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1. Introduction

In 1975 J. Anderson and F. Foias wrote a paper [2] whose title could be used (with
modifications) in many later papers on elementary operators. In the present paper
we discuss properties which operators on a Hilbert space H share with elementary
operators on B(H). The reason of the search of common properties is that an
elementary operator ∆ =

∑n
k=1 Lak

Rbk
has a formal adjoint ∆̃ =

∑n
k=1 La∗

k
Rb∗k

which turns into a proper adjoint if restricted to the ideal S2 of Hilbert-Schmidt
operators, and so it is natural to expect that their adjointness on B(H) is not ab-
solutely formal. After discussion of the general case we come to normal elementary
operators (that is those whose coefficient families are commutative and consists
of normal operators) and study which properties of normal operators on Hilbert
space they share.

Our paper is a kind of review but some formulations of the results seem to
be new. Some statements of the paper can be extended to a more wide class of
multiplication operators, but we prefer to restrict ourselves to elementary opera-
tors which allows us to avoid more complicated technique of Varopoulos algebras,
Haagerup tensor products, spectral synthesis and so on. Moreover we hope that
such approach makes the subject really elementary and gives the possibility to
present the results with ideas of their proofs in a text of reasonable length. The
reader can find transparent proofs and various extensions of the main part of our
results in [19, 22, 23].

The second author was supported by the Swedish Research Council.
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1.1. Notations

Let H be a Hilbert space, B(H) be the space of bounded linear operators on H.
We denote by Sp, 1 ≤ p < ∞, a Schatten-von-Neumann ideal and write || · ||p for
the corresponding norm and let S∞ to denote the space of compact operators.

Let us say that an operator (or a family of operators) is multicyclic or has
finite multicyclicity if there is a finite set of vectors which is not contained in its
proper closed invariant subspace.

For a subset M of a metric space we say that its Hausdorff dimension does
not exceed a number r > 0 if there exist C > 0 such that for ε > 0 there is
a covering B = {βj} of M by pairwise disjoint Borel sets with diamβj < ε and
|B|r := (

∑
j(diamβj)r ≤ C.

If A = (A1, ..., An) is a family of commuting normal operators then by σ(A)
we denote the joint spectrum, and by EA(·) the spectral measure of A.

We say that the essential dimension of A does not exceed r > 0 (and write
ess-dim A ≤ r) if there is a subset D of σ(A) such that EA(σ(A) \ D) = 0 and
dim(D) ≤ r .

2. Approximate inverse intertwinings

The proofs of many further statements are based on several results of very general
nature which we gather in the present section. The reader can consider them as
exercises in functional analysis, (s)he can also find their solutions in Section 6 of
[22].

Let X and Y be topological vector spaces, Φ : X → Y a continuous imbedding
with dense range, and let S and T be operators acting in X and Y, respectively,
intertwined by the mapping Φ: TΦ = ΦS. We write in this case that we are given
an intertwining triple (or just an intertwining) (Φ, S, T ).

A net of linear mappings Fα : Y → X is called an approximate inverse
intertwining (AII) for the intertwining (Φ, S, T ) if

(a) FαΦ → 1X,
(b) ΦFα → 1Y and
(c) FαT − SFα → 0X

in the topology of simple convergence.
Denote by Φ−1 the full inverse image under the mapping Φ: Φ−1(M) = {x ∈

X | Φ(x) ∈ M} for any M ⊂ Y (non-necessarily M ⊂ Φ(X)). As usual the range
of a map X is denoted by im X.

Theorem 2.1. If the intertwinings (Φ, Si, Ti), 1 ≤ i ≤ n, have a common AII, then

Φ−1(
∑

i

im Ti) ⊂
∑

i

im Si.

Let H be a Hilbert space equipped with the weak operator topology.
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Corollary 2.2. If X = H and (Φ, S, T ) has an AII, then

Φ(kerS∗) ∩ im T = {0}.

Theorem 2.3. Let Φ intertwine pairs Si, Ti (i = 1, 2). Suppose that X is a Ba-
nach space equipped with a weak topology, and ||S2x|| ≤ ||S1x|| for any x ∈ X. If
(Φ, S1, T1) has AII then

T−1
1 (im Φ) ⊂ T−1

2 (im Φ)
and

||Φ−1T2y|| ≤ ||Φ−1T1y|| (2.1)
for any y ∈ T−1

1 (im Φ).

The following result is an immediate consequence of Theorem 2.3.

Corollary 2.4. Let X = H. Suppose that S is a normal operator on H and that the
intertwinings (Φ, S, T1), (Φ, S∗, T2) have AII’s (not necessarily coinciding). Then
T−1

1 (im Φ) = T−1
2 (im Φ) and

||Φ−1T2y|| = ||Φ−1T1y||
for any y ∈ T−1

1 (im Φ) = T−1
2 (im Φ).

In particular, ker T1 = kerT2.

Let (Φ, S, T ) be an intertwining. If X is a dual Banach space with the weak-∗

topology (for example if X = H) then to obtain an AII it suffices to construct a net
of operators Fα : Y → X which satisfies a weakened version of (AII)-conditions:

(a′) FαΦx is bounded for each x ∈ X,
(b′) ΦFα → 1Y and
(c′) (FαT − SFα)y is bounded for each y ∈ Y .
In general a net satisfying ((a′),(b′),(c′)) is called an approximate inner semi-

intertwining for (Φ, S, T ) (AIS, for short).
Denote by X∗ the space of continuous antilinear functionals on X, endowed

with the weak-* topology (in particular, H∗ = H). The adjoint operators (on X ∗

or between X ∗ and Y∗) are defined in the usual way. In particular, the adjoint of
an operator on H has the usual meaning.

It is not difficult to see that if {Fα} is an AII for (Φ, S, T ) then {F ∗
α} is an

AII for (Φ∗, T ∗, S∗).
Let Φ : H → Y intertwine operators S, S∗ with T1, T2. Let {Fα} : Y →

H be an AII for the intertwining (Φ, S, T1). It is called a ∗-approximate inverse
intertwining (∗-AII) for the ordered pair ((Φ, S, T1), (Φ, S∗, T2)) if {F ∗

αFα} is an
AII for (ΦΦ∗, T ∗1 , T2).

A ∗-approximate inverse semiintertwining (∗-AIS) is defined in a similar
way: it is an AIS (= AII) {Fα} for (Φ, S, T1) such that {F ∗

αFα} is an AIS for
(ΦΦ∗, T ∗1 , T2).

Theorem 2.5. (i) If the pair ((Φ, S, T1), (Φ, S∗, T2)) has ∗-AIS, then

(im T1) ∩ T−1
2 (ΦΦ∗(Y∗)) ⊂ Φ(H).
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(ii) If ((Φ, S, T1), (Φ, S∗, T2)) has ∗-AII, then

||Φ−1(T1y)||2 = 〈(ΦΦ∗)−1(T2T1y), y〉
for any y ∈ (T2T1)−1(ΦΦ∗(Y∗)).

Corollary 2.6. If ((Φ, S, T1), (Φ, S∗, T2)) has a ∗-AIS then im T1 ∩ ker T2 = {0}.

We will finish by a result which has some similarity to Theorem 2.3 but is
not related to AII’s.

Theorem 2.7. Let Φ : H → Y intertwine commuting normal operators S1, S2 with
operators T1 and T2 respectively. Suppose that

ker(S1) ∩ Φ−1(T2Y) = {0}.
Let ‖S2h‖ ≤ ‖S1h‖ for each h ∈ H. Then the inequality (2.1) holds for each y ∈ Y
such that T1y ∈ Φ(H) and T2y ∈ Φ(H).

Corollary 2.8. Let Φ : H → Y intertwine a normal operator S with T1 and its
adjoint S∗ with T2. Suppose that ker(S) ∩ Φ−1(T2Y) = {0}. Then the inequality
(2.1) holds for each y ∈ Y such that T1y ∈ Φ(H) and T2y ∈ Φ(H).

3. General elementary operators: the range

Here by ∆ we denote an elementary operator
∑n

i=1 LAi
RBi

on B(H):

∆(X) =
n∑

i=1

AiXBi

and set

∆̃(X) =
n∑

i=1

A∗
i XB∗

i .

We denote by ∆p and ∆̃p the restriction of ∆ and respectively ∆̃ to the ideal Sp,
1 ≤ p ≤ ∞ (by S∞ as usually we denote the ideal K(H) of all compact operators).

3.1. The intersection with the kernel of adjoint

For each operator acting on a Hilbert space, the closure of its range has zero
intersection with the kernel of its adjoint. We will discuss related conditions for
elementary operators, that is

∆(B(H)) ∩ ker ∆̃ = {0} (3.1)

or more strong one

‖∆(X) + Y ‖ ≥ C‖Y ‖ for all X ∈ B(H), Y ∈ ker ∆̃ and some C > 0, (3.2)

(which means that the angle between ∆(B(H)) and ker ∆̃ is non-zero), or more
weak ones

∆(B(H)) ∩ ker ∆̃ = {0} (3.3)
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and
∆(Sp) ∩ ker ∆̃p = {0}. (3.4)

The last conditions can be rewritten as follows:

ker ∆̃∆ = ker ∆. (3.5)

and
ker ∆̃p∆p = ker∆p (3.6)

respectively. Note that the validity of (3.5) for a class of operators can have strong
consequences. For example if it is true for an operator ∆ which commutes with
∆̃ then ker ∆̃ ⊂ ker ∆. On this way one can obtain various extensions of the
Fuglede-Putnam theorem (see Section 4).

Problem 1. Is (3.5) true for inner derivations, that is for operators ∆ = LA−RA?

The positive answer was known for the case that A is a weighted shift [11] or
a subnormal operator with a cyclic vector [11]. Moreover it was shown in [11] that
in the latter case the condition (3.1) holds. If A is normal then even (3.2) holds
with C = 1 [2]. But in general (3.1) is not true for inner derivations: Anderson [3]
has shown that the closure of the image of LA −RA can contain 1H .

Note that the intersection of the left part of (3.3) with S1 is trivial; moreover
the following much stronger condition holds:

∆(B(H))
w∗

∩ ker ∆̃1 = {0}. (3.7)

Here ∆(B(H))
w∗

denotes the closure of ∆(B(H)) in the weak-* topology. To verify
(3.7) note that if X ∈ ker ∆̃1 then tr(X∗∆(Y )) = tr(∆̃(X)∗Y ) = 0 for each Y ∈
B(H). Hence tr(X∗Z) = 0 for each Z ∈ ∆(B(H))

w∗

. It follows that tr(X∗X) = 0

for X ∈ ∆(B(H))
w∗

∩ ker ∆̃1.
It would be important to prove the triviality of the intersection of the left

part of (3.3) with S2:

Problem 2. For which elementary operators ∆ does the equality

∆(B(H)) ∩ ker ∆̃2 = 0 (3.8)

hold?

We conjecture that for all. But could it be proved at least for inner deriva-
tions?

It will be shown in Section 4 that (3.8) is true (in a more strong version) for
all normal elementary operators.

Some conditions which are sufficient for (3.5) can be written in terms close
in spirit to Voiculescu’s notion of quasidiagonality with respect to a symmetrically
normed ideal [26]. We restrict ourselves to Schatten ideals Sp for simplicity.
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Let us say that a family A = {Ak : 1 ≤ k ≤ m} of operators is p-semidiagonal
if there exists a sequence of projections Pn of finite rank such that Pn → 1 in the
strong operator topology, and

sup
n
||[Ak, Pn]||p < ∞, for each k ≤ m.

It is clear that if p1 < p2 then each p1-semidiagonal family is p2-semidiagonal.
In particular, 1-semidiagonality is the strongest of these conditions. Clearly, any
family is ∞-semidiagonal, where ‖ · ‖∞ is the operator norm.

Let us list some examples of p-semidiagonal families (see [22] for transparent
proofs or references).

1) Any family of operators with matrices (with respect to some basis) sup-
ported by a finite number of diagonals (i.e. aij = 0 if |i− j| > m for some m ∈ N)
is 1-semidiagonal. One of the simplest classes of such examples consists of families
of weighted shifts.

This class of examples can be considerably extended as follows.
If (aij) is a matrix of an operator A in a basis {en}∞n=1, let us set |A|n =

sup|i−j|=n |aij | and |A|diag =
∑∞

n=1 n|A|n. We say that A is diagonally bounded
(with respect to the basis {en}∞n=1) if |A|diag < ∞. Then:

2) Any family of diagonally bounded (with respect to the same basis) oper-
ators is 1-semidiagonal.

As a consequence we obtain the following result of Voiculescu [26]:
3) Any family which belongs to the algebra of operators on L2(T) generated

by shifts u(t) 7→ u(t − θ) and multiplication operators by twice differentiable
functions f ∈ C2(T) (we will call the elements of these algebras ”generalized
Bishop’s operatos”), is 1-semidiagonal.

To deduce this from 2), it suffices to calculate the matrices of shift and
multiplication operators in the standard basis ek = exp(ikt), k ∈ Z.

4) It is important that all normal operators of finite multicyclicity are 2-
semidiagonal. More generally, if f1, ..., fn are Lipschitz functions on the spectrum
of a normal operator A, then the family (f1(A), ..., fn(A)) is p-semidiagonal where
p is the Hausdorff dimension of σ(A).

Slightly more general, if the essential dimension of a family A = (A1, ..., An)
of commuting normal operators does not exceed p ≤ 2 then A is p-semidiagonal.

5) Any multicyclic almost normal operator A is 2-semidiagonal ([25]).
Recall that an operator A is almost normal if its self-commutator [A∗, A] is

nuclear.

Theorem 3.1. If the left coefficient family A of an elementary operator ∆ is 1-
semidiagonal then the equality (3.3) holds.

If A is p/(p− 2)-semidiagonal then (3.4) holds.

Of course one could impose the same restriction (of 1-semidiagonality) on the
right coefficient family B of ∆.
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Problem 3. Find a condition which involves both coefficient families so that (3.3)
or (3.4) is valid. In particular, does (3.3) hold if both A and B are 2-semidiagonal?

To outline the proof of Theorem 3.1, note that the operators ∆ and ∆p are
intertwined by the injection Φp : Sp → B(H). Similarly the injection Φp1,p2 : Sp1 →
Sp2 , intertwines ∆p1 and ∆p2 for p1 ≤ p2. If A is p-semidiagonal then one can use
the projections Pn from the definition of semidiagonality, to construct an AII for
these intertwinings by setting Fn(X) = PnX. We describe firstly the results that
relate properties of ∆ and ∆2: this is important because the latter acts on the
Hilbert space H = S2 and its adjoint is ∆̃2.

Theorem 3.2. (i) If the left coefficient family A of ∆ is 2-semidiagonal then there
exists an AII for (Φ2,∆2,∆).

(ii) If A is 1-semidiagonal then
(a) there exists a *-AIS for (Φ2,∆2,∆) and (Φ2, ∆̃2, ∆̃);
(b) there exists an AII for (Φ2,∆2,∆∞);
(c) there exists a *-AII for (Φ2,∆2,∆∞) and (Φ2, ∆̃2, ∆̃∞).

(iii) If A is p/(p − 2)-semidiagonal, p > 2, then there exists a *-AII for
(Φ2,p,∆2,∆p) and (Φ2,p, ∆̃2, ∆̃p)

Now to prove Theorem 3.1 it suffices to apply Theorem 3.2 (parts (ii-a) and
(iii)) and Corollary 2.6.

3.2. Hyponormality

Let us say that an elementary operator ∆ is formally positive if tr(∆(X)X∗) ≥ 0
for each X ∈ S2. Furthermore ∆ is formally hyponormal if ∆̃∆−∆∆̃ is formally
positive.

Theorem 3.3. Let ∆ be formally hyponormal and let its left coefficient family A be
2-semidiagonal.

(i) If ∆(X) ∈ S2, for some X ∈ B(H), then ∆̃(X) ∈ S2 and

‖∆(X)‖2 ≥ ‖∆̃(X)‖2.
As a consequence we get

(ii) ker ∆ ⊂ ker ∆̃.

Indeed, by Theorem 3.2 (i), the assumption of 2-semidiagonality implies the
existence of AII for (Φ2,∆2,∆). Since formal hyponormality of ∆ means that
∆2 is a hyponormal operator, the inequality ‖∆̃(X)‖2 ≤ ‖∆(X)‖2 holds for each
operator X ∈ S2. It remains to apply Theorem 2.3 to the intertwinings (Φ2,∆2,∆)
and (Φ2, ∆̃2, ∆̃).

Considering elementary operators of the form ∆ = LA + RB it is easy to see
that ∆̃∆−∆∆̃ = L[A∗,A]+R[B,B∗]. Therefore such operator is formally hyponormal
if A and B∗ are hyponormal. One can also show that the converse is also true. Note
that if a hyponormal operator A is multicyclic then its selfcommutator [A∗, A] is
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nuclear ([4]) so A is almost normal. Taking into account that multicyclic normal
operators are 2-semidiagonal we apply Theorem 3.3 and obtain

Corollary 3.4. Let operators A and B∗ be hyponormal and multicyclic. Then

‖AX −XB‖2 ≥ ‖A∗X −XB∗‖2 (3.9)

for each operator X such that AX −XB ∈ S2.

This result from [22] was proved earlier under more restrictive conditions on
A, B and X (see [7] and numerous references therein).

Theorem 3.3 is related to the following result which is not restricted by
hyponormality assumptions.

Theorem 3.5. If A is 1-semidiagonal then

‖∆(X)‖22 = tr(X∗∆̃∆(X)) (3.10)

for each compact operator X such that ∆̃∆(X) ∈ S1.

This statement can be proved in the same way as the previous results by
using Theorem 2.5 (ii) and Theorem 3.2 (ii-c).

To see its relation to Theorem 3.3, note that if ∆ is formally hyponormal
then clearly tr(X∗∆̃∆(X)) ≥ tr(X∗∆∆̃(X)).

3.3. Ranges of derivations and traces of commutators

Now we will study which trace class operators can belong to the range of an ele-
mentary operator ∆. For this we need information about AII’s for the intertwinings
(Φ1,∆1,∆) and (Φ1,p,∆1,∆p).

It will be convenient, for each p ∈ (1;∞), to denote by p′ the number p
p−1 ,

and set p′ = 1 if p = ∞, p′ = ∞ if p = 1.

Theorem 3.6. (i) If the left coefficient family A of ∆ is 1-semidiagonal then there
exists an AIS for (Φ1,∆1,∆).

(ii) If A is p′-semidiagonal then there exists an AII for (Φ1,p,∆1,∆p).

Applying Theorem 2.1 we deduce from part (ii) of Theorem 3.6

Corollary 3.7. If A is p′-semidiagonal then S1 ∩∆(Sp) is contained in the ‖ · ‖1-
closure of ∆(S1).

In particular,

Corollary 3.8. Let the coefficients of ∆ satisfy the condition
∑n

i=1 BiAi = 0. If
A is p′-semidiagonal then tr(∆(X)) = 0 for each operator X ∈ Sp for which
∆(X) ∈ S1.

Indeed if Y ∈ S1 then tr(∆(Y )) = tr(
∑n

i=1 BiAiY ) = 0, so the result follows
from Corollary 3.7 and the continuity of trace on S1.

The result can be applied to the problem ”when the trace of a commutator
is equal to 0?”. It is well known that a commutator [A,X] has zero trace if X
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is nuclear or if both operators A and X are Hilbert-Schmidt. Weiss [27] proved
that the same is true if X is Hilbert-Schmidt and A is normal. The following
proposition, which is an easy consequence of Corollary 3.8, widely extends this
result.

Corollary 3.9. Let p > 1. If {Ak}n
k=1 is p′-semidiagonal, Xk ∈ Sp and

∑n
k=1[Ak, Xk] ∈

S1 then

tr(
n∑

k=1

[Ak, Xk]) = 0.

For p = ∞, this gives, for instance, that the commutator of a Hermitian
operator (or a weighted shift, or a Bishop’s operator) with a compact operator has
zero trace if nuclear. Taking p = 2, we obtain the same for the commutator of a
normal (or almost normal) multicyclic operator with a Hilbert-Schmidt operator.
The restriction on multicyclicity can be easily removed.

Choosing in Proposition 3.9 for Ak the multiplication operators Mfk
on

L2([0, 1]) and for Xk the integral operators with kernels Fk ∈ L2([0, 1]2), one
obtains the following result:

Corollary 3.10. If fk ∈ Lip1/2([0, 1]), 1 ≤ k ≤ n, then no functions Fk ∈ L2([0, 1]2)
satisfying the condition

n∑
k=1

(fk(x)− fk(y))Fk(x, y) = 1. (3.11)

It was asked by Weiss if this is true for fk ∈ C[0, 1]; the answer is negative
(see [22, Proposition 8.7] which shows that 1/2 in Corollary 3.10 cannot be even
changed by 1/3)

The constant p′ in Proposition 3.9 is sharp for p = 2, i.e. the condition
Xk ∈ S2 cannot be weakened to Xk ∈ Sq for any q > 2 (see [22, Example 8.5]).

Problem 4. Is the constant p′ sharp for all p ≥ 1?

4. Normal elementary operators

In this section the coefficient families A, B of an elementary operator ∆ are assumed
to be commutative and to consist of normal operators. Such elementary operators
are called normal.

4.1. Spectral subspaces

It is well known (see for example a much more general result of [6]) that

σ(∆) = {
n∑

k=1

λiµi : λ ∈ σ(A), µ ∈ σ(B)}. (4.1)

We will study here some other spectral characteristics of elementary operators.
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Recall that an operator T on a Banach space X is decomposable if to each
compact set α ⊂ σ(T ) there corresponds a closed subspace ET (α) invariant for all
operators commuting with T and satisfying the following conditions:

(a) σ(T |ET (α)) ⊂ α;
(b) If U, V are open subsets of C and U ∪ V ⊃ σ(T ) then there are compact

sets α ⊂ U , β ⊂ V with ET (α) + ET (β) = X .
The subspaces ET (α) are called spectral subspaces of T ; the map α → ET (α)

is the spectral capacity of T .
To describe spectral subspaces E∆(α) of a normal elementary operator ∆

we need the following notion. Let EA(·) and EB(·) be the spectral measures of
the coefficient families A and B of ∆ on σ(A) and σ(B) respectively. An operator
X ∈ B(H) is said to be supported by a set M ⊂ σ(A)×σ(B) if EA(U)XEB(V ) = 0
for every Borel rectangle U × V ⊂ σ(A)× σ(B) non-intersecting M . We will write
in this case suppX ⊂ M .

It is not difficult to check that for each subset M ⊂ σ(A)×σ(B), the subspace
HM of all operators supported by M is invariant for ∆. Moreover it can be deduced
in the same way as (4.1) that σ(∆|HM ) ⊂ {

∑n
k=1 λiµi : (λ, µ) ∈ M}.

For every compact α ⊂ σ(∆), we set

MA,B(α) = {(λ, µ) ∈ σ(A)× σ(B) :
n∑

k=1

λkµk ∈ α}.

Set now
E∆(α) = {X ∈ B(H) : suppX ⊂ MA,B(α)}.

In other words E∆(α) = HMA,B(α).

Theorem 4.1. [18] A normal elementary operator ∆ is decomposable; the map
α → E∆(α) is its spectral capacity.

In particular the space E∆({0}) of all operators supported by MA,B(0) coin-
cides with {X : ‖∆n(X)‖1/n → 0}; in other words it is the root space of ∆.

It is important that the set MA,B({0}) has a comparatively simple structure:
it is the union of a null set and a countable family of rectangles. More precisely,
let µA, µB be scalar spectral measures of A and B, and let m = µA × µB be the
product measure on σ(A)× σ(B).

Lemma 4.2. There are measurable sets Ai ⊂ σ(A), Bi ⊂ σ(B), 1 ≤ i < ∞, and an
m-null subset C of σ(A)× σ(B) such that MA,B(0) = (∪∞i=1Ai ×Bi) ∪ C.

It follows from Lemma 4.2 that the space of all Hilbert-Schmidt operators in
E∆({0}) is generated by the union of the spaces of all Hilbert-Schmidt operators
supported by rectangles Ai×Bi. Using this one obtains easily the following result:

Corollary 4.3. The space S1 ∩ E∆({0}) is dense in S2 ∩ E∆({0}) with respect to
the norm of the ideal S2.
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Since for a normal operator on a Hilbert space the root space coincides with
the kernel, the result can be reformulated as follows: ker∆1 is a dense subspace of
ker ∆2.

Now we can show that for normal elementary operators the equality (3.8)
holds in a much more stronger version.

Let M
w∗

denote the weak∗-closure of a set M ⊂ B(H).

Theorem 4.4. For every normal elementary operator ∆,

∆(B(H))
w∗

∩ ker ∆̃2 = 0. (4.2)

Indeed it is trivial to check that tr(∆(X)Y ) = 0 for each X ∈ B(H) and

Y ∈ ker ∆̃1. Hence by continuity tr(ZY ) = 0 for Z ∈ ∆(B(H))
w∗

.
If also Z ∈ S2 then, again by continuity, tr(ZY ) = 0 for all Y from the closure

of ker ∆̃1 in S2. But by Corollary 4.3, this closure coincides with ker ∆̃2, which in
its turn equals ker ∆2 because ∆2 is a normal operator and ∆̃2 is its adjoint. So if

Z ∈ ∆(B(H))
w∗

∩ ker ∆̃2 then Z = 0.
Note that we proved a more general statement:

∆(B(H))
w∗

∩ S2 is orthogonal to ker ∆̃2. (4.3)

From this one can easily deduce the following result of Turnšek [24]:

Proposition 4.5. For every normal elementary operator ∆ the intersection of its
range with S2 is contained in the ‖ · ‖2-closure of ∆(S2).

Indeed the ‖·‖2-closure of ∆(S2) is just the orthogonal complement of ker ∆̃2.

Problem 5. For which p > 2 the equality does (4.2) hold with ∆̃p instead of ∆̃2?

Remark 4.6. We note that ∆(B(H))
w∗

∩ ker ∆̃ = 0 does not hold in general even
for normal inner derivations. One can easily construct ∆ = LA − RA such that

∆(B(H))
w∗

= B(H).

4.2. Ascent

The relation between the kernel of an operator T and its root space is a subject
of the so called theory of thin spectral structure. Since the root space contains the
kernels of all operators Tn, a natural intermediate question is the interrelations of
these spaces. If the chain ker T ⊂ ker T 2 ⊂ ... stabilizes on number m: kerTm =
ker Tm+1 = .. then we say that the ascent of T equals m.

We will see that the ascent m of a normal elementary operator can be esti-
mated via the essential dimension of its left coefficient family, and that E∆(0) =
ker ∆m.

Theorem 4.7. If ess-dim A ≤ r then E∆(0) = ker∆(r/2] where (r/2] = [(r + 1)/2],
the minimal integer ≥ r/2
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For operators of the form X → AX + XB this result was obtained by An-
derson and Foias [2]; clearly in this case it states that E∆(0) = ker∆.

The first step of the proof is to show that ‖∆|E∆(0)‖ ≤ 2|σ(B)|diam σ(A),
where by |σ(B)| we mean sup{|λ| : λ ∈ σ(B)}. Hence

‖∆k|E∆(0)‖ ≤ (2|σ(B)|diam σ(A))k

for each k.
If γ is a compact subset of σ(A) then changing ∆ by ∆REA(γ) we obtain the

inequality ‖∆kREA(γ)|E∆(0)‖ ≤ (2|σ(B)|diam γ)k. Hence taking X ∈ E∆(0) and
setting T = ∆k(X) we obtain:

‖TEA(γ)‖ ≤ C(diam γ)k (4.4)

for all γ ⊂ σ(A).
For each finite covering of σ(A) by disjoint Borel sets γ1, ..., γN , one can con-

sider an orthogonal system {e1, ..., eN} of unit vectors ej supported in EA(γj); the
condition (4.4) gives that ‖TPN‖22 ≤ C

∑N
j=1(diam γj)2k where PN is the projec-

tion onto the subspace generated by {e1, ..., eN}. If A is cyclic (this can be assumed
without reducing generality) then such orthogonal systems can approximate a ba-
sis. It follows that if the Hausdorff dimension of σ(A) does not exceed 2k then
each operator T ∈ B(H) satisfying the condition (4.4) belongs to S2.

We get that ∆k(X) ∈ S2 for all X ∈ E∆(0). Since E∆(0) is invariant for ∆,
∆k(X) ∈ S2 ∩ E∆(0) = ker∆2 = ker ∆̃2. By Theorem 4.4, ∆k(X) = 0.

4.3. Fuglede type theorems

The famous Fuglede-Putnam theorem says that ker∆ = ker ∆̃ if ∆ is an operator
of the form X 7→ N1X − XN2, where N1, N2 are normal operators. A natural
question arising in this context is whether for every normal elementary operator
∆ the equations

∆(X) = 0 (4.5)

and
∆̃(X) = 0 (4.6)

are equivalent. This question was answered negatively in [19]. The construction of
the counterexample is based on a modification of the famous L.Schwartz example
of a set of spectral non-synthesis for the Fourier algebra of the group R3.

It is clear that E∆(0) = HMA,B = Ee∆(0). Applying Theorem 4.7 we obtain
the following version of the Fuglede - Putnam theorem:

Theorem 4.8. If ess-dim A ≤ r then ker ∆(r/2] = ker ∆̃(r/2].

The following consequence of Theorem 4.8 can be also immediately deduced
from Theorem 3.3 (ii).

Theorem 4.9. If ess-dim A ≤ 2 then equations (4.5) and (4.6) are equivalent.
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It is reasonable to regard the work around Fuglede Theorem in a more wide
way - as the study of conditions for the coincidence or inclusion of kernels of ele-
mentary operators. In other words: which linear operator equations are equivalent,
how the solution spaces of different equations are related? The following theorem
gives information for the case of 2-dimensional coefficient families.

Theorem 4.10. Let ess-dim A ≤ 2. Let {fi}m
i=1 be Lipschitz functions on σ(A),

{gi}m
i=1 be Borel functions on σ(B). Assume that

∑m
i=1 fi(λ)gi(µ) = 0 for each

(λ, µ) ∈ σ(A)× σ(B) satisfying the condition
∑n

k=1 λkµk = 0. Then each solution
X of the linear operator equation

n∑
k=1

AkXBk = 0 (4.7)

satisfies equation
m∑

i=1

fi(A)Xgi(B) = 0. (4.8)

Clearly Theorem 4.9 is a special case of Theorem 4.10 – it corresponds to the
functions fi(λ) = gi(λ) = λi.

To deduce Theorem 4.10 from Theorem 4.7, denote by f(A) and g(B) re-
spectively the families {fi(A) : 1 ≤ i ≤ m} and {gi(B) : 1 ≤ i ≤ m}. Let
∆′ =

∑m
i=1 Lfi(A)Rgi(B). In our assumptions MA,B(0) ⊂ Mf(A),g(B)(0) whence

E∆(0) ⊂ E∆′(0). Furthermore ess-dim f(A) ≤ 2, so E∆′(0) = ker∆′ by Theo-
rem 4.7.

Clearly the “Fuglede theorem”, for arbitrary normal ∆, holds in S2 (that is
the equations (4.5) and (4.6) are equivalent in S2) and hence in Sp, p < 2.

Problem 6. Let ∆ be a normal elementary operator. Are equations (4.5) and (4.6)
equivalent in Sp, 2 < p ≤ ∞?

One can ask about the validity of similar results in C∗-algebras different from
B(H). Namely, let A be a C∗-algebra. Consider elementary operators ∆ on A, i.e.
∆(c) =

∑n
k=1 akcbk, where ak,bk ∈ A. We say that ∆ is normal if {ak}n

k=1 and
{bk}n

k=1 are families of commuting normal elements in A.
Let us call a C*-algebra A 1-Fuglede (or (F1), for short) if ker ∆̃ = ker∆

for any normal elementary operator ∆. If ker ∆2 = ker ∆ for any normal ∆ then
A is said to be 2-Fuglede (F2). If ker ∆̃∆ = ker ∆ for any ∆ then A is said to be
3-Fuglede (F3). Clearly (F3) =⇒ (F2) =⇒ (F1).

It follows from the above discussion that the algebra B(H) is not (F1) (for
any infinite dimensional H). It is not difficult to see that

(i) the algebra, S∞, of compact operators is (F2);
(ii) as a consequence each CCR-algebra is (F2);
(iii) each C*-algebra with a faithful family of traces (for example a simple

unital hyperfinite C*-algebra) is 3-Fuglede.
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Problem 7. Which C∗-algebras A are F1, F2 and F3? Is S∞ 3-Fuglede? Is any
GCR-algebra (F2)? What about the Calkin algebra B(H)/S∞?

We will briefly list other extensions of the Fuglede Theorem.
E.A.Gorin [8] discovered that if in the classical Rosenblum’s proof of the

Fuglede Theorem one uses instead of the Liouville theorem the Phragmen-Lindelef
Theorem, then the result extends to a more general class of operators than the
normal ones.

Theorem 4.11. Let an operator A, acting on a Banach space X, be decomposed
into a sum A = T + iS, where [S, T ] = 0, S has real spectrum and T satisfies the
condition

‖exp(itT )‖ = o(|t|) for t →∞. (4.9)
Then ker A = kerT ∩ ker S.

Applying this theorem to multiplication operators we obtain

Corollary 4.12. Let an operator N on a Banach space X can be written as a sum
N = U + iV where [U, V ] = 0, V has real spectrum and U satisfies condition

‖ exp(itU)‖ = o(|t|1/2). (4.10)

Set N ′ = U − iV . Then the equations NX − XN = 0 and N ′X − XN ′ = 0 are
equivalent.

An operator T on a Banach space is called Hermitian if ‖ exp(itT )‖ = 1 for
all t ∈ R.

The following result belongs to K.Boyadzhiev [5].

Theorem 4.13. Let P (t1, ..., tn) be a polynomial in n variables without zeros in
Rn \ {0}. If T1, ..., Tn are commuting Hermitian operators then ker P (T1, ..., Tn) ⊂
∩n

k=1 ker Tk.

To deduce the Fuglede Theorem from Theorem 4.13, one should take P (t1, t2) =
t1 + it2, T1 = LA − RA, T2 = LB − RB where A,B are the real and imaginary
parts of a normal operator N ∈ B(H).

E.A.Gorin [8] obtained also the following ”non-commutative” version of the
Fuglede Theorem.

Let F2 be the free algebra with generators a, b. Consider the formal power
series f(z) = exp(za) exp(zb) with coefficients in F2. Then there is a formal power
series g(z) with coefficients in F2 such that f(z) = exp(g(z)). Let us denote by
ck(a, b) the coefficients of this power series:

g(z) = c0(a, b) + c1(a, b)z + ...

It is easy to obtain explicit formulas for ck(a, b) for small k. For example
c0(a, b) = 1, c1(a, b) = a + b, c2(a, b) = [a, b]/2.

Since ck(a, b) are elements of F2 (”non-commutative polynomials”), one can
calculate ck(A,B) for each pair A,B of elements of any algebra.
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Theorem 4.14. Let T , S be operators on a Banach space X such that T satisfies
(4.10), S has real spectrum, and let X ∈ B(X). If [ck(T, iS), X] = 0 for all k ∈ N
then [T,X] = [S, X] = 0.

To see that this theorem extends Corollary 4.12 note that if [a, b] = 0 then
ck(a, b) = 0 for all k ≥ 2. Hence in this case the assumption becomes just
[c1(a, ib), x] = 0, that is a + ib commutes with x.

4.4. Norm inequalities

The following result is a special case of Theorem 3.3 (i).

Theorem 4.15. Suppose that ess-dim A ≤ 2. If ∆(X) ∈ S2 then ∆̃(X) ∈ S2 and

‖∆(X)‖2 = ‖∆̃(X)‖2. (4.11)

It extends the famous result of Gary Weiss [29] which states that (4.11) holds
for ∆ = LN1 −RN2 where Ni are normal operators.

The arguments similar to ones used in Theorem 3.3 allow to extend Theorem
4.15 in spirit of Theorem 4.10:

Theorem 4.16. Let ess-dim A ≤ 2. Let {fi}m
i=1 be Lipschitz functions on σ(A),

{gi}m
i=1 be Borel functions on σ(B). Assume that |

∑m
i=1 fi(λ)gi(µ)| ≤ |

∑n
k=1 λkµk|

for each (λ, µ) ∈ σ(A)× σ(B).
If

∑n
k=1 AkXBk ∈ S2, for some X ∈ B(H), then

∑m
i=1 fi(A)Xgi(B) ∈ S2

and

‖
m∑

i=1

fi(A)Xgi(B)‖2 ≤ ‖
n∑

k=1

AkXBk‖2.

Kittaneh [14] established the following special case of this result: if A is a
normal operator and f is a Lipschitz function on σ(A) then

‖f(A)X −Xf(A)‖2 ≤ k(f)‖AX −XA‖2 (4.12)

where k(f) is the Lipschitz constant of f .
Without restrictions on the dimension of spectra the equality (4.11) can fail

because even the kernels of ∆ and ∆̃ can differ. Nevertheless Weiss [28] proved the
following remarkable result:

Theorem 4.17. Let ∆ be a normal elementary operator. If both ∆(X) and ∆̃(X)
are Hilbert-Schmidt operators then (4.11) holds.

One can prove Theorem 4.17 applying Corollary 2.8. Take as usually H = S2,
S = ∆2, Y = B(H), T1 = ∆, T2 = ∆̃, then the identity inclusion Φ2 : S2 → B(H)
intertwines the operators. The condition kerS ∩ Φ−1(T2Y) = 0, which is just
ker ∆2 ∩ ∆̃(B(H)) = 0, holds by Theorem 4.4. So inequality (2.1) holds which
means that ‖∆̃(X)‖2 ≤ ‖∆(X)‖2 if ∆(X) ∈ S2 and ∆̃(X) ∈ S2. Interchanging ∆̃
and ∆ we obtain (4.11).

Using Theorem 2.7 instead of Corollary 2.8 one can obtain the following more
general result:
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Theorem 4.18. Let {fi}m
i=1 be Lipschitz functions on σ(A), {gi}m

i=1 be Borel func-
tions on σ(B). Assume that |

∑m
i=1 fi(λ)gi(µ)| ≤ |

∑n
k=1 λkµk| for each (λ, µ) ∈

σ(A)× σ(B).
If

∑n
k=1 AkXBk ∈ S2 and

∑m
i=1 fi(A)Xgi(B) ∈ S2, for some X ∈ B(H),

then

‖
m∑

i=1

fi(A)Xgi(B)‖2 ≤ ‖
n∑

k=1

AkXBk‖2.

The mentioned result of (4.11) extends to other Schatten ideals: for every
p ∈ (1,∞) there is a constant c = cp > 0 such that

‖A∗X −XA∗‖p ≤ c‖AX −XA‖p (4.13)

for all normal operators A and all operators X (Abdessemed and Davies [1], for
p > 2, Shulman [20], for p < 2). This is not the case for p = 1 and p = ∞ (Yu.B.
Farforovskaya [10]). Kissin and Shulman [12] proved that the statement remains
true for the operator norm and S1-norm, if one imposes a restriction on spectra
of normal operators. Namely, for each C2-smooth Jordan line L there is constant
c = cL such that

‖A∗X −XA∗‖ ≤ c‖AX −XA‖ (4.14)
if σ(A) ⊂ L. It was also proved in [12] that a kind of smoothness of spectrum is
necessary for the validity of (4.14): if for some normal operator A the inequality
(4.14) holds for all X, then given a sequence λn ∈ σ(A) converging to λ ∈ σ(A),
there is a limit lim(λn − λ)/|λn − λ| = f(λ).

Potapov and Sukochev [15] using a powerful technique of Banach space geom-
etry and harmonic analysis proved that (4.12) extends to all Sp ideals, if A = A∗.
For all normal A this was proved in [13].

If we note that for each X, the map δX : A 7→ AX −XA is a derivation of
the algebra B(H) then the question arises if the above results can be extended to
derivations of more general class (defined on subalgebras of B(H)). The following
theorem was proved in [20].

Theorem 4.19. Let δ be a derivation from a *-subalgebra D(δ) ⊂ B(H) to B(H),
and let A ∈ D(δ) be a normal operator without eigenvalues. Then

(i) If δ(A) ∈ Sp and δ(A∗) ∈ K(H) then δ(A∗) ∈ Sp and

‖δ(A∗)‖p ≤ 2cp‖δ(A)‖p; (4.15)

(ii) if moreover p = 2 and δ is closed then

‖δ(f(A))‖2 ≤ k(f)‖δ(A)‖2 (4.16)

for each Lipschitz function f on σ(A) with Lipschitz constant k(f).

The extension of part (ii) to all p ∈ (1,∞) was obtained in [13].
Let A ∈ B(H) be a normal operator. As it was mentioned above the map

AX −XA 7→ A∗X −XA∗ is not bounded in general as a map on B(H). However
this map and more general maps of the form AX − XA 7→ f(A)X − Xf(A) (f
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is a measurable function) are norm closable. In fact, if AXn − XnA → 0 and
f(A)Xn −Xnf(A) → B as n →∞ then

[B,A] = lim
n→∞

[[f(A), Xn], A] = lim
n→∞

[f(A), [Xn, A]] = 0.

Thus B is in the commutant {A}′ of A. Hence B commutes with f(A) and therefore
belongs to δf(A)(B(H)) ∩ ker δ̃f(A) which is {0} by [2].

It would be interesting to see what happen if we weaken the condition on the
topology replacing it by the weak-∗-topology on B(H). It was proved in [21] that
the Fuglede map AX − XA 7→ A∗X − XA∗ is not w∗-closable if σ(A) has non-
empty interior and the spectral measure of A is equivalent to the Lebesgue measure
on the interior of σ(A). The proof uses a characterization of so-called Toeplitz w∗-
closable multipliers given in [21]. However the method does not work for general
maps of the type AX − XA 7→ f(A)X − Xf(A). Some sufficient conditions are
established in [21].

Problem 8. For which continuous functions f and normal operators A ∈ B(H)
is the map on B(H) given by AX − XA 7→ f(A)X − Xf(A) closable in weak-∗-
topology?
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