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Abstract—Recent results have shown that the performance
of bit-interleaved coded modulation (BICM) using convolutional
codes in nonfading channels can be greatly improved if the bit-
level interleaver takes a trivial form (BICM-T), i.e., if it does
not interleave the bits at all. The reported gains reach a few
decibels and are obtained using a less complex BICM system.
In this paper, we give a formal explanation for these results
and show that BICM-T is in fact the combination of a TCM
transmitter and a BICM receiver. Analytical bounds that predict
the performance of BICM-T are developed and a new type of
distance spectrum for the convolutional code is introduced.

I. INTRODUCTION
Ungerboeck’s trellis coded modulation (TCM) [1] and Imai

and Hirakawa’s multilevel coding [2] are probably the most
popular coded modulation (CM) schemes for the AWGN
channel. Bit-interleaved coded modulation (BICM) [3]–[5]
appeared in 1992 as an alternative for CM in fading channels.
One particularly appealing feature of BICM is that all the
operations are bit-wise, i.e., off-the-shelf binary codes and
Gray-mapped constellations are used at the transmitter’s side
and connected via a bit-level interleaver. At the receiver’s side,
reliability metrics for the coded bits (L-values) are calculated
by the demapper, de-interleaved, and then fed to a binary
decoder. This structure gives the designer the flexibility to
choose the modulator independently of the encoder, which
in turn allows, for example, for an easy adaptation of the
transmission to the channel conditions (adaptive modulation
and coding). This flexibility is arguably the main advantage
of BICM over other CM schemes, and also the reason of why
it is used in almost all of the current wireless communications
standards, e.g., HSPA, IEEE 802.11a/g/n, and DVB [5, Ch. 1].
Bit-interleaving before modulation was introduced in Ze-

havi’s original paper [3] on BICM. Bit-interleaving is indeed
crucial in fading channels since it guarantees that consecutive
coded bits to be sent over symbols affected by independent
fades. This results in an increase (compared to TCM) of the so-
called code diversity, and therefore, BICM is the preferred al-
ternative for CM in fading channels. BICM can also be used in
nonfading channels. However, in this scenario, and compared
with TCM, BICM gives a smaller minimum Euclidean dis-
tance (the proper performance metric in nonfading channels),
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and also a smaller constraint capacity [4]. If a Gray labeling
is used, the capacity loss is small, and therefore, BICM is
still considered valid option for CM over nonfading channels.
However, the decrease in minimum Euclidean distance makes
BICM less appealing than TCM in nonfading channels.

The use of a bit-level interleaver in nonfading channels
has been inherited from the original works on BICM by
Zehavi [3] and Caire et al. [4] because it simplifies the
performance analysis. The use of the interleaver in nonfading
channels is considered mandatory in most of the existing
literature, however, Martinez et al. [6] recently showed from
an information theory point of view that the interleaver in
BICM is not required.

Previously, we have shown in [7] how—by using multiple
interleavers—the performance of BICM can be improved in
nonfading channels. Recently, however, it has been shown in
[8] that in nonfading channels, considerably larger gains (a
few decibels) can be obtained if the interleaver is completely
removed from the tranceiver’s configurations. In other words,
it was shown that in nonfading channels BICM without an
interleaver performs better than the conventional configu-
rations of [3], [4]. The results presented in [8] are only
numerical and an explanation behind such an improvement
is not given (although some intuitive explanations and a bit
labeling optimization are presented).

In this paper, we study the performance of BICM with trivial
interleavers (BICM-T) in nonfading channels for a spectral ef-
ficiency of two bits per real channel use, i.e., the BICM system
introduced in [8] where no interleaving is performed. We show
that BICM-T is the combination of a TCM transmitter and a
BICM receiver, and that the transmitter in fact corresponds to
particular cases of the so-called pragmatic TCM [9, Ch. 8]
introduced by Viterbi et al. in [10], Ungerboeck’s 1D-TCM
[1], and general TCM [11, Fig. 18.11]. We develop analytical
bounds which explain why BICM-T with convolutional codes
performs well in nonfading channels. We also introduce a new
type of distance spectrum for the convolutional codes which
allows us to analytically corroborate the results presented in
[8]. The main contribution if this paper is to present an analyt-
ical model for BICM-T and to provide further understanding
for the results in [8].
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Fig. 1. BICM-T system analyzed in this paper for any time instant t.

II. SYSTEM MODEL AND PRELIMINARIES

Throughout this paper, we use boldface letters ct =
[c1,t, . . . , cN,t] to denote row vectors and capital boldface
letters C = [cT1 , . . . , c

T
M ] to denote matrices, where (·)T

denotes transposition. We use dH(C) to denote the total
Hamming weight of the matrix C. We denote probability
by Pr(·) and the probability density function (PDF) of a
random variable Λ by pΛ(λ). The convolution between two
PDFs is denoted by pΛ1

(λ) ∗ pΛ2
(λ) and {pΛ(λ)}∗w denotes

the w-fold self-convolution of the PDF pΛ(λ). A Gaussian
distribution with mean value µ and variance σ2 is denoted
by N (µ,σ2), the Gaussian function with the same parameters
by ψ(λ; µ,σ) ! 1√

2πσ
exp(− (λ−µ)2

2σ2 ), and the Q-function by

Q(x) ! 1√
2π

∫ ∞
x

exp
(

−u2

2

)

du.

A. System Model
We consider a simple BICM configuration shown in Fig. 1.

We use a constraint length K rate R = 1
2 convolutional en-

coder connected to a 16-ary quadrature amplitude modulation
(16-QAM) labeled by the binary reflected Gray code (BRGC)
[12]. This configuration is indeed very simple yet practical
yielding a spectral efficiency of two bits per real channel use.
This example is not restrictive, yet simplifies the presentation
of the main ideas. The generalization to other modulations
and coding rate is possible but would obviously increase the
complexity of notation potentially hindering the main concepts
of the analysis presented in this paper.
The input sequence i = [i1, . . . , iN ] is fed to the encoder

(ENC) which at each time instant t = 1, . . . , N gener-
ates two coded bits ct = [c1,t, c2,t]. We use the matrix
C = [cT1 , . . . , c

T
N ] of size 2 × N to represent the transmitted

codeword. These coded bits are interleaved by Π, where the
different interleaving alternatives will be discussed in detail in
Sec. II-B. The coded and interleaved bits are then mapped to a
16-QAM symbol, where the 16-QAM constellation is formed
by the direct product of two 4-ary pulse amplitude modulation
(4-PAM) constellations labeled by the BRGC. Therefore, we
analyze the real part of the constellation only, i.e., one of
the constituent 4-PAM constellations. The mapper is defined
as Φ : {[11], [10], [00], [01]} → {−3∆,−∆,∆, 3∆}, where
∆ = 1√

5
so that the PAM constellation is normalized to unit

average symbol energy.
At each time t = 1, . . . , N , the coded bits ct are mapped

to a symbol xt, where xt = Φ(ct) ∈ X and X is the 4-PAM
constellation. The symbols xt are sent over an additive white
Gaussian noise (AWGN) channel so the received signal is
given by yt = xt +zt, where zt is a zero-mean Gaussian noise
with varianceN0/2. The signal-to-noise ratio (SNR) is defined

as γ ! Es/N0 = 1/N0. At the receiver’s side, reliability
metrics for the coded bits are calculated by the demapper Φ−1

in the form of logarithmic-likelihood ratios (L-values). These
L-values are deinterleaved and then passed to the decoder
which calculates an estimate of the information sequence î.
As shown in Fig. 1, the modulator, channel, and demodulator
can be replaced by a binary-input soft-output (BISO) channel.
The BISO channel in Fig. 1 is nonsymmetric for c2,t, i.e., it

will give a lower protection to a bit c2,t = 0 (two inner
symbols in the constellation) compared to a bit c2,t = 1 (two
outer symbols). To simplify the analysis, we “symmetrize” the
channel by randomly inverting the bits before mapping them
to the 4-PAM symbol, i.e., we add a scrambler that gives C̃ =
C ⊕ S, where ⊕ represents modulo-2 element-wise addition
and the elements of the matrix S = [sT1 , . . . , s

T
N ] ∈ {0, 1}2×N

where st = [s1,t, s2,t] are randomly generated vectors of bits.
The L-values are then given by

l̃k,t = log
Pr(c̃k,t = 1|yt)

Pr(c̃k,t = 0|yt)
. (1)

Since c̃k,t = ck,t ⊕ sk,t, it can be shown that lk,t =
(−1)sk,t l̃k,t, i.e., after descrambling, the sign of the L-values
is changed using (−1)sk,t .
We note that the scrambling is introduced only to simplify

the analysis, and therefore, it is not shown in Fig. 1 nor used
in the simulations. This symmetrization was in fact proposed
in [4], and as we will see in Sec. IV, the bounds developed
based on this symmetrization perfectly match the simulations.

B. The interleaver
Throughout this paper, three different interleaving alter-

natives will be analyzed. We put particular attention to the
last one. The first interleaving alternative is BICM with a
single interleaver (BICM-S). BICM-S was introduced in [4]
and is the most commonly used in the literature. BICM-S
corresponds to an interleaver that randomly permutes the bits
C prior to modulation, where the permutation is random
in two “dimensions,” i.e., it permutes the bits over the bit
positions and over time. The second alternative is BICM with
multiple interleavers (BICM-M). In BICM-M, the interleaver
permutes the bits randomly only over time (and not over the
bit positions). This can be seen as a particularization of the
interleaver of BICM-S, where the following extra constraint is
added: bits from the kth encoder’s output must be assigned to
the kth modulator’s input. BICM-M was formally analyzed in
[7] and in fact corresponds to the original model introduced by
Zehavi in [3] (BICM) and Li and Ritcey in [13] (BICM with
iterative decoding). The last interleaving alternative is BICM
with a trivial interleaver (BICM-T), i.e., when the interleaver
is simply not present [8], cf. Fig. 1.
A careful examination of Fig. 1 reveals that the structure

of the transmitter of BICM-T is the same as the transmitter
of Ungerboeck’s 1D-TCM [1] or the TCM transmitter in [14,
Fig. 4.17]. The transmitter of BICM-T can also be considered a
particular case of the so-called “general TCM” [11, Fig. 18.11]
when k = k̃ (using the notation of [11]) and when the BRGC is
used instead of Ungerboeck’s set-partitioning. The transmitter
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of BICM-T is also equivalent to the simplest configuration of
the so-called pragmatic TCM [9, Ch. 8] [10], i.e., when two
bits per symbol are considered.
The receiver of BICM-T in Fig. 1 corresponds to a conven-

tional BICM receiver, where L-values for each bit are com-
puted and fed to a soft-input Viterbi decoder (VD). The dif-
ference between this receiver’s structure and a TCM receiver
(one-dimensional or pragmatic) is that bit-level processing is
used instead of a symbol-by-symbol VD. In conclusion, the
BICM-T system introduced in [8] is a simple TCM transmitter
used in conjunction with a BICM receiver. Nevertheless,
throughout this paper, we use the name BICM-T to reflect the
fact that this transmitter/receiver structure can be considered
as a particular case of BICM-S, where the interleaver takes a
trivial form. Moreover, the concept behind BICM-T might be
useful in adaptive modulation schemes where the interleaver
design is adapted to the channel conditions, i.e., if fading is
present, BICM-S is used, and if fading is not present, the
interleaver is dropped (BICM-T).

C. The Decoder
A maximum likelihood sequence decoder (e.g., the VD)

chooses the most likely coded sequence Ĉ using the vector
of channel observations y = [y1, . . . , yN ] as

Ĉ = max
C∈D

{log Pr{C|y}} = max
C∈D

{

log
N
∏

t=1

Pr{ct|yt}

}

, (2)

where D is the set of all codewords. If we assume that the
bits [c1,t, c2,t] are independent, we obtain

log
N
∏

t=1

Pr{ct|yt} = log
2

∏

k=1

N
∏

t=1

Pr{ck,t|y}. (3)

Under this independence assumption and by using the
relation between an L-value l and the bit’s probabilities of
being b ∈ {0, 1} Pr{b|y} = ebl

1+el , we obtain

log
2

∏

k=1

N
∏

t=1

Pr{ck,t|y} =
2

∑

k=1

N
∑

t=1

log Pr{ck,t|y}

=
2

∑

k=1

N
∑

t=1

ck,tlk,t −
2

∑

k=1

N
∑

t=1

log(1 + exp(lk,t)). (4)

Since the second term in (4) is independent of C, it is
irrelevant to the decision of the decoder in (2). Therefore, the
final decision of the decoder can be written as

Ĉ = max
C∈D

{

2
∑

k=1

N
∑

t=1

ck,tlk,t

}

. (5)

In a BICM system with convolutional codes, the decoder
is implemented using an off-the-shelf soft-input VD, which
assumes that the bits are independent, and thus, uses the
relation in (3) (i.e., it uses the decision rule in (5)). The relation
in (3) is in indeed valid when BICM-S [4] or BICM-M [3],
[7], [15] configurations are used, since in those cases, the use
of a random interleaver (cf. Sec. II-B) assure that the bits
[c1,t, c2,t] are transmitted in different symbols, and therefore,
are affected by different noise realizations.

However, when BICM-T with a soft-input VD is considered,
and since the bits [c1,t, c2,t] are affected by the same noise
realization, the relation in (3) does not hold, i.e., the two
L-values passed to the decoder at any time instant t are
not independent. Nevertheless, the decoder treats the bits as
independent and still uses the decision rule in (5). A similar
observation was made in [6], where the whole BICM decoder
is modeled as a mismatched decoder.

III. PERFORMANCE EVALUATION

A. BER Performance

Because of the symmetrization of the channel, we can,
without loss of generality, assume that the all-zero codeword
was transmitted. We define E as the set of codewords cor-
responding to paths in the trellis of the code diverging from
the zero-state at the arbitrarily chosen instant t = t0, and
remerging with it after T trellis stages. We also denote these
codewords as E ! [eT1 , . . . , e

T
T ], where et = [e1,t, e2,t]. Then,

the bit error rate (BER) can be upper-bounded using a union
bound (UB) as

BER ≤ UB !
∑

E∈E

PEP(E)dH(iE), (6)

where dH(iE) is the Hamming weight of the input sequence
iE corresponding to the codeword E, and the pairwise error
probability (PEP) is given by

PEP(E) = Pr

{

t0+T−1
∑

t=t0

(

e1,tl1,t + e2,tl2,t

)

> 0

}

. (7)

The general expression for the PEP in (7) and the UB
in (6) reduce to well-known particular cases if simplifying
assumptions for the distribution of lk,t are adopted.
1) Independent and identically distributed L-values: In

BICM-S [4], the L-values lk,t passed to the decoder are
independent and identically distributed. They can be described
using the conditional PDF p(λ|b) with b ∈ {0, 1} and where
the PDF is independent of k and t. In this case, the PEP in
(7) depends only on the Hamming weight of the codeword E,
i.e.,

PEP(E) = PEPS(dH(E)) =

∫ ∞

0
{p(λ|b = 0)}∗dH(E) dλ. (8)

The UB in (6) can be expressed as

UBS =
∑

w

PEPS(w)
∑

E∈Dw

dH(iE) =
∑

w

PEPS(w)βw , (9)

where Dw represents the set of codewords with Hamming
weight w, i.e., Dw ! {E ∈ E : dH(E) = w}. In (9), we
grouped the codewordsE that have the same Hamming weight
and add their contributions, which results in the well-known
weight distribution spectrum of the code βw. The expression
in the r.h.s. of (9) is the most common expression for the UB
for BICM, cf. [4, eq. (26)], [5, eq. (4.12)].



4

2) Independent but not identically distributed L-values: In
BICM-M [7], the L-values passed to the each decoder’s input
are independent, however, their conditional PDF depends on
k. Thus, the L-values are modeled by the set of conditional
PDFs {p1(λ|b), p2(λ|b)}. The PEP is given by

PEP(E)= PEPM(wE,1, wE,2)

=

∫ ∞

0
{p1(λ|b1 = 0)}∗wE,1 ∗ {p2(λ|b2 = 0)}∗wE,2 dλ,

where wE,k is the Hamming weight of the kth row of E. The
UB in (6) can be expressed as

UBM =
∑

w1,w2

PEPM(w1, w2)
∑

E∈Dw1,w2

dH(iE)

=
∑

w1,w2

PEPM(w1, w2)βw1,w2
, (10)

where Dw1,w2
is the set of codewords with generalized Ham-

ming weight [w1, w2] (wk in its kth row), i.e., Dw1,w2
!

{E ∈ E : w1 = wE,1, w2 = wE,2}, and βw1,w2
is the

generalized weight distribution spectrum of the code that takes
into account the errors at each encoder’s output separately. The
UB in (10) was shown in [7] to be useful when optimizing
the design of the interleaver and the code.
3) BICM with a trivial interleaver: For BICM-T, yet a

different particularization of (7) must be adopted. Let ΛE be
the metric associated to the codeword E and assume without
loss of generality that t0 = t. This metric is a sum of
independent random variables, i.e.,

ΛE ! Λt + Λt+1 + Λt+2 + . . . , (11)

where Λt = e1,tl1,t + e2,tl2,t corresponds to the elements
defining the PEP in (7). We then express the tth metric as

Λt(et, st) =



















0, if et = [0, 0]

(−1)s1,t l̃1,t, if et = [1, 0]

(−1)s2,t l̃2,t, if et = [0, 1]
∑2

k=1(−1)sk,t l̃k,t, if et = [1, 1]

, (12)

where we use the notation Λt(et, st) to show that Λt depends
on the scrambling’s outcome st (through l̃k,t) and also on et.
Since l̃k,t are random variables (that depend on k and xt),

according to (12), there exist three PDFs that can be used to
model the individual metrics in (11). We denote the set of these
three conditional PDFs by {p1(λ|b1), p2(λ|b2), pΣ(λ|b)}, for
the three relevant cases defined in (12), respectively. We note
that pΣ(λ|b) is conditioned not only on one bit, but on the pair
of transmitted bits b = [b1, b2], where b1, b2, and b represent
the bits c1,t, c2,t, and ct, respectively. From (11), and due to
the independence of the individual metrics, the PEP in (7) can
be expressed as

PEP(E) = PEPT(wE,1, wE,2, wE,Σ)

=

∫ ∞

0
{p1(λ|b1 = 0)}∗wE,1 ∗ {p2(λ|b2 = 0)}∗wE,2

∗ {pΣ(λ|b = [0, 0])}∗wE,Σ dλ, (13)

where wE,k is the number of columns in E where only the
kth row of E is one, and wE,Σ is the number columns in E

where both entries are equal to one. Clearly, dH(E) = wE,1 +
wE,2 + 2wE,Σ.
Example 1: Consider the constraint length K = 3 optimum

distance spectrum convolutional code (ODSCC) with polyno-
mial generators (5, 7)8 [16, Table I]. The free distance of the
code is dfreeH = 5, and β5 = 1, i.e., there is one divergent path
at Hamming distance five from the all-zero codeword, and the
Hamming weight of that path is dH(iE) = 1. Moreover, it is
possible to show that this codeword is

E =

[

1 0 1
1 1 1

]

,

i.e., dH(E) = 5, wE,1 = 0, wE,2 = 1, and wE,Σ = 2. Also,
wE,1 = 2 and wE,2 = 3.
We define Dw1,w2,wΣ

as the set of codewords E with w1

columns such that et = [1, 0], w2 columns with et = [0, 1],
and wΣ columns with et = [1, 1], i.e., Dw1,w2,wΣ

! {E ∈
E : w1 = wE,1, w2 = wE,2, wΣ = wE,Σ}. Using this, the UB
expression in (6) for BICM-T is given by

UBT =
∑

w1,w2,wΣ

PEPT(w1, w2, wΣ)
∑

E∈Dw1,w2,wΣ

dH(iE)

=
∑

w1,w2,wΣ

PEPT(w1, w2, wΣ)βw1,w2,wΣ
, (14)

where βw1,w2,wΣ
is a weight distribution spectrum of the code

that not only considers the generalized weight [w1, w2] of the
codewords, but takes into account the temporal behavior, i.e., it
considers the case when et = [1, 1] as a different kind of
event. This differs from βw1,w2

, where such an event will be
considered as an extra contribution to the total weight.

B. PDF of the L-values
In order to calculate the PEP for BICM-T in (13)

we need the compute the set of conditional PDFs
{p1(λ|b1), p2(λ|b2), pΣ(λ|b)}. In this subsection we show how
to find approximations for these PDFs.
The L-values in (1) can be expressed as

l̃k,t(yt|st) ≈ γ

[

min
x∈Xk,0

(yt − x)2 − min
x∈Xk,1

(yt − x)2
]

, (15)

where Xk,b is the set of constellation symbols labeled with b at
bit position k and where we used the max-log approximation
log(ea + eb) ≈ max{a, b} and the fact that the channel is
Gaussian. We use the notation l̃k,t(yt|st) to emphasize that
the L-values depend on the received signal and the scrambler’s
outcome st. In fact, the L-values depend on the transmitted
symbol xt, however, and since ct = 0 and no interleaving is
performed, xt is determined by st.
The L-values in (15) are a piece-wise linear function of

yt. Moreover, the L-values Λt(et, st) in (12) are linear com-
binations of l̃k,t(yt|st) in (15), and therefore, they are also
piece-wise linear functions of yt. Two cases are of particular
interest, namely, when et = [1, 0] or et = [0, 1], and when
et = [1, 1]. The piece-wise linear relationships for the first
case are shown in Fig. 2(a) for 4-PAM. In this figure we
also show the constellation symbols and we use the notation
st = [0/1, :] and st = [:, 0/1] to show that for et = [1, 0] and
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∆ 3∆−∆−3∆

0

−4γ∆2

−8γ∆2

4γ∆2

8γ∆2

et = [1, 0]

et = [1, 0]
st = [0, :]

st = [1, :]

e
t =

[0, 1]

s
t =

[:, 0]

s t
=

[:,
1]

e t
=

[0
, 1

]

(a) Cases when et = [1, 0] or et = [0, 1]

∆ 3∆−∆−3∆

0

−4γ∆2

−8γ∆2

4γ∆2

8γ∆2

st = [0, 0]

st = [1, 1]

st = [1, 0]

st = [0, 1]

(b) Cases when e = [1, 1]

Fig. 2. Piece-wise relation between Λt(et, st) and yt in (12) for 4-PAM and
all possible values of st. The transmitted symbols are shown with squares.

et = [0, 1] the L-values Λt(et, st) are independent of s2,t and
s1,t, respectively. In Fig. 2(b), the four possible cases when
et = [1, 1] are shown.
For a given transmitted symbol xt (determined by st),

we have that yt ∼ N (xt, N0/2). Therefore, each L-value
Λt(et, st) in (12) is a sum of piece-wise Gaussian functions1.
In order to obtain expressions that are easy to work with, we
use the so-called zero-crossing approximation of the L-values
proposed in [17, Sec. III-C] which replaces all the Gaussian
pieces required in the max-log model of L-values by a single
Gaussian function. Intuitively, this approximation states that

Λt(yt|et, st) ≈ â(et, st)yt + b̂(et, st), (16)

where â(et, st) and b̂(et, st) are the slope and the intercept
of the closest linear piece to the transmitted symbol xt.
In Table I we show the values of â(et, st) and b̂(et, st)

defining (16) for 4-PAM, where for notation simplicity we
have defined α ! 4γ∆2. To clarify how these coefficients are
obtained, consider for example et = [0, 1]. In this case, for
st = [1, 1], which corresponds to xt = −3∆, the closest linear
piece intersecting the x-axis is the left-most part of the curve
labeled in Fig. 2(a) by et = [0, 1] and st = [:, 1]. All the other

1Closed-form expressions for these PDFs of Λt(et, st) when et = [1, 0]
and et = [1, 0] (cf. Fig. 2(a)) were presented in [17].

TABLE I
VALUES OF â ≡ â(et, st) AND b̂ ≡ b̂(et, st) IN (16) FOR 4-PAM FOUND

BY DIRECT INSPECTION OF FIG. 2(A) AND FIG. 2(B).

st = [1, 1] st = [1, 0] st = [0, 0] st = [0, 1]

â b̂ â b̂ â b̂ â b̂

et = [1, 0] α

∆
0 α

∆
0 − α

∆
0 − α

∆
0

et = [0, 1] α

∆
2α − α

∆
−2α α

∆
−2α − α

∆
2α

et = [1, 1] 2α

∆
2α 2 α

∆
−2α − 2α

∆
−2α − 2α

∆
2α

TABLE II
VALUES OF µ̂ ≡ µ̂(et, st) AND σ̂2 ≡ σ̂2(et, st) GIVEN IN (18) AND (19).

st = [1, 1] st = [1, 0] st = [0, 0] st = [0, 1]

µ̂ σ̂2 µ̂ σ̂2 µ̂ σ̂2 µ̂ σ̂2

et = [1, 0] −3α 2α −α 2α −α 2α −3α 2α

et = [0, 1] −α 2α −α 2α −α 2α −α 2α

et = [1, 1] −4α 8α −4α 8α −4α 8α −4α 8α

values in Table I can be found by a similar direct inspection
of Fig. 2(a) and Fig. 2(b).
Using the approximation in (16), the L-values can be

modeled as Gaussian random variables where their mean and
variance depend on st, γ, and et, i.e.,

pΛt
(λ|et, st) = ψ

(

λ; µ̂(et, st), σ̂
2(et, st)

)

, (17)

where the mean value and variance are given by

µ̂(et, st) = xtâ(et, st) + b̂(et, st) (18)

σ̂2(et, st) = [â(et, st)]
2 N0

2
. (19)

In Table II we show the obtained mean values and variances
for the same cases presented in Table I.
To obtain the PDF of Λt in (12), we simply average (17)

over the symbols, which are assumed to be equiprobable. This
results in the following expression

pΛt
(λ) =











1
2 [ψ

(

λ;−3α, 2α
)

+ ψ
(

λ;−α, 2α
)

], if et = [1, 0]

ψ
(

λ;−α, 2α
)

, if et = [0, 1]

ψ
(

λ;−4α, 8α
)

, if et = [1, 1]

.

(20)

IV. DISCUSSION AND APPLICATIONS
Expression (20) show the PDF of the L-values needed to

compute the UB of BICM-T, cf. (13) and (14). Moreover,
the results in (20) only involve Gaussian PDFs, which greatly
simplifies the PEP computation in (13).
Theorem 1: The UB for BICM-T is

UBT =
∑

w1,w2,wΣ

βw1,w2,wΣ

(

1

2

)w1 w1
∑

j=0

(

w1

j

)

·

Q

(

√

(w1 + w2 + 4wΣ + 2j)2

(w1 + w2 + 4wΣ)

2γ

5

)

. (21)

Proof: By using (20) in (13), by expressing the con-
volution of sums as sums of convolutions, and by using
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Fig. 3. BER for BICM using the (5, 7)8 and (247, 371)8 ODSCCs [16]
and 4-PAM labeled with the BRGC, and for BICM-S [4], BICM-M [7], and
BICM-T. The simulations are shown with markers and the UB with lines.

ψ(λ; µ1,σ2
1) ∗ . . . ∗ ψ(λ; µJ ,σ2

J ) = ψ(λ;
∑J

j=1 µj ,
∑J

j=1 σ
2
j ),

the PEP in (13) can be expressed as

PEPT(w1, w2, wΣ) =

∫ ∞

0

(

1

2

)w1 w1
∑

j=0

(

w1

j

)

ψ
(

λ; µ,σ2
)

dλ,

(22)

where

µ ≡ µ1,2,Σ,j = −(w1 + w2 + 4wΣ + 2j)α (23)
σ2 ≡ σ2

1,2,Σ = 2(w1 + w2 + 4wΣ)α. (24)

By using the definition of α and ∆2, and (23) and (24) in
(22), and the UB definition in (14), (21) is obtained.
In Fig. 3, numerical results for BICM with 4-PAM labeled

with the BRGC and using the ODSCCs (5, 7)8 (K = 3) and
(247, 371)8 (K = 8) [16, Table I] are shown. For BICM-M,
two configurations are considered for each code. The first one
is when all the bits from the first encoder’s output are assigned
to the first modulator’s input and all the bits from the second
encoder’s output are sent to the second modulator’s input. The
second alternative simply corresponds to the opposite, i.e., all
the bits from the first encoder’s output are sent over k = 2 and
the bits from the second encoder’s output are sent over k = 1.
This is equivalent to defining the code by swapping the order
of the polynomial generators. For these two particular codes,
the configuration that minimizes the BER for medium to high
SNR is the second one, i.e., when all the bits generated by
the polynomial (7)8 or (371)8 are sent over k = 1 and all
the bits generated by the polynomial (5)8 or (247)8 are sent
over k = 2. We denote the configuration that minimizes (or
maximizes) the BER by “Best” (or “Worst”).
To compute the UB for BICM-S and BICM-M, we use [7,

eq. (22)–(23)], and for BICM-T we use Theorem 12. The
results in Fig. 3 show that the UB developed in this paper

2A truncated spectrum of the code {w, w1, w2, wΣ} ≤ 30 was calculated
using a breadth first search algorithm.

for BICM-T predict well the simulation results. The gains by
using BICM-T instead of BICM-S for a BER target of 10−7

are approximately 2 dB for K = 3 and 1 dB for K = 8.

V. CONCLUSIONS
In this paper, we gave a formal explanation of why gains

can be obtained when BICM-T is used in nonfading channels.
BICM-T was shown to be a TCM transmitter used with a
BICM receiver. An analytical model was developed and a new
type of distance spectrum for the code was introduced, which
is the relevant characteristic to optimize convolutional codes
for BICM-T. The analytical model was used to validate the
numerical results and could be used in the future to improve
the design of BICM-T.
To have a concise explanation of the mechanisms behind

BICM-T, the analysis presented in this paper was done only
for a simple BICM configuration. A more general analysis is
possible, however, it might require some non-trivial general-
izations of the analysis presented in this paper.
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