
(t) ≈

N∑

k=1

1
t
(
deg(k) + 1

)mk(t)δj∼k, (8)

where δj∼k is 1 if j and k are neighboring artefacts and 0
else. In the limit t → ∞, the limit m(t) tends to the solution
of (8) where the approx sign ≈ is replaced by an equality.
This is due to the fact that the solution of (8) converges to
a unique limit. In the following, we unashamedly proceed to
the substitution. The term t is removed from the equation
with the substitution m̃(log(t)) = m(t), from which we get

dm̃j

dt
(t) =

N∑

k=1

1
deg(k) + 1

m̃k(t)δj∼k, (9)

or written in matrix form and removing the tilde,
(
dm1

dt
(t), . . . ,

dmN

dt
(t)
)

= (m1(t), . . . ,mN (t))(I +D)−1(I + Ad)

= (m1(t), . . . ,mN (t))A,

(10)

4 International Journal of Distributed Sensor Networks

where Ad = (δi∼ j)i, j=1,...,N , I is theN×N identity matrix, and
D is a diagonal matrix with dii = 1/(deg(i) + 1).

The FokkerPlanck equation (7) is one of a multitype
branching process with constant rate (λk(t) = λk). From
[12, 15], we know that

lim
t→∞Z(t,ω)e−λ1t =W(ω)u, (11)

where Z(t,ω) is the state vector of our interacting urn process
(1) in which we make explicit the underlying probability
space by writing the sample point ω; W(ω) is a random
variable and u is the left eigenvector of the matrix A
corresponding to the largest eigenvalue λ1. Hence, because
of the exponential time change, the solution is going to
converge like

lim
t→∞

Z(t,ω)
t−λ1

=W(ω)u. (12)

From (7) we know that given an initial urn content vector
(Z1(0), . . . ,ZN (0))T , the expected population is given by
(
m1(0), . . . ,mN (0)

)
M(t) =

(
Z1(0), . . . ,ZN (0)

)
exp(At),

(13)

with the matrix A given by

ai j =
δi j

deg(i) + 1
, i, j = 1, . . . ,N. (14)

This representation of the evolution of the vector
(m1(t), . . . ,mN (t)) is useful to prove a stronger result
than (11) (or (12)). We state the result in the following
proposition.

Proposition 1. Let ξ be a right eigenvector of the matrix A
and λξ the corresponding eigenvalue. Then, the process defined
by Z(t) · ξ exp(−λξt) does converge as t → ∞.

Proof. The representation of the time evolution of the mean
vector (m1(t), . . . ,mN (t)) given by (13) shows that m(t) =
m(t0) exp(A(t − t0)), ∀0 ≤ t0 ≤ t. So, with t0 ≤ t fixed, we
can write

m(t) · ξ = Z(t0) exp(A(t − t0)) · ξ
= Z(t0) · ξ exp

(
λξ(t − t0)

)
,

(15)

and hence,

m(t) · ξ exp
(−λξt

) = Z(t0) · ξ exp
(−λξt0

)
. (16)

This last equation shows that Z(t) · ξ exp(−λξt) is a
martingale. Indeed,

E
(
Z(t) · ξ exp

(−λξt
) | Z(t0)

) = Z(t0) · ξ exp
(−λξt0

)
. (17)

The convergence follows from the classical convergence result
for martingale.

We also state the following corollary which will be useful
in the next section.

Corollary 1. We denote by X1,X2, . . ., the right eigenvectors of
the matrixA and λ1, λ2, . . . the corresponding eigenvalues. If we
assume that the eigenvectors are independent, then we have the
following decomposition:

Z(t) = a1(t)X1 exp(λ1t) + a2(t) exp(λ2t) + · · · , (18)

where ai(t) is a random variable which converges as t → ∞.

Proof. To compute the decomposition, we use the fact that
by assumption the eigenvectors are orthogonal. To get the
coefficient ai(t), we compute the scalar product of Z(t) with
the corresponding eigenvector Xi. The convergence follows
from Proposition 1.

The convergence rate of the process is determined by the
second largest eigenvalue.

Proposition 2. The eigenvalues λ1 > λ2 ≥ · · · ≥ λn of the
matrixA are given by λ1 = 1−μi with 0 = μ1 < μ2 ≤ · · · ≤ μn
being the eigenvalues of the Laplacian of the communication
graph of the network.

Proof. Let Ad be the adjacency matrix of the communication
graph (ai j = 1i∼ j) and D the diagonal matrix with dii =
deg(i). The matrix A is given by A = (I + D)−1(I +
Ad). Algebraic manipulations show that if x, λ are right
eigenvector and eigenvalue of A, then x, 1 − λ are right
eigenvector and eigenvalue of the Laplacian D − Ad of
the communication graph. The result follows since we
assume that the communication graph is connected (then
the eigenvalue 0 is simple) and by known properties of the
spectrum of the Laplacian matrix.

This proposition shows that the dominant eigenvalue of
the matrix A is 1 and one can check that the corresponding
left eigenvector is given by (deg(1) + 1, . . . , deg(N) + 1)T .

Proposition 3. Let x be the left eigenvector of A corresponding
to the eigenvalue 1, then u = (D + I)−1x is a right generalized
eigenvector of (Ad,D), that is, it satisfies Adu = Du.

Proof. The proof uses the same decomposition of the matrix
A as in the previous proposition and proceeds by direct
computations using the fact that the matrices D + I and Ad
are symmetric.

Generalized eigenvectors are useful for spectral graph
drawing. Actually, as discussed in [16], generalized eigen-
vectors corresponding to the generalized eigenvalues smaller
than the dominant one provide coordinates for drawing the
graph in the plane. Numerical evidence supports the fact
that such generalized eigenvectors provide better coordinates
than the eigenvectors of the Laplacian matrix. This propo-
sition will support our application of the interacting urn
process to clustering.

We now consider what does happen if we distinguish
black and white balls in a same urn. Actually, the analysis
previously presented carries on, the rate of split/die of the
particles living in a given urn of different colors being
asymptotically independent since bit +wi

t → t(deg(i) + 1)t.

International Journal of Distributed Sensor Networks 5

Theorem 1. The scaled interacting urn process populations
converge to a random vector which is proportional to the left
eigenvector of the matrix A corresponding to the maximal
eigenvalue 1; see (12). The ratio of the black balls among the
total population of a given urn, denotedXi

t , converges to a mean
value

Xi
∞ =

1
deg(i) + 1

N∑

j=1

δi jX
j
∞, (19)

which is equivalent to

Xi
∞ =

1
deg(i)

N∑

j=1

1i∼ jX
j
∞. (20)

Proof. The equivalence between the two expressions above
follows from simple computation; we point out that the
difference between the two sums is that in the first one we
take into account the term Xi∞ while we do not in the second.
The populations of black balls in the urn bi∞ satisfy; see (12)

bi∞ =
n∑

j=1

δi j
deg

(
j
)

+ 1
b
j
∞. (21)

Moreover, the total populations composing the urns satisfy

bi∞ +wi∞
deg(i) + 1

= b
j
∞ +w

j
∞

deg
(
j
)

+ 1
, (22)

because of the asymptotic limit as t → ∞. Hence,

Xi
∞ =

bi∞
bi∞ +wi∞

=
∑

j

δi jb
j
∞(

deg
(
j
)

+ 1
)(
bi∞ +wi∞

)

=
∑

j

δi jb
j
∞

(
deg(i) + 1

)(
b
j
∞ +w

j
∞
) = 1

deg(i) + 1

∑

j

δi jX
j
∞.

(23)

Broadly speaking, it is hard to get general results on
the convergence rate of the interacting urn process because
it is related to random processes (e.g., processes with
reinforcement [1]). The process convergence rate depends
on the value of the second largest eigenvalue of A. The
difficulty of asserting general results is mainly because such
results depend on the topology of the interactions, that
is, the matrix A. However, the case where the topology of
the graph of interactions is a complete graph is easy to
understand, because the completeness implies identical urn
content and the process is similar to the classical Pólya
urn. This can motivate us to investigate the applications
of the interacting urn process in clustered networks, since
nodes that share many links are apt to develop similar urn
content. Another folk result concerning processes similar to
the interacting urn process is that the time for convergence
to the definite value is usually very large and not numerically
observable. However, some significant values may emerge

quickly from the dynamic process. Moreover, notice that due
to the probabilistic nature of the interacting urn process,
fault tolerance is implied; there is an inherent recovery after
the loss of a ball, say, due to communication interferences.

3. Applications

We now turn to describe two of the many possible appli-
cations of the interacting urn process in networks of tiny
artifacts.

3.1. Cluster Formation. Spectral graph drawing considers the
entries of the generalized eigenvector of (Ad,D) correspond-
ing to the second largest eigenvalue as 1d coordinate of
the node as an efficient heuristic; see [16]. (By considering
successive generalized eigenvectors of (Ad,D), one can also
obtain multidimensional representation of the graph.) It is
then natural to cluster nodes that are close in the 1d drawing
of the graph.

3.1.1. The Analysis. We have shown that the population
vector (b1

t , . . . , bNt)/t converges, with the left eigenvector of
the matrix A corresponding to the dominant eigenvalue 1,
see equation 7, and that bit + wi

t → t(deg(i) + 1). The ratio
Xi
t = bit/(b

i
t + wi

t) is then converging to the generalized
eigenvector of (Ad,D) corresponding to the dominant
eigenvalue 1 by proposition 3, with a rate of convergence
depending on the second largest eigenvalue. However, by
direct computation, one can check that this generalized
eigenvector is (1, . . . , 1)T , and by considering the difference

Xi
t − X

j
t ; we get an approximation of the component of

the generalized eigenvalue of (Ad,D) corresponding to the
second largest eigenvalue, which is related to the distance of
the nodes in the 1d drawing of the graph.

The preceding analysis suggests running the interacting
urn process and clustering neighbor nodes whose difference

Xi
t −X j

t is below a threshold. In detail, we consider the vector
of

Z̃(t) =
(

b1(t)
b1(t) +w1(t)

, · · · bN (t)
bN (t) +wN (t)

)
. (24)

By (24), we have that bi(t) → tui1 + tλ2ui1 + · · ·+ and
bi(t) + wi(t) → (deg(i) + 1)t. Therefore, we can write (25)
(see Corollary 1),

Z̃(t) −→ a1(w)X1 + a2(w)tλ2−1X2 + · · ·

= a1(w)

⎛
⎜⎜⎝

1
...
1

⎞
⎟⎟⎠ + a1(w)tλ2−1X2 + · · · .

(25)

6 International Journal of Distributed Sensor Networks

(a)

58

52

45

42 46

49

52

51 55

52 43
33

31

36

40
49

59

62
53

56
47

52

66
60

56 49 44

55 5257

423

32
36

29
26

19
20 25

28

35

28384246
48

49
4350

59

62

59 53

54

64
70

66
63

49
60

65

68

70

(b)

Figure 1: Clusters obtained with the interacting urn process. The left graph depicts the communication graph (n = 300 and r = 0.12).
The right graph depicts the clusters with their assigned numerical values. For each cluster, we choose a representative node and connect
representative nodes of other clusters, whenever there are neighboring nodes belonging to both clusters.

We note that a1(w)X1 refers to the generalized eigenvec-
tor and λ2 < 1 but usually close to 1. In other words, we can
write

Z̃(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

b1(t)
b1(t) +w1(t)

...
bN (t)

bN (t) +wN (t)

⎞
⎟⎟⎟⎟⎟⎟⎠

−→ a1(w)

⎛
⎜⎜⎝

1
...
1

⎞
⎟⎟⎠ + a1(w)tλ2−1X2 + · · · .

(26)

We conclude that the difference bi(t)/(bi(t) + wi(t)) −
bj(t)/(bj(t)+wj(t)) is related to the differences Xi

2−X j
2 . This

relation allows us to connect neighboring tiny artifacts for

which the difference Xi
2 − X j

2 is small.

3.1.2. Numerical Results. A numerical study that validates
our theoretical prediction is presented in Figure 1. In the
experiment, the schedule of nodes interaction is generated
uniformly at random. The time to stop the process was
obtained while the clustered network stopped evolving
visually, after about 20 draws per node; however, the global
formation starts to emerge after 15 draws per node. In
Figure 1, we observe that the algorithm behaves as expected,
and a global cluster formation emerges.

3.2. Pseudogeometric Coordinates. In very large-scale net-
works, it is not possible to register the location of all

nodes manually, or to equip all tiny artifacts with GPS
units (such as [17]). Nevertheless, position-awareness is of
great importance for many applications. For example, it is
sometimes required or desirable to route without position
information and to use virtual coordinates for georouting
(see [18–20]). The algorithms for virtual coordinates assume
that the underlying communication graph has a realization
of a unit disk graph. The algorithms extract connectivity
information of the communication graph and find a real-
ization of virtual coordinates in the plane. For example, the
realization can require that each edge has length at most 1
and that the distance between nonneighbored nodes is more
than 1.

Rao et al. [18] describe an algorithm for computing
virtual coordinates to enable geographic forwarding in a
wireless ad hoc network. The mechanism in [18] is related
to graph embedding. It is known that finding such a
realization from connectivity information only (by using
embedding of a unit disk graph) is NP hard (see [21])
and also hard to approximate (see [22]). Some applications
do not require the realization of a unit disk graph. For
example, georouting can be facilitated by pseudogeometric
coordinates (see [23]). An algorithm for pseudogeometric
coordinates selects several nodes, a1, . . . ak, as anchors, and
assigns coordinate of each node, u, as its hop-distance to all
anchors, that is, (d(u, a1), . . . d(u, ak)). It is required that the
pseudogeometric coordinates uniquely identify each node.
Moreover, the pseudogeometric coordinates must facilitate
georouting. In this paper we follow an approach similar to
the one in [19, 24] that uses information about the nodes’
connectivity. The algorithm in [19] is an approximation
algorithm that runs in polynomial time. In detail, the core of

International Journal of Distributed Sensor Networks 7

the mechanism in [18, Section 4.1] is described in (14); the
values of the xi, yi coordinates of node pi is the mean value
of its neighbor coordinates

xi =
∑

Pk∈neighbor set(i) xk∣∣neighbor set(i)
∣∣ ; yi =

∑
Pk∈neighbor set(i) yk∣∣neighbor set(i)

∣∣ .
(27)

After repeatedly letting each node pi in the system
to recalculate the values of the xi, yi coordinates, the
eventual values are useful for greedy georouting (see [18,
Section 4.1]). We suggest to replace the mechanism in [18,
Section 4.1] with a simpler and cheaper mechanism of
interacting urn processes.

3.2.1. The Process. We assume that merely a few anchor
nodes have a registered position by some means, for example,
using a GPS unit. We aim at letting all others nodes derive
a coordinate system through connectivity information. Our
approach is similar to that of Wattenhofer et al. [23],
however, we are interested in using the interacting process as
a heuristic that are applicable for random geometric graphs.
(Random geometric graphs are constructed by dropping n
points randomly uniformly into the unit square, I = [0, 1]2,
and adding edges to connect any two points distant at most
r from each other (see [25] for the more general form
of higher dimensions).) Consider the following process, in
which the anchor nodes keep their coordinates unchanged
during the entire process, and other nodes choose an initial
position randomly. Then, repeatedly, the nodes transmit
their positions, collect the coordinates of their neighbors,
and assign themselves to the barycentric coordinates. The
processes converge, producing pseudogeometric coordinates
for the nodes.

We wish to emulate a similar process to the one described
above, and let the interacting urn process estimate the mean
of the barycentric neighboring values. Therefore, nodes
maintain two urns, one for the x-axis and one for the y-axis,
each urn composed of black and white balls. The position
(x, y) of an anchor node corresponds to the color ratio of
balls to be sent to their neighbors, that is, the urn with a
constant number of x white balls and y black balls. Other
nodes start with one black ball and one white ball in their
urn. We let the interacting urn process run before using
the content of both urns for producing the coordinates by
taking the integer part of a factor of the color ratio in every
urn. We identify nodes with the same integer coordinates as
belonging to the same cluster, because of their similarity to
the clustering application above.

3.2.2. Numerical Results. The obtained coordinates are pre-
sented in Figure 2. Similar to the clustering application, the
time to stop the process was obtained while the pseudo-
geometric coordinate stopped evolving visually, after about
20 draws per node; however, the global formation starts to
emerge after 15 drawings per node.

A statistical study is presented in Figure 3. Both charts
consider a random geometric graph (Random geometric
graphs are constructed by dropping n points randomly

uniformly into the unit square, I = [0, 1]2, and adding edges
to connect any two points distant at most r from each other
(see [25] for the more general form of higher dimensions).)
of 50 nodes. Five anchor nodes are placed on the coordinate
(0.0, 0.0), (0.0, 1.0), (0.5, 0.0), (0.5, 0.5), (0.5, 1.0), (1.0, 0.0),
(1.0, 0.5), (1.0, 1.0). We study the statistics using Pearson’s
coefficient correlation (see [26]). An interesting question to
find an answer for is how the number of hops from the
anchor nodes to the other nodes statistically correlates to
the Euclidian distance over the space of pseudogeometric
coordinates. Moreover, we are interested in comparing with
the alternative system of coordinates. Therefore, we present
the statistical correlation of Euclidian distance over the space
of the real coordinates (that where used to generate the
communication graph) to the number of hops from them to
the anchor nodes.

In more detail, for every two nodes, u and v, let us
define dispseudo(u, v) and disreal(u, v) as the Euclidian

distances
√

(u.xpseudo − v.xpseudo)2 + (u.ypseudo − v.ypseudo)2,

and, respectively,
√

(u.xreal − v.xreal)
2 + (u.yreal − v.yreal)

2,
where (u.xpseudo, v.ypseudo) and (u.xreal, v.yreal) are the
pseudogeometrical, and, respectively, real coordinates of
nodes u. Moreover, hop(u, v) is the number of hops on
the shortest path between nodes u and v. The statistical
correlation between dispseudo(u, v) and hop(u, v) is presented
in the left chart of Figure 3, where u is the anchor node
at (0.5, 0.5) and v is any of the 50 nodes on the random-
geometric graph that are not anchored. We see that after 5
rounds, the value of the correlation starts to oscillate around
the average value of 0.85 and with small (standard) deviation
(of less than 0.01). The left chart of Figure 3 also presents
the alternative correlation. Namely, 0.75 is the value of the
statistical correlation between disreal(u, v) and hop(u, v),
where u is the anchor node at (0.5, 0.5) and v is any of the 50
nodes that are not anchored.

Georouting facilitates the communication between any
pair of nodes (that are not necessarily one of the anchor
nodes). Therefore, we consider the statistical correlation
between dispseudo(u, v) and hop(u, v), where u and v are
any two nodes on the random-geometric graph that are
not anchored. The values of the statistical correlation are
presented in the right chart of Figure 3 as a function of the
number of rounds. Moreover, the right chart also depicts the
linear regression of these values.

The correlation values that are presented in Figure 3
suggest that (over time), the pseudogeometric coordinates
can facilitate georouting better than real coordinates, because
of their stronger statistical coalition to the hop distance.

4. The Implementation

We present a self-stabilizing implementation of the urn
process. The pseudocode of the implementation is given in
Algorithm 1. Before we explain the design, we list the key
assumptions used in the analysis of interacting urn processes.
For instance, it assumes that time is continuous. However, in
practice, clock mechanisms are discrete. Fortunately, when
considering a stochastic process evolving in continuous

8 International Journal of Distributed Sensor Networks

(a)

25

30

23

22
39

38

25

29

49 23

55 21

58 19
60 21

64 2 68 28

54 28
51 29

44 34

32 41

38 37
50 2649 27

44 30
44 35

40 51 53 51

45 55

46 56
44 54

41 52
35 56

34
32

60

39 43

35 48 70 53 78 55

6563 48
66 45

56 44

52 43

52 48
49 45

44 40

47 37

47 28

43 39

46 31 38 40

45 41

41 4719 65

44 4538 5

(b)

Figure 2: Pseudogeometric coordinates obtained with two interacting urn processes. On the left graph, we see the communication graph
(n = 300 and r = 0.12) with 8 anchor nodes at (0.0, 0.0), (0.0, 1.0), (0.5, 0.0), (0.5, 0.5), (0.5, 1.0), (1.0, 0.0), (1.0, 0.5), (1.0, 1.0). For the sake
of presentation simplicity, the pseudogeometric coordinates are depicted for a representative member of their clusters. The numbers are the
colors’ ratio multiplied by 100. See Figure 1 for the clusters’ description.

100908070605040302010

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Communicating with the anchor nodes

403530252015105

0.8

0.85

0.9

0.95

1

(b) Communicating among nodes that are not anchored

Figure 3: Pearson’s coefficient correlation between (u.xreal, v.yreal) and hop(u, v) (cf. [27, 28]). The x’s axes describe the number of
communication rounds and the y’s axes describe the coefficients.

time, it is always possible to conduct a discrete process
by considering merely the produced successive events and
ignore any reference to continuous time. The transformation
from continuous to discrete stochastic model is known as
discrete skeleton (see [29]).

4.1. Serializable of Algorithm Steps. Another assumption
that we make in our analysis is about the instantiation of
the algorithm steps. Namely, the analysis assumes that the
algorithm steps are serializable, that is, it takes no time to
draw a ball, announce it, and let the drawing tiny artifact and
the neighboring tiny artifacts update their urns.

In real distributed systems, these assumptions do not
always hold and concurrent algorithm steps can be nonse-
rializable. Therefore, we require that at any time and any

neighborhood, there is at most one tiny artifact that takes an
algorithm step. In other words, no two nodes that have a path
of less than three hops may concurrently take the algorithm
steps.

In order to provide serializability of the algorithm steps,
we borrow existing self-stabilizing infrastructure. Herman
and Tixeuil [30] present a self-stabilizing algorithm for
accessing a shared media, such as the communication
environment of wireless tiny artifacts. The algorithm assures
that starting for an arbitrary configuration of the system,
eventually every node has a unique time slot for broad-
casting. Namely, no node broadcasts concurrently with a
neighboring node. The property of time slot uniqueness
facilitates serializable steps of the algorithm that is presented
in Algorithm 1. In other words, when the broadcasting time
slot of a particular tiny artifact arrives, this tiny artifact can

International Journal of Distributed Sensor Networks 9

Const
2 T : the parameter of the floating output

4 Types
colors: { black, white }

6 timeouts: {URN, FLOAT}

8 Variables
urn: multiset of colors, initially 〈black, white 〉

10 output: the output value of the algorithm

12 External functions
send() / receive(): data link layer interface

14 select(): a uniform selection
set-timer(timeouts, time) / timer expired(timeouts): timer interface

16
Macro

18 time2wait(): choose time to wait using λ-exponential distribution

20 Upon receive(〈ball 〉)
urn← urn ∪ { ball }

22
Upon timer expired(type)

24 if type = URN then
let ball = select(urn)

26 send(〈ball 〉)
urn← urn ∪ { ball }

28 set-timer(URN, time2wait())
else

30 output ← urn
urn← 〈black, white 〉

32 set-timer(FLOAT, T)

Algorithm 1: The interacting urn algorithm.

draw a ball (see line 25), announce it using a broadcast
(that eventually does not collide; see line 26), and let the
neighboring tiny artifacts update their urns; see line 21 (as
well as updating its own urn; see line 27). Hence, eventually
the algorithm steps are serializable.

4.2. Self-Stabilization. Self-stabilizing systems [7, 8] can
recover after the occurrence of transient faults. These systems
are designed to automatically regain their consistency from
any starting state. The arbitrary state may be the result of
violating the assumptions about the system settings and assist
with dealing with the self-organization requirements of ad
hoc networks. The correctness of a self-stabilizing system
is demonstrated by considering every sequence of actions
that follows the last transient fault and is, therefore, proved
assuming an arbitrary starting state of the automaton.

The property of serializability is guaranteed to be
archived eventually. We note that since this property does not
always hold, it implies, for example, that while the network
of tiny artifacts is deployed, the property of serializability can
be violated.

The technique of floating output (see [8]) is a way to
convert a nonstabilizing algorithm that computes a fixed

output into a self-stabilizing algorithm. We use the technique
of floating output in order to overcome the scenarios in
which the property of serializability is violated during the
deployment of the network.

The algorithm executes the interacting urn process for a
sufficiently long period, T , that allows the interacting urn
processes to produce the correct output (assuming that the
property of serializable steps is never violated). We name by
parameter of the floating output the constant T .

We assume that the system has access to a self-stabilizing
clock synchronization mechanism (such as [31, 32]), that
facilitates the agreement on a particular time slot once in
every T time slot. The algorithm makes sure that in that
time slot (1) every tiny artifact stores the values of all urns
in output (see line 30), (2) no tiny artifact draws a ball from
its urn (see line 31), (3) every tiny artifact restarts its state (by
assigning the urn with the initial value of one black ball and
one white ball; see line 32). We note that the values in output
are used for calculating the output (e.g., for producing the
pseudogeometric coordinates).

4.2.1. Correctness. Demonstrating that the algorithm pre-
sented in Algorithm 1 is self-stabilizing is quite simple and

10 International Journal of Distributed Sensor Networks

is followed by the conventional arguments of the technique
of floating output (see [8]).

We consider the period that is after the network was
deployed and the media access algorithm has stabilized to
work correctly. It is required to demonstrate that within
a period of T , the variable output contains the correct
output. Let us consider the first timeout of the type FLOAT.
Within a period of T after that timeout, the interacting urn
processes produce the correct output (by the definition of
T). Moreover, at the end of that period, all tiny artifacts
assign the correct output to variable output (see line 30).
By similar arguments, all subsequent periods produce the
correct output as well. Thus, the variable output shows the
correct output in all of the subsequent periods.

5. Conclusions

We are interested in simplifying the design of tiny artifacts
and bridging the gap between these future networks and
existing ones. Existing implementations, say, for sensor
networks, often use protocols that assume traditional system
settings that require resources that tiny artifacts do not
have. Alternatively, when the designers do not assume
traditional system settings, they turn to improving per-
formance and reducing resource consumption by using
probabilistic algorithms. However, designers that do not
consider implementation explicitly do not specify the exact
computational power required for each node. In some cases,
the implementation requires storing nontrivial quantities of
data.

This work presents a self-stabilizing building block
that can facilitate infrastructure for tiny artifacts, such as
reasonable clustering and efficient georouting. Our analytical
and numerical results show that global formations appear
rapidly (with the use of small number of transmissions and
few bits at a time).

Acknowledgments

This work would not have been possible without the
contribution of Paul G. Spirakis in many helpful discussions,
ideas and analysis. Many thanks are due to Edna Oxman
for improving the presentation. The authors are thankful for
the code provided by the students of the course DATX01-
15 (Chalmers University of Technology), 2008. This work
has been partially supported by the Swiss SER Contract
no. C05.0030, and by the ICT Programme of the European
Union under contract number FP7-215270 (FRONTS). An
extended abstract of this paper appeared in [33].

References

[1] R. Pemantle, “A survey of random processes with reinforce-
ment,” Probability Surveys, vol. 4, pp. 1–79, 2007.

[2] N. L. Johnson and S. Kotz, Urn Models and Their Applications:
An Approach to Modern Discrete Probability Theory, John
Wiley & Sons, New York, NY, USA, 1977.

[3] B. Arthur, Y. Ermoliev, and Y. Kaniovski, “Path dependent
processes and the emergence of macrostructure,” in Increasing

Returns and Path Dependence in the Economy, B. Arthur, Ed.,
chapter 3, pp. 33–48, The University of Michigan Press, Ann
Arbor, Mich, USA, 1994.

[4] N. Tishby and N. Slonim, “Data clustering by Marko-
vian relaxation and the information bottleneck method,” in
Advances in Neural Information Processing Systems (NIPS ’00),
T. K. Leen, T. G. Dietterich, and V. Tresp, Eds., pp. 640–646,
MIT Press, Denver, Colo, USA, 2000.

[5] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta,
“Urn automata,” Tech. Rep. YALEU/DCS/TR1280, Depart-
ment of Computer Science, Yale University, New Haven, Conn,
USA, November 2003.

[6] N. L. Johnson and S. Kotz, Urn Models and Their Applications:
An Approach to Modern Discrete Probability Theory, John
Wiley & Sons, New York, NY, USA, 1977.

[7] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed
control,” Communications of the ACM, vol. 17, no. 11, pp. 643–
644, 1974.

[8] S. Dolev, Self-Stabilization, MIT Press, Cambridge, Mass, USA,
2000.

[9] F. Heylighen and C. Gershenson, “The Meaning of Self-
organization in Computing,” IEEE Intelligent Systems, vol. 18,
no. 4, pp. 72–75.

[10] C. Gershenson and F. Heylighen, “Protocol requirements for
selforganizing artifacts: towards an ambient intelligence,” in
Proceedings of International Conference on Complex Systems
(ICCS ’04), pp. 497–503, ACM Press, Boston, Mass, USA, May
2004.

[11] C. Gershenson and F Heylighen, “When can we call a system
self-organizing?” in Proceedings of the 7th European Conference
on Artificial Life (ECAL ’03), W. Banzhaf, T. Christaller, P.
Dittrich, J. T. Kim, and J. Ziegler, Eds., vol. 2801 of Lecture
Notes in Computer Science, pp. 606–614, Springer, Dortmund,
Germany, 2003.

[12] P. E. Ney and K. B. Athreya, Branching Processes, Courier
Dover Publications, Mineola, NY, USA, 2004.

[13] A. Papoulis, S. U. Pillai, A. Papoulis, and S. U. Pillai, Probabil-
ity, Random Variables, and Stochastic Processes, McGraw-Hill,
New York, NY, USA, 1965.

[14] L. P. Kadanoff, Statistical Physics: Statics, Dynamics and
Renormalization, World Scientific, Singapore, 2000.

[15] K. B. Athreya, “Some results on multitype continuous time
Markov branching processes,” The Annals of Mathematical
Statistics, vol. 39, no. 2, pp. 347–357, 1968.

[16] Y. Koren, “On spectral graph drawing,” in Proceedings of
the 9th Annual International Conference on Computing and
Combinatorics (COCOON ’03), T. Warnow and B. Zhu, Eds.,
vol. 2697 of Lecture Notes in Computer Science, pp. 496–508,
Springer, Big Sky, MT, USA, July 2003.

[17] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, GPS
Theory and Practice, Springer, New York, NY, USA, 2001.

[18] A Rao, C. H. Papadimitriou, S. Shenker, and I. Stoica,
“Geographic routing without location information,” in Pro-
ceedings of the 9th Annual International Conference on Mobile
Computing and Networking (MOBICOM ’03), D. B. Johnson,
A. D. Joseph, and N. H. Vaidya, Eds., pp. 96–108, ACM, San
Diego, Calif, USA, 2003.

[19] T. Moscibroda, R. O’Dell, M. Wattenhofer, and R. Watten-
hofer, “Virtual coordinates for ad hoc and sensor networks,” in
Proceedings of the DIALM-POMC Joint Workshop on Founda-
tions of Mobile Computing, S. Basagni and C. A. Phillips, Eds.,
pp. 8–16, Philadelphia, Pa, USA, October 2004.

[20] B. Leong, B. Liskov, and R. Morris, “Greedy virtual coor-
dinates for geographic routing,” in Proceedings of the IEEE

International Journal of Distributed Sensor Networks 11

International Conference on Network Protocols (ICNP ’07), pp.
71–80, IEEE, Beijing, China, October 2007.

[21] H. Breu and D. G. Kirkpatrick, “Unit disk graph recognition is
NP-hard,” Computational Geometry: Theory and Applications,
vol. 9, no. 1-2, pp. 3–24, 1998.

[22] F. Kuhn, T. Moscibroda, and R. Wattenhofer, “Unit disk
graph approximation,” in Proceedings of the Joint Workshop
on Foundations of Mobile Computing, S. Basagni and C. A.
Phillips, Eds., pp. 17–23, Philadelphia, Pa, USA, 2004.

[23] M. Wattenhofer, R. Wattenhofer, and P. Widmayer, “Geo-
metric routing without geometry,” in Proceedings of the
12th Colloquia on Structural Information and Communication
Complexity (SIROCCO ’05), A. Pelc and M. Raynal, Eds.,
vol. 3499 of Lecture Notes in Computer Science, pp. 307–322,
Springer, 2005.

[24] R. Bischoff and R. Wattenhofer, “Analyzing connectivity-based
multi-hop ad-hoc positioning,” in Proceedings of the 2nd
IEEE International Conference on Pervasive Computing and
Communications (PerCom ’04), pp. 165–176, IEEE Computer
Society, 2004.

[25] M. Penrose, Random Geometric Graphs, Oxford University
Press, Oxford, UK, 2003.

[26] D. S. Moore, The Basic Practice of Statistics, W. H. Freeman,
New York, NY, USA, 4th edition, 2006.

[27] J. L. Rodgers and W. A. Nicewander, “Thirteen ways to look at
the correlation coefficient,” The American Statistician, vol. 42,
no. 1, pp. 59–66, 1988.

[28] J. L. Rodgers, W. A. Nicewander, and L. Toothaker, “Linearly
independent, orthogonal, and uncorrelated variables,” The
American Statistician, vol. 38, no. 2, pp. 133–134, 1984.

[29] P. Guttorp, Stochastic Modeling of Scientific Data, Chapman &
Hall/CRC, London, UK, 1995.

[30] T. Herman and S. Tixeuil, “A distributed TDMA slot assign-
ment algorithm for wireless sensor networks,” in Proceedings
of the 1st International Workshop on Algorithmic Aspects of
Wireless Sensor Networks (ALGOSENSORS ’04), vol. 3121 of
Lecture Notes in Computer Science, pp. 45–58, Springer, Turku,
Finland, July 2004.

[31] T. Herman and C. Zhang, “Best paper: stabilizing clock
synchronization for wireless sensor networks,” in Proceedings
of the 8th International Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS ’06), A. K. Datta and
M. Gradinariu, Eds., vol. 4280 of Lecture Notes in Computer
Science, pp. 335–349, Springer, Dallas, Tex, USA, November
2006.

[32] J.-H. Hoepman, A. Larsson, E. M. Schiller, and P. Tsigas,
“Secure and self-stabilizing clock synchronization in sensor
networks,” in Proceedings of the 9th International Conference on
Stabilization, Safety, and Security of Distributed Systems (SSS
’07), T. Masuzawa and S. Tixeuil, Eds., vol. 4838 of Lecture
Notes in Computer Science, pp. 340–356, Springer, 2007.

[33] P. Leone and E. M. Schiller, “Interacting urns processes:
for clustering of large-scale networks of tiny artifacts,” in
Proceedings of the ACM Symposium on Applied Computing
(SAC ’08), R. L. Wainwright and H. Haddad, Eds., pp. 2046–
2051, ACM, Fortaleza, Brazil, 2008.

