MULTIPLIERS OF MULTIDIMENSIONAL FOURIER ALGEBRAS

I. G. TODOROV AND L. TUROWSKA

ABSTRACT. Let G be a locally compact σ -compact group. Motivated by an earlier notion for discrete groups due to Effros and Ruan, we introduce the multidimensional Fourier algebra $A^n(G)$ of G. We characterise the completely bounded multidimensional multipliers associated with $A^n(G)$ in several equivalent ways. In particular, we establish a completely isometric embedding of the space of all n-dimensional completely bounded multipliers into the space of all Schur multipliers on G^{n+1} with respect to the (left) Haar measure. We show that in the case G is amenable the space of completely bounded multidimensional multipliers coincides with the multidimensional Fourier-Stieltjes algebra of G introduced by Ylinen. We extend some well-known results for abelian groups to the multidimensional setting.

1. INTRODUCTION

A classical result in Harmonic Analysis asserts that a bounded function defined on a locally compact abelian group G is a multiplier of the Fourier algebra A(G) of G precisely when it is the Fourier transform of a regular Borel measure on the character group \hat{G} of G. After the seminal work of P. Eymard [10], Harmonic Analysis on general locally compact groups has been closely related to the theory of C^{*}- and von Neumann algebras. More recent work of E. Effros, M. Neufang, Zh.-J. Ruan, V. Runde, N. Spronk and others shows that Operator Space Theory plays a significant role in the subject. The operator space structure of A(G)has thus become an indispensable tool in non-commutative Harmonic Analysis. J. de Cannière and U. Haagerup [4] defined the set $M^{cb}A(G)$ of completely bounded multipliers of A(G), and M. Bozejko and G. Fendler [3] provided a characterisation of $M^{cb}A(G)$ which, combined with a classical result of A. Grothendieck [13] and a result of V. Peller [17] shows that $M^{cb}A(G)$ can be isometrically identified with the space of all Schur multipliers of Toeplitz type. An alternative proof of this result was given by P. Jolissaint [14]. N. Spronk [21] showed that this

The research was supported by EPSRC grant D050677/1.

identification is in fact a complete isometry. We refer the reader to Sections 5 and 6 of G. Pisier's monograph [18] for an account of Schur multipliers.

Building on an earlier work on bimeasures on locally compact groups [11], [12], K. Ylinen [22] defined a multivariable version $B^n(G)$ of the Fourier-Stieltjes algebra of a locally compact group. A multivariable version of the Fourier algebra of a discrete group was introduced by E. Effros and Zh.-J. Ruan in [7], and its completely bounded multipliers were characterised in terms of a multilinear matrix version of classical Schur multipliers, introduced in the same paper.

In [15], multidimensional Schur multipliers associated with measure spaces were introduced and identified with a natural extended Haagerup tensor product [9] up to an isometry. In the present paper, we show that this identification is a complete isometry. We define the *n*-dimensional Fourier algebra $A^n(G)$ of an arbitrary locally compact group and show that it is a closed ideal of $B^n(G)$. We characterise the set $M_n^{cb}A(G)$ of completely bounded multipliers associated with $A^n(G)$ in several equivalent ways (Proposition 5.4, Theorem 5.5, Theorem 5.7). In particular, we show that there exists a completely isometric inclusion of $M_n^{cb}A(G)$ into the space of all n + 1-dimensional Schur multipliers on G with respect to the (left) Haar measure. Its image is a space of multidimensional Schur multipliers of Toeplitz type. Our results imply that if G is amenable then $B^n(G)$ can be completely isometrically identified with $M_n^{cb}A(G)$. In the case G is abelian, we show that $B^n(G)$ can be identified with more general classes of multipliers on G arising from partitions of the variables (Theorem 6.4). In particular, every multiplier of $A^n(G)$ is in this case automatically completely bounded. We obtain a multidimensional version of the classical result that if $\varphi \in \ell^{\infty}(\mathbb{Z})$ then the function $\tilde{\varphi} \in \ell^{\infty}(\mathbb{Z} \times \mathbb{Z})$ given by $\tilde{\varphi}(x,y) = \varphi(x-y)$ is a Schur multiplier if and only if φ is the Fourier transform of a regular Borel measure on the unit circle.

2. Preliminaries

We begin by recalling some basic notions and results from Eymard's work [10]. If H and K are Hilbert spaces we let $\mathcal{B}(H, K)$ be the space of all bounded linear operators from H into K. We write $\mathcal{B}(H) =$ $\mathcal{B}(H, H)$. Throughout the paper, G will denote a locally compact σ compact group with a left Haar measure m and a neutral element e. As usual, $L^p(G)$, p = 1, 2, will denote the space of all complex valued Borel functions f on G such that $|f|^p$ is integrable with respect to m. The space $L^1(G)$ is an involutive Banach algebra; its enveloping C^{*}algebra is the group C^{*}-algebra C^{*}(G) of G. We denote by $W^*(G)$ the enveloping von Neumann algebra of $C^*(G)$ and let $\omega : G \to W^*(G)$ be the canonical homomorphism of G into $W^*(G)$. Let λ be the left regular representation of $L^1(G)$ on the Hilbert space $L^2(G)$; the closure of its image in the operator norm is the reduced C^{*}-algebra C^{*}_r(G) of G, and its closure in the weak operator topology is the group von Neumann algebra VN(G) of G. We use the symbol λ to also denote the left regular representation of G on $L^2(G)$.

Let $B(G) = C^*(G)^*$ be the Fourier-Stieltjes algebra of G; if $f \in B(G)$ then f can be identified with a function (denoted in the same way and) given by $f(x) = \langle f, \omega(x) \rangle$. Any such f has the form $f(x) = (\pi(x)\xi, \eta)$ for some unitary representation $\pi : G \to \mathcal{B}(H)$ and vectors $\xi, \eta \in H$, and the space B(G) is a Banach algebra with respect to the pointwise product. By A(G) we denote as usual the Fourier algebra of G, that is, the ideal of B(G) of all functions f of the form $f(x) = (\lambda_x \xi, \eta)$ where $\xi, \eta \in L^2(G)$. Then A(G) can be canonically identified with the predual of VN(G): if $f(x) = (\lambda_x \xi, \eta), x \in G$, then $\langle f, T \rangle = (T\xi, \eta),$ $T \in VN(G)$.

We next recall some notions and facts from Operator Space Theory. We refer the reader to [1], [8], [16] and [19] for further details. An operator space is a closed subspace \mathcal{E} of $\mathcal{B}(H, K)$ for some Hilbert spaces H and K. If $n, m \in \mathbb{N}$, we will denote by $M_{n,m}(\mathcal{E})$ the space of all n by m matrices with entries in \mathcal{E} and let $M_n(\mathcal{E}) = M_{n,n}(\mathcal{E})$. Note that $M_{n,m}(\mathcal{E})$ can be identified in a natural way with a subspace of $\mathcal{B}(H^m, K^n)$ and hence carries a natural operator norm. If $n = \infty$ or $m = \infty$, we will denote by $M_{n,m}(\mathcal{E})$ the space of all (singly or doubly infinite) matrices with entries in \mathcal{E} which represent a bounded linear operator between the corresponding amplifications of the Hilbert spaces and set $M_{\infty}(\mathcal{E}) = M_{\infty,\infty}(\mathcal{E})$. We also write $M_{n,m} = M_{n,m}(\mathbb{C})$ and $M_{\infty} = M_{\infty,\infty}(\mathbb{C})$. If \mathcal{E} and \mathcal{F} are operator spaces, a linear map $\Phi: \mathcal{E} \to \mathcal{F}$ is called *completely bounded* if the map $\Phi^{(k)}: M_k(\mathcal{E}) \to \mathcal{F}$ $M_k(\mathcal{F})$, given by $\Phi^{(k)}((a_{ij})) = (\Phi(a_{ij}))$, is bounded for each $k \in \mathbb{N}$ and $\|\Phi\|_{cb} \stackrel{def}{=} \sup_k \|\Phi^{(k)}\| < \infty$. The map Φ is called a *complete isometry* if $\Phi^{(k)}$ is an isometry for each $k \in \mathbb{N}$, and a *complete contraction* if $\|\Phi\|_{cb} \le 1.$

If \mathcal{E} (resp. \mathcal{F}) is a linear space and $\|\cdot\|_k$ is a norm on $M_k(\mathcal{E})$ (resp. $M_k(\mathcal{F})$), $k \in \mathbb{N}$, then one may speak of completely bounded, completely contractive and completely isometric mappings from \mathcal{E} into \mathcal{F} as described above. Ruan's celebrated abstract characterisation of operator spaces identifies a set of axioms on the family $(\|\cdot\|_k)_{k=1}^{\infty}$ of

norms in order that \mathcal{E} be completely isometric to an operator space; see [8] for a description of these axioms and applications. An operator space structure on a linear space \mathcal{E} is a family $(\|\cdot\|_k)_{k=1}^{\infty}$, where $\|\cdot\|_k$ is a norm on $M_k(\mathcal{E})$, with respect to which \mathcal{E} is completely isometric to an operator space.

Let $\mathcal{E}, \mathcal{E}_1, \ldots, \mathcal{E}_n$ be operator spaces, $\Phi : \mathcal{E}_1 \times \cdots \times \mathcal{E}_n \to \mathcal{E}$ be a multilinear map and

$$\Phi^{(k)}: M_k(\mathcal{E}_1) \times M_k(\mathcal{E}_2) \times \cdots \times M_k(\mathcal{E}_n) \to M_k(\mathcal{E})$$

be the multilinear map given by

(1)
$$\Phi^{(k)}(a^1,\ldots,a^n)_{p,q} = \sum_{p_2,\ldots,p_n} \Phi(a^1_{p,p_2},a^2_{p_2,p_3},\ldots,a^n_{p_n,q}),$$

where $a^i = (a^i_{p,q}) \in M_k(\mathcal{E}_i), 1 \leq p,q \leq k$. The map Φ is called completely bounded if there exists C > 0 such that for all $k \in \mathbb{N}$ and all elements $a^i \in M_k(\mathcal{E}_i), i = 1, ..., n$, we have

$$\|\Phi^{(k)}(a^1,\ldots,a^n)\| \le C \|a^1\|\ldots\|a^n\|.$$

If \mathcal{E} and \mathcal{E}_i , i = 1, ..., n, are dual operator spaces we say that Φ is *normal* if it is weak^{*} continuous in each variable. We denote by $CB^{\sigma}(\mathcal{E}_1 \times \cdots \times \mathcal{E}_n, \mathcal{E})$ the set of all normal completely bounded multilinear maps from $\mathcal{E}_1 \times \cdots \times \mathcal{E}_n$ into \mathcal{E} ; this space can be equipped with an operator space structure in a canonical way (see [9]).

E. Christensen and A. Sinclair [6] gave a characterisation of completely bounded (resp. normal completely bounded) multilinear maps defined on the direct product of finitely many C*-algebras (resp. von Neumann algebras). We will need the following generalisation of Corollaries 5.7 and 5.9 of [6] whose proof is a straightforward generalisation of the proof of Corollary 5.9 of [6]. If \mathcal{A} is a set we let $\mathcal{A}^n = \mathcal{A} \times \cdots \times \mathcal{A}$.

If \mathcal{M} is a von Neumann algebra and $\mathcal{R}_j \subseteq \mathcal{M}, j = 1, \ldots, n-1$, are von Neumann subalgebras, we say that a mapping $\Phi : \mathcal{M}^n \to B(H)$ is $(\mathcal{R}_1, \ldots, \mathcal{R}_{n-1})$ -modular if

$$\Phi(a_1r_1, a_2r_2, \dots, a_n) = \Phi(a_1, r_1a_2, \dots, r_{n-1}a_n),$$

for all $a_1, \ldots, a_n \in \mathcal{M}, r_j \in \mathcal{R}_j, j = 1, \ldots, n-1.$

Theorem 2.1. Let $\mathcal{M} \subseteq \mathcal{B}(K)$ be a von Neumann algebra, $\mathcal{R}_j \subseteq \mathcal{M}$ be a von Neumann subalgebra, $j = 1, \ldots, n-1$, H be a Hilbert space and $\Phi : \mathcal{M}^n \to \mathcal{B}(H)$ be a multilinear map. The following are equivalent:

(i) Φ is completely bounded, normal and $(\mathcal{R}_1, \ldots, \mathcal{R}_{n-1})$ -modular;

(ii) there exists an index set J and operators $V_j \in M_J(\mathcal{R}'_j)$, $j = 1, \ldots, n-1, V_0 \in \mathcal{B}(K^J, H)$ and $V_n \in M_{1,J}(H, K^J)$ such that for all

 $a_1,\ldots,a_n \in \mathcal{M}, we have$

 $\Phi(a_1,\ldots,a_n)=V_0(a_1\otimes 1_J)V_1\ldots V_{n-1}(a_n\otimes 1_J)V_n.$

Moreover, if (i) holds then $\|\Phi\|_{cb}$ equals the infimum of $\|V_0\| \dots \|V_n\|$ over all representations of Φ as in (ii) and this infimum is attained.

Tensor products will play a substantial role in the paper. We denote by $V \odot W$ the algebraic tensor product of the vector spaces V and W. If $\mathcal{E}_1 \subseteq \mathcal{B}(H_1)$ and $\mathcal{E}_2 \subseteq \mathcal{B}(H_2)$ are operator spaces and $u \in \mathcal{E}_1 \odot \mathcal{E}_2$, the *Haagerup norm* of u is given by

$$||u||_{h} = \inf \left\{ \left\| \sum_{j=1}^{k} a_{j} a_{j}^{*} \right\|^{\frac{1}{2}} \left\| \sum_{j=1}^{k} b_{j}^{*} b_{j} \right\|^{\frac{1}{2}} : u = \sum_{j=1}^{k} a_{j} \otimes b_{j} \right\}.$$

The completion $\mathcal{E}_1 \otimes_h \mathcal{E}_2$ of $\mathcal{E}_1 \odot \mathcal{E}_2$ with respect to $\|\cdot\|_h$ is the Haagerup tensor product of \mathcal{E}_1 and \mathcal{E}_2 . We refer the reader to [8] for its properties and to [9] for the definition and properties of the extended Haagerup tensor product $\mathcal{E}_1 \otimes_{eh} \mathcal{E}_2$ and the normal Haagerup tensor product $\mathcal{E}_1 \otimes_{eh} \mathcal{E}_2$ and the normal Haagerup tensor product $\mathcal{E}_1 \otimes_{\sigma h} \mathcal{E}_2$ of \mathcal{E}_1 and \mathcal{E}_2 . We recall the canonical identifications $(\mathcal{E}_1 \otimes_h \mathcal{E}_2)^* =$ $\mathcal{E}_1^* \otimes_{eh} \mathcal{E}_2^*$ and $(\mathcal{E}_1 \otimes_{eh} \mathcal{E}_2)^* = \mathcal{E}_1^* \otimes_{\sigma h} \mathcal{E}_2^*$. If $\delta \in \mathcal{E}_1^*$ then the left slice map $L_{\delta} : \mathcal{E}_1 \otimes_{eh} \mathcal{E}_2 \to \mathcal{E}_2$ is the unique completely bounded map given on elementary tensors by $L_{\delta}(a \otimes b) = \delta(a)b$ [9]. Similarly, for $\delta \in \mathcal{E}_2^*$ one defines the right slice map $R_{\delta} : \mathcal{E}_1 \otimes_{eh} \mathcal{E}_2 \to \mathcal{E}_1$.

If \mathcal{X} is a Banach space we denote by $b_1(\mathcal{X})$ the unit ball of \mathcal{X} . Banach space duality is denoted by $\langle \cdot, \cdot \rangle$. We denote by 1_H the identity operator on a Hilbert space H and, for a cardinal J, write $1_J = 1_{\ell^2(J)}$. The identity operator on $\ell^2(\mathbb{N})$ is often denoted simply by 1.

3. The operator space of Schur multipliers

In this section we recall the definition of multidimensional Schur multipliers associated with measure spaces and prove a completely isometric version of the characterisation result, Theorem 3.4, of [15].

Let (X_i, μ_i) , $i = 1, \ldots, n$, be standard measure spaces and

$$\Gamma(X_1,\ldots,X_n)=L^2(X_1\times X_2)\odot\cdots\odot L^2(X_{n-1}\times X_n),$$

where the direct products are equipped with the corresponding product measures. We identify the elements of $\Gamma(X_1, \ldots, X_n)$ with functions on

$$X_1 \times X_2 \times X_2 \times \dots \times X_{n-1} \times X_{n-1} \times X_n$$

in the obvious fashion. We equip $\Gamma(X_1, \ldots, X_n)$ with the Haagerup tensor norm $\|\cdot\|_h$, where the L^2 -spaces are given their opposite operator space structure (see [19]) arising from the identification $f \longleftrightarrow T_f$ of $L^2(X \times Y)$ with the class of Hilbert-Schmidt operators from $L^2(X)$ into $L^2(Y)$ where, for $f \in L^2(X \times Y)$, we let T_f be the (Hilbert-Schmidt) operator given by

(2)
$$(T_f\xi)(y) = \int_X f(x,y)\xi(x)dx, \quad \xi \in L^2(X), \ y \in Y,$$

dx denoting integration with respect to μ . If $f \in L^2(X \times Y)$ we let $||f||_{\text{op}}$ be equal to the operator norm of T_f .

For each $\varphi \in L^{\infty}(X_1 \times \cdots \times X_n)$ let

$$S_{\varphi}: \Gamma(X_1, \ldots, X_n) \to L^2(X_1 \times X_n)$$

be the map sending $f_1 \otimes \cdots \otimes f_{n-1} \in \Gamma(X_1, \ldots, X_n)$ to the function which maps (x_1, x_n) to

$$\int \varphi(x_1, \dots, x_n) f_1(x_1, x_2) f_2(x_2, x_3) \dots f_{n-1}(x_{n-1}, x_n) dx_2 \dots dx_{n-1}.$$

It was shown in Theorem 3.1 of [15] that S_{φ} is a bounded mapping when $\Gamma(X_1, \ldots, X_n)$ is equipped with the projective norm where each of its terms is given the L^2 -norm, and that $||S_{\varphi}|| = ||\varphi||_{\infty}$.

Definition 3.1. A function $\varphi \in L^{\infty}(X_1 \times \cdots \times X_n)$ is called a Schur multiplier (relative to the measure spaces $(X_1, \mu_1), \ldots, (X_n, \mu_n)$) if there exists C > 0 such that $\|S_{\varphi}(u)\|_{op} \leq C \|u\|_{h}$, for all $u \in \Gamma(X_1, \ldots, X_n)$. The smallest constant C with this property is denoted by $\|\varphi\|_{m}$.

Let $H_i = L^2(X_i)$, i = 1, ..., n, and $\varphi \in L^{\infty}(X_1 \times \cdots \times X_n)$ be a Schur multiplier. It was shown in Section 3 of [15] that φ induces a normal completely bounded multilinear map

$$S_{\varphi}: \mathcal{B}(H_{n-1}, H_n) \times \cdots \times \mathcal{B}(H_1, H_2) \to \mathcal{B}(H_1, H_n)$$

such that $\|\tilde{S}_{\varphi}\|_{cb} = \|\varphi\|_{m}$ and $\tilde{S}_{\varphi}(T_{f_{n-1}}, \ldots, T_{f_1}) = S_{\varphi}(f_1 \otimes \cdots \otimes f_{n-1})$, for all $f_i \in L^2(X_i \times X_{i+1})$, $i = 1, \ldots, n$. We denote by $\mathcal{S} = \mathcal{S}(X_1, \ldots, X_n)$ the collection of all Schur multipliers in $L^{\infty}(X_1 \times \cdots \times X_n)$. It follows that \mathcal{S} can be canonically embedded into $CB^{\sigma}(\mathcal{B}(H_{n-1}, H_n) \times \cdots \times \mathcal{B}(H_1, H_2), \mathcal{B}(H_1, H_n))$. Thus, \mathcal{S} inherits an operator space structure from the latter space. More precisely, if $\varphi = (\varphi_{p,q}) \in M_k(\mathcal{S})$ we have $\|\varphi\|_{m,k} \stackrel{def}{=} \|(\tilde{S}_{\varphi_{p,q}})\|_{cb}$, where $\tilde{S}_{\varphi} = (\tilde{S}_{\varphi_{p,q}})$ is identified with a normal completely bounded multilinear map from $\mathcal{B}(H_{n-1}, H_n) \times \cdots \times \mathcal{B}(H_1, H_2)$ into $M_k(\mathcal{B}(H_1, H_n))$. Note that a matrix $\varphi = (\varphi_{p,q}) \in M_k(\mathcal{S})$ can be viewed as a map $\varphi : X_1 \times \cdots \times X_n \to M_k$ by letting $\varphi(x_1, \ldots, x_n) = (\varphi_{p,q}(x_1, \ldots, x_n)) \in M_k$.

The following result is a matricial version of Theorem 3.4 of [15].

Theorem 3.2. Let $\varphi = (\varphi_{p,q}) \in M_k(\mathcal{S})$. The following are equivalent: (i) $\|\varphi\|_{m,k} < 1$; (ii) there exist essentially bounded functions $a_1 : X_1 \to M_{\infty,k}$, $a_n : X_n \to M_{k,\infty}$ and $a_i : X_i \to M_{\infty}$, $i = 2, \ldots, n-1$, such that, for almost all $(x_1, \ldots, x_n) \in X_1 \times \cdots \times X_n$, we have

$$\varphi(x_1, \dots, x_n) = a_n(x_n)a_{n-1}(x_{n-1})\dots a_1(x_1) \text{ and } \operatorname{essup}_{x_i \in X_i} \prod_{i=1}^n ||a_i(x_i)|| < 1$$

Proof. (i) \Rightarrow (ii) Let \mathcal{D}_i be the multiplication mass of $L^{\infty}(X_i)$. The proof of Theorem 3.4 of [15] implies that the mapping

$$\tilde{S}_{\varphi} \stackrel{def}{=} (\tilde{S}_{\varphi_{p,q}}) : \mathcal{B}(H_{n-1}, H_n) \times \dots \times \mathcal{B}(H_1, H_2) \to M_k(\mathcal{B}(H_1, H_n))$$

is normal, completely bounded, and $(\mathcal{D}_n, \ldots, \mathcal{D}_1)$ -modular in the sense that

$$S_{\varphi}(A_{n}T_{n-1}A_{n-1},\ldots,T_{1}A_{1}) = A_{n} \otimes 1_{k})\tilde{S}_{\varphi}(T_{n-1},A_{n-1}T_{n-2},\ldots,A_{2}T_{1})(A_{1} \otimes 1_{k}).$$

whenever $A_i \in \mathcal{D}_i$, i = 1, ..., n. A modification of Corollary 5.9 of [6] shows that there exist operators $V_1 : H_1^k \to H_1^\infty$, $V_i : H_i^\infty \to H_i^\infty$, i = 2, ..., n - 1 and $V_n : H_n^\infty \to H_n^k$ such that the entries of V_i belong to $\mathcal{D}_i, \prod_{i=1}^n ||V_i|| < 1$ and

$$\tilde{S}_{\varphi}(T_{n-1},\ldots,T_1)=V_n(T_{n-1}\otimes I)\ldots(T_1\otimes I)V_1,$$

for all $T_i \in \mathcal{B}(H_i, H_{i+1})$, i = 1, ..., n. If $V_i = (A_{s,t}^i)_{s,t}$, where $A_{s,t}^i$ is the multiplication operator corresponding to $a_{s,t}^i \in L^{\infty}(X_i)$ let $a_i :$ $X_i \to M_{\infty}$ be the function given by $a_i(x_i) = (a_{s,t}^i(x_i))_{s,t}, x_i \in X_i,$ i = 1, ..., n. Define $a_1 : X_1 \to M_{\infty,k}$ and $a_n : X_n \to M_{k,\infty}$ similarly. Then $\operatorname{esssup}_{x_i \in X_i} \prod_{i=1}^n ||a_i(x_i)|| = \prod_{i=1}^n ||V_i|| < 1$.

Let V_n^p (resp. V_1^q) be the *p*th row (resp. the *q*th column) of V_n (resp. V_1). Let $a_n^p : X_n \to M_{1,\infty}$ (resp. $a_1^q : X_1 \to M_{\infty,1}$) be the function corresponding to V_n^p (resp. V_1^q). We have that

$$\tilde{S}_{\varphi_{p,q}}(T_{n-1},\ldots,T_1)=V_n^p(T_{n-1}\otimes I)V_{n-1}\ldots V_2(T_1\otimes I)V_1^q,$$

for all $T_i \in \mathcal{B}(H_i, H_{i+1})$, i = 1, ..., n-1. It follows from Theorem 3.4 of [15] that

$$\varphi_{p,q}(x_1,\ldots,x_n) = a_n^p(x_n)a_{n-1}(x_{n-1})\ldots a_2(x_2)a_1^q(x_1), \quad \text{a.e. } x_i \in X_i.$$

Since this holds for all p, q = 1, ..., k, we have that

$$\varphi(x_1, \dots, x_n) = a_n(x_n)a_{n-1}(x_{n-1})\dots a_2(x_2)a_1(x_1)$$

for almost all $x_i \in X_i$, $i = 1, \ldots, n$.

(

 $(ii) \Rightarrow (i)$ In the notation of (i) we have that

$$\varphi_{p,q}(x_1,\ldots,x_n) = a_n^p(x_n)a_{n-1}(x_{n-1})\ldots a_2(x_2)a_1^q(x_1),$$

for almost all $x_i \in X_i$, i = 1, ..., n, which in turn implies that

 $\tilde{S}_{\varphi_{n,q}}(T_{n-1},\ldots,T_1) = V_n^p(T_{n-1}\otimes I)V_{n-1}\ldots V_2(T_1\otimes I)V_1^q,$

and hence that

 $\tilde{S}_{\omega}(T_{n-1},\ldots,T_1) = V_n(T_{n-1}\otimes I)V_{n-1}\ldots V_2(T_1\otimes I)V_1,$

for all $T_i \in \mathcal{B}(H_i, H_{i+1}), i = 1, ..., n-1$. It follows that $||S_{\varphi}|| < 1$ and so $||\varphi||_{m,k} < 1$.

Remark 3.3. Theorem 3.2 amounts to the statement that the identification of the set of all *n*-dimensional Schur multipliers on $X_1 \times \cdots \times X_n$ with the extended Haagerup tensor product $L^{\infty}(X_n) \otimes_{eh} \cdots \otimes_{eh} L^{\infty}(X_1)$ discussed in the remark after Theorem 3.4 of [15] is completely isometric.

4. The multidimensional Fourier-Stieltjes algebra

In this section we recall the notion of the Fourier transform of a completely bounded multilinear map on the direct product of finitely many group C*-algebras studied in [22], which will provide the basis for our study of multidimensional multipliers. We discuss a description of the multidimensional Fourier-Stieltjes algebra in terms of tensor products and explain its relation to the one dimensional case as well as to the notion of a bimeasure studied in [11].

Let $n \in \mathbb{N}$. An *n*-measure on *G* is a completely bounded multilinear map $\Phi : C^*(G)^n \to \mathbb{C}$. We note that the term "bimeasure" was used in [11] to designate a bounded bilinear form on $C_0(G) \times C_0(H)$, where *G* and *H* are locally compact groups. We will show below that in the case H = G is abelian, the notion of a bimeasure agrees with that of a 2-measure.

We let $M^n(G)$ denote the space of all *n*-measures on G; by the universal property of the Haagerup tensor product, we have that

$$M^{n}(G) \equiv \left(\underbrace{C^{*}(G) \otimes_{h} \cdots \otimes_{h} C^{*}(G)}_{n}\right)^{*}$$

We equip $M^n(G)$ with the standard operator space structure of a dual operator space arising from the above identification. Suppose that $\Phi \in M^n(G)$. It is standard (see p.156 of [22]) to extend Φ to a normal completely bounded map $\tilde{\Phi} : \underbrace{W^*(G) \otimes_{\sigma h} \cdots \otimes_{\sigma h} W^*(G)}_{T} \to \mathbb{C}$.

Let

 $B^n(G) = \{ f \in L^{\infty}(G^n) : \text{ there exists } \Phi \in M^n(G) \text{ such that} \}$

(3)
$$f(x_1,\ldots,x_n) = \tilde{\Phi}(\omega(x_1),\ldots,\omega(x_n)), \ x_1,\ldots,x_n \in G\}.$$

Since $\{\omega(x) : x \in G\}$ generates $W^*(G)$ as a von Neumann algebra, we have that the element $\Phi \in M^n(G)$ associated with $f \in B^n(G)$ in (3) is unique. We call f the Fourier transform of Φ and write $f = \hat{\Phi}$. Thus, $B^n(G)$ is in one-to-one correspondence with $M^n(G)$; we equip it with the operator space structure arising from this correspondence. Thus, if $(f_{p,q}) \in M_k(B^n(G))$ and $\Phi_{p,q} \in M^n(G)$ is such that $\hat{\Phi}_{p,q} = f_{p,q}$, we have that $\|(f_{p,q})\|_{M_k(B^n(G))} = \|(\Phi_{p,q})\|_{M_k(M^n(G))}$. Since the map $x \to \omega(x)$ is weak^{*} continuous, the space $B^n(G)$ consists of continuous functions. By Corollary 5.4 of [22], $B^n(G)$ is closed under the pointwise product. By [2],

(4)
$$B^{n}(G) \equiv \underbrace{B(G) \otimes_{eh} \cdots \otimes_{eh} B(G)}_{n}$$

up to a complete isometry. We note that if $f \in B^n(G)$ and $a_i \in L^1(G)$, i = 1, ..., n, then

$$\langle a_1 \otimes \cdots \otimes a_n, f \rangle = \int_{G^n} f(x_1, \dots, x_n) a_1(x_1) \dots a_n(x_n) dm(x_1) \dots dm(x_n).$$

Indeed, (5) is obviously true if f is an elementary tensor, and by linearity, if f is in the algebraic tensor product of n copies of B(G). If $f \in B^n(G)$ then there exists a bounded net $\{f_\nu\}_{\nu}$ in the algebraic tensor product of n copies of B(G) which tends to f in the topology determined by the duality between $B^n(G)$ and $W^*(G) \odot \cdots \odot W^*(G)$

[9]. But then

$$f_{\nu}(x_1, \dots, x_n) = \langle f_{\nu}, \omega(x_1) \otimes \dots \otimes \omega(x_n) \rangle$$

$$\rightarrow \langle f, \omega(x_1) \otimes \dots \otimes \omega(x_n) \rangle = f(x_1, \dots, x_n)$$

for all $x_1, \ldots, x_n \in G$ and (5) follows from the Lebesgue Dominated Convergence Theorem.

The following fact proved in [22] will be of importance to us.

Theorem 4.1. [22] A function f belongs to $B^n(G)$ if and only if there exist a Hilbert space H, vectors $\xi, \eta \in H$ and continuous unitary representations π_i of G on H, i = 1, ..., n, such that

$$f(x_n, \ldots, x_1) = (\pi_n(x_n) \ldots \pi_1(x_1)\xi, \eta), \quad x_1, \ldots, x_n \in G.$$

Moreover, the norm of f equals the infimum of the products $\|\xi\| \|\eta\|$ over all representations of f of the above form.

Theorem 4.1 has the following consequence.

n

Proposition 4.2. The multiplication in $B^n(G)$ is completely contractive.

Proof. Let $(f_{p,q}), (g_{p,q}) \in M_k(B^n(G))$ and $\Phi_{p,q}$ (resp. $\Psi_{p,q})$ be the *n*measure such that $\hat{\Phi}_{p,q} = f_{p,q}$ (resp. $\hat{\Psi}_{p,q} = g_{p,q}$). Let $\Phi = (\Phi_{p,q})$ and $\Psi = (\Psi_{p,q})$; then Φ and Ψ can be viewed as completely bounded mappings from $C^*(G)^n$ into M_k . Moreover, $\|(f_{p,q})\|_{M_k(B^n(G))} = \|\Phi\|_{cb}$ and $\|(g_{p,q})\|_{M_k(B^n(G))} = \|\Psi\|_{cb}$.

Let $h_{p,q} = \sum_{r=1}^{k} f_{p,r} g_{r,q}$ and $\Omega_{p,q} : C^*(G)^n \to M_k$ be the map given by

$$\Omega_{p,q}(a_1, \dots, a_n) = \sum_{r=1}^k \Phi_{p,r}(a_1, \dots, a_n) \Psi_{r,q}(a_1, \dots, a_n)$$

(the product on the right hand side being that of M_k). Then $\tilde{\Omega}_{p,q}$ is given in the same way as $\Omega_{p,q}$, with $\Phi_{p,r}$ and $\Psi_{r,q}$ replaced by $\tilde{\Phi}_{p,r}$ and $\tilde{\Psi}_{r,q}$, respectively. Moreover, $\hat{\Omega}_{p,q} = h_{p,q}$. It is clear that if $\Omega = (\Omega_{p,q})$ then $\|\Omega\|_{cb} \leq \|\Phi\|_{cb} \|\Psi\|_{cb}$. The claim follows. \diamond

We note that Theorem 4.1 implies that $B^1(G)$ coincides with the Fourier-Stieltjes algebra B(G) of the group G introduced by Eymard [10].

Suppose that G is abelian and n = 2. In this case $M^2(G)$ coincides with the set of all bimeasures on the character group \hat{G} of G studied in [12], while $B^2(G)$ coincides with the set of their Fourier transforms. Indeed, let $\Phi \in M^2(G)$. Since G is abelian, $C^*(G)$ is canonically *isomorphic to $C_0(\hat{G})$. Thus, Φ can be considered as a bounded bilinear form on $C_0(\hat{G}) \times C_0(\hat{G})$ (in other words, a *bimeasure* on \hat{G} in the sense of [12]). On the other hand, for any locally compact Hausdorff space X there exists a canonical injection $\iota : \mathcal{L}^{\infty}(X) \to C_0(X)^{**}$ (where $\mathcal{L}^{\infty}(X)$ is the algebra of all bounded Borel functions on X) given by $\iota(f)(\mu) = \int_X f d\mu, \ \mu \in C_0(X)^*$. Let $\Phi_1 : \mathcal{L}^{\infty}(\hat{G}) \times \mathcal{L}^{\infty}(\hat{G}) \to \mathbb{C}$ be the extension of Φ described in Corollary 1.3 of [12]. If $x \in G$ let \check{x} be the character of \hat{G} corresponding to x^{-1} . It is straightforward to check that

(6)
$$\iota(\check{x}) = \omega(x).$$

We next observe that

(7)
$$\tilde{\Phi}(\iota(f),\iota(g)) = \Phi_1(f,g), \quad f,g \in \mathcal{L}^{\infty}(\hat{G}).$$

To this end, let μ_1 and μ_2 be probability measures associated with Φ through Grothendieck's inequality and let $\{f_\alpha\} \subseteq C_0(\hat{G})$ and $\{g_\alpha\} \subseteq$ $C_0(\hat{G})$ be bounded nets such that $f_\alpha \to \iota(f)$ and $g_\alpha \to \iota(g)$ in the weak^{*} topology of $W^*(G)$. Then $f_{\alpha} \to f$ in $L^2(\hat{G}, \mu_1)$ and $g_{\alpha} \to g$ in $L^2(\hat{G}, \mu_2)$. By the definition of $\Phi_1(f, g)$ (see [12]), we have that it is the limit of the net $\{\Phi(f_{\alpha}, g_{\alpha})\}_{\alpha}$. Identity (7) now follows by approximation.

Now note that (6) and (7) imply

$$\Phi_1(\check{x},\check{y}) = \tilde{\Phi}(\omega(x),\omega(y)), \quad x,y \in G.$$

It follows from Definition 1.10 of [12] that $B^2(G)$ coincides with the set of all Fourier transforms of bimeasures on \hat{G} .

5. Multipliers of $A^n(G)$: Non-Abelian groups

In this section, we introduce the multidimensional Fourier algebra $A^n(G)$ of a locally compact group G. For each partition \mathcal{P} of the set $\{n, \ldots, 1\}$ into k subsets, we define a completely isometric embedding of $A^k(G)$ into $A^n(G)$. Using these embeddings, we define the (completely bounded) multipliers of G relative to \mathcal{P} . We characterise the completely bounded multipliers corresponding to the partition with k = 1 in a number of ways, generalising results from [7] and [21].

Let

 $A^n(G) = \{ f \in L^\infty(G^n) : \text{ there exists a normal c.b. multilinear map} \}$

$$\Phi: \mathrm{VN}(G)^n \to \mathbb{C}$$
 such that $f(x_n, \ldots, x_1) = \Phi(\lambda_{x_n}, \ldots, \lambda_{x_1})$.

Since $\{\lambda_x : x \in G\}$ generates VN(G) as a von Neumann algebra, the element Φ associated with $f \in A^n(G)$ in the above definition is unique. As before, we call f the Fourier transform of Φ and write $f = \hat{\Phi}$. Set $VN(G)^{\otimes_{\sigma h}^n} = \underbrace{VN(G) \otimes_{\sigma h} \cdots \otimes_{\sigma h} VN(G)}_{n}$. By [9], $A^n(G)$ can be

identified with the predual of the operator space $VN(G)^{\otimes_{\sigma h}^{n}}$ (see [9]). Hence, $A^{n}(G)$ possesses a canonical operator space structure; up to a complete isometry,

$$A^{n}(G) \equiv \underbrace{A(G) \otimes_{eh} \cdots \otimes_{eh} A(G)}_{n}.$$

In particular, $||f||_{A^n(G)}$ is by definition equal to the completely bounded norm of its associated map Φ . Moreover, the elements $f \in A^n(G)$ have the form

$$f(x_n,\ldots,x_1) = \langle \lambda_{x_n} \otimes \cdots \otimes \lambda_{x_1}, f \rangle, \ x_n,\ldots,x_1 \in G.$$

It follows from Corollary 5.7 of [6] that a function $f \in L^{\infty}(G^n)$ belongs to $A^n(G)$ if and only if there exists an index set J, operators $V_i \in$ $\mathcal{B}(L^2(G)^J), i = 1, \dots, n-1 \text{ and vectors } \xi, \eta \in L^2(G)^J \text{ such that for all } x_n, \dots, x_1 \in G \text{ we have}$ (8)

$$f(x_n,\ldots,x_1) = \left((\lambda_{x_n} \otimes 1_J) V_{n-1}(\lambda_{x_{n-1}} \otimes 1_J) V_{n-2} \ldots (\lambda_{x_1} \otimes 1_J) \xi, \eta \right).$$

Moreover, $||f||_{A^n(G)}$ is equal to the infimum of $||V_1|| \dots ||V_{n-1}|| ||\xi|| ||\eta||$ over all representations of the form (8) and this infimum is attained.

A fundamental fact proved by Eymard [10] is that A(G) is an ideal of B(G). We now prove the multidimensional version of this result. In the case G is discrete, this was stated in [7] (p. 214).

Theorem 5.1. $A^n(G)$ is a closed ideal of $B^n(G)$.

Proof. We only consider the case n = 2; the general case can be treated similarly. Let $f \in A^2(G)$. Then $f(x, y) = ((\lambda_x \otimes 1_J)V(\lambda_y \otimes 1_J)\xi, \eta)$ for some index set J, vectors $\xi, \eta \in L^2(G)^J$ and a bounded operator $V \in \mathcal{B}(L^2(G)^J)$. Letting π be the ampliation of multiplicity J of the left regular representation of $C^*(G)$ on $L^2(G)^J$ and $\Phi \in (C^*(G) \otimes_h C^*(G))^*$ be given by $\Phi(a, b) = (\pi(a)V\pi(b)\xi, \eta)$ we see that $f = \hat{\Phi}$ and hence $f \in B^2(G)$. Thus, $A^2(G) \subseteq B^2(G)$; from the injectivity of the extended Haagerup tensor product it is clear that $A^2(G)$ is closed.

Now let $f \in A^2(G)$ be given as in the first paragraph and $g \in B^2(G)$. By Theorem 4.1, $g(x, y) = (\pi(x)\rho(y)\xi', \eta')$ for some representations $\pi, \rho: G \to H$ and vectors $\xi', \eta' \in H$. Thus,

$$(fg)(x,y) = (((\lambda_x \otimes 1_J \otimes \pi(x)))(V \otimes 1_H)(\lambda_y \otimes 1_J \otimes \rho(y))(\xi \otimes \xi'), \eta \otimes \eta').$$

By [4, Lemma 2.1], there exist unitary operators U and W and index sets J' and J'' such that $U(\lambda_x \otimes 1_J \otimes \pi(x))U^* = \lambda_x \otimes 1_{J'}$ and $W(\lambda_y \otimes 1_J \otimes \rho(y))W^* = \lambda_y \otimes 1_{J''}$. It follows that

$$(fg)(x,y) = (((\lambda_x \otimes 1_{J'})T(\lambda_y \otimes 1_{J''})\xi_0,\eta_0),$$

where $T = U(V \otimes I_H)W^*$, $\xi_0 = W(\xi \otimes \xi')$ and $\eta_0 = U(\eta \otimes \eta')$. This clearly implies that $fg \in A^2(G)$.

Suppose that $1 \leq k \leq n$. By a block (k, n)-partition we mean a partition of the ordered set $\{n, n-1, \ldots, 1\}$ into k subsets of the form $\{\{n, \ldots, n_{k-1}\}, \ldots, \{n_1 - 1, \ldots, 1\}\}$ where $n \geq n_{k-1} > \cdots > n_1 >$ 1. Suppose that \mathcal{P} is the block (k, n)-partition associated with the sequence $n \geq n_{k-1} > \cdots > n_1 > 1$ as above. We define a mapping $\theta_{\mathcal{P}}$: $A^k(G) \to A^n(G)$ by letting $(\theta_{\mathcal{P}} f)(x_n, \ldots, x_1) = f(y_k, \ldots, y_1)$ where $y_i = x_{n_i-1} \ldots x_{n_{i-1}}, i = 1, \ldots, k$, and we have set $n_0 = 1, n_k = n + 1$. It follows from (8) that $\theta_{\mathcal{P}}$ maps $A^k(G)$ into $A^n(G)$. We let $\theta = \theta_{\mathcal{P}_0}$ where \mathcal{P}_0 is the (1, n)-partition; thus, θ maps A(G) into $A^n(G)$.

If \mathcal{A} and \mathcal{B} are algebras and \mathcal{P} is the (k, n)-partition associated with the sequence $n \geq n_{k-1} > \cdots > n_1 > 1$, we say that a map $\Phi : \mathcal{A}^n \to \mathcal{B}$ is \mathcal{P} -modular if

 $\Phi(a_n,\ldots,a_ia,a_{i-1},\ldots,a_1) = \Phi(a_n,\ldots,a_i,a_{i-1},\ldots,a_1)$

whenever $a, a_1, \ldots, a_n \in \mathcal{A}$ and $i \notin \{1, n_1, \ldots, n_{k-1}\}$.

Proposition 5.2. For each block (k, n)-partition \mathcal{P} , the map $\theta_{\mathcal{P}}$: $A^k(G) \to A^n(G)$ is a completely isometric homomorphism. Moreover,

$$\operatorname{ran} \theta_{\mathcal{P}} = \{ \hat{\Psi} : \Psi : \operatorname{VN}(G)^n \to \mathbb{C} \text{ is } \mathcal{P}\text{-modular} \}.$$

Proof. Suppose that \mathcal{P} is associated with the sequence $n \geq n_{k-1} > \cdots > n_1 > 1$. It is obvious that $\theta_{\mathcal{P}}$ is linear and multiplicative. Suppose that $(f_{p,q}) \in M_r(A^k(G))$ and let $\Phi_{p,q} : \operatorname{VN}(G)^k \to \mathbb{C}$ be such that $\hat{\Phi}_{p,q} = f_{p,q}$. Set $\Phi = (\Phi_{p,q})$; then Φ can be viewed as a completely bounded multilinear mapping from $\operatorname{VN}(G)^k$ into M_r . There exist an index set J and operators $V_1, \ldots, V_{k-1} \in \mathcal{B}(L^2(G)^J), V_0 : \mathbb{C}^r \to L^2(G)^J$ and $V_k : L^2(G)^J \to \mathbb{C}^r$ such that

$$\Phi(\lambda_{y_k},\ldots,\lambda_{y_1})=V_k(\lambda_{y_k}\otimes 1_J)V_{k-1}(\lambda_{y_{k-1}}\otimes 1_J)V_{k-2}\ldots V_1(\lambda_{y_1}\otimes 1_J)V_0$$

and $\|\Phi\|_{cb} = \prod_{i=0}^k \|V_i\|$. Let $\Psi_{p,q} : \text{VN}(G)^n \to \mathbb{C}$ be such that $\hat{\Psi}_{p,q} = \theta_{\mathcal{P}}(f_{p,q}), 1 \leq p, q \leq r \text{ and } \Psi = (\Psi_{p,q})$. Then

(9) $\Psi(\lambda_{x_n},\ldots,\lambda_{x_1}) = V_k(\lambda_{x_n\ldots x_{n_{k-1}}}\otimes 1_J)V_{k-1}\ldots(\lambda_{x_{n_1-1}\ldots x_1}\otimes 1_J)V_0.$

It follows that

$$\|(\theta_{\mathcal{P}}(f_{p,q}))\|_{M_{r}(A^{n}(G))} \leq \Pi_{i=0}^{k} \|V_{i}\| = \|(f_{p,q})\|_{M_{r}(A^{k}(G))},$$

Thus, $\theta_{\mathcal{P}}$ is completely contractive.

Suppose that for some $f \in A^k(G)$ we have $\theta_{\mathcal{P}}(f) = 0$. This implies that $f(x_n \dots x_{n_{k-1}}, \dots, x_{n_{1}-1} \dots x_1) = 0$ for all $x_i \in G$, $i = 1, \dots, n$. Setting $x_i = e$ whenever $i \notin \{1, n_1, \dots, n_{k-1}\}$, we see that f = 0. Thus, $\theta_{\mathcal{P}}$ is injective.

Fix $f = (f_{p,q}) \in M_r(A^k(G))$. It is clear from (9) that the element $\Psi = (\Psi_{p,q})$ for which $\hat{\Psi}_{p,q} = \theta_{\mathcal{P}}(f_{p,q})$ is \mathcal{P} -modular over VN(G). By Theorem 2.1,

 $\|\theta_{\mathcal{P}}^{(r)}(f)\|_{M_r(A^n(G))} = \inf \Pi_{i=0}^k \|V_i\|,$

where the infimum is taken over all operators V_i for which $\Psi(\lambda_{x_n}, \ldots, \lambda_{x_1})$ equals the right of (9), for all $x_1, \ldots, x_n \in G$. Since θ is injective, if (9) is a representation for Ψ then

$$f(y_k,\ldots,y_1)=V_k(\lambda_{y_k}\otimes 1_J)V_{k-1}(\lambda_{y_{k-1}}\otimes 1_J)V_{k-2}\ldots(\lambda_{x_1}\otimes 1_J)V_0,$$

for all $y_1, \ldots, y_k \in G$. It follows that $||f||_{M_r(A^k(G))} \leq \prod_{i=0}^k ||V_i||$ and so $||f||_{M_r(A^k(G))} \leq ||\theta_{\mathcal{P}}^{(r)}(f)||_{M_r(A^n(G))}$. Thus, $\theta_{\mathcal{P}}$ is a complete isometry.

Let Ψ : $VN(G)^n \to \mathbb{C}$ be \mathcal{P} -modular. It remains to show that $\hat{\Psi} \in \operatorname{ran} \theta_{\mathcal{P}}$. By Theorem 2.1, there exist an index set and operators V_1, \ldots, V_{k-1} and vectors ξ, η such that

$$\Psi(a_n,\ldots,a_1)=\left((a_n\ldots a_{n_k}\otimes 1_J)V_{k-1}\ldots V_1(a_{n_1-1}\ldots a_1\otimes 1_J)\xi,\eta\right),$$

 $a_1, \ldots, a_n \in VN(G)$. Letting $f \in A^k(G)$ be the function

$$f(y_k,\ldots,y_1)=((\lambda_{y_k}\otimes 1_J)V_{k-1}\ldots V_1(\lambda_{y_1}\otimes 1_J)\xi,\eta)$$

we see that $\theta_{\mathcal{P}}(f) = \hat{\Psi}$.

Definition 5.3. Let \mathcal{P} be a block (k, n)-partition. We call a function $\varphi \in L^{\infty}(G^n)$ a \mathcal{P} -multiplier of A(G) if

$$f \in A^k(G) \Rightarrow \varphi \theta_{\mathcal{P}}(f) \in A^n(G).$$

We denote by $M_{\mathcal{P}}A(G)$ the collection of all \mathcal{P} -multipliers of A(G).

If $\varphi \in M_{\mathcal{P}}A(G)$ and the map $f \to \varphi \theta_{\mathcal{P}}(f)$ from $A^k(G)$ into $A^n(G)$ is completely bounded we call φ a completely bounded (or c.b.) \mathcal{P} multiplier of A(G). We denote by $M_{\mathcal{P}}^{cb}A(G)$ the collection of all c.b. \mathcal{P} -multipliers of A(G).

If \mathcal{P} is the block (1, n)-partition we set $M_nA(G) = M_{\mathcal{P}}A(G)$ and $M_n^{cb}A(G) = M_{\mathcal{P}}^{cb}A(G)$.

Remarks (i) If k = n = 1 the above definition reduces to that of multipliers and completely bounded multipliers of A(G).

(ii) An application of the Closed Graph Theorem shows that if $\varphi \in M_{\mathcal{P}}A(G)$ then the map $f \to \varphi \theta_{\mathcal{P}}(f)$ from $A^k(G)$ into $A^n(G)$ is bounded.

Proposition 5.4. Let \mathcal{P} be the block (k, n)-partition associated with the sequence $n \geq n_{k-1} > \cdots > n_1 > 1$. The following are equivalent:

- (i) $\varphi \in M^{cb}_{\mathcal{P}}A(G);$
- (ii) The map

$$(\lambda_{x_n},\ldots,\lambda_{x_1})\to\varphi(x_n,\ldots,x_1)\lambda_{x_n\ldots x_{n_k}}\otimes\lambda_{x_{n_k}-1\ldots x_{n_{k-1}}}\otimes\cdots\otimes\lambda_{x_{n_1}-1\ldots x_1}$$

extends to a c.b. normal map $\Phi_{\varphi} : \mathrm{VN}(G)^n \to \mathrm{VN}(G)^{\otimes_{\sigma h}^k}$.

Proof. Suppose that the map $T_{\varphi} : A^k(G) \to A^n(G)$ given by $f \to \varphi \theta(f)$ is completely bounded. Then its adjoint

$$T_{\varphi}^* : \mathrm{VN}(G)^{\otimes_{\sigma h}^n} \to \mathrm{VN}(G)^{\otimes_{\sigma h}^k}$$

is completely bounded. For $x_1, \ldots, x_n \in G$ set $y_k = x_n \ldots x_{n_k}, \ldots, y_1 = x_{n_1-1} \ldots x_1$. If $f \in A(G)$ we have

$$\langle T_{\varphi}^{*}(\lambda_{x_{n}} \otimes \cdots \otimes \lambda_{x_{1}}), f \rangle = \langle \lambda_{x_{n}} \otimes \cdots \otimes \lambda_{x_{1}}, T_{\varphi}f \rangle$$

$$= \langle \lambda_{x_{n}} \otimes \cdots \otimes \lambda_{x_{1}}, \varphi\theta(f) \rangle = (\varphi\theta(f))(x_{n}, \dots, x_{1})$$

$$= \varphi(x_{n}, \dots, x_{1})f(y_{k}, \dots, y_{1}) = \langle \varphi(x_{n}, \dots, x_{1})\lambda_{y_{k}} \otimes \cdots \otimes \lambda_{y_{1}}, f \rangle.$$

Thus, the map Φ_{φ} in (ii) can be taken to be T_{φ}^* . Conversely, if (ii) holds then the map Φ_{φ} in (ii) has a completely bounded predual T_{φ} and the chain of equalities above implies (i). \diamond

The mapping $\varphi \to \Phi_{\varphi}$ from Proposition 5.4 is an embedding of $M_{\mathcal{P}}^{cb}A(G)$ into the space of all normal completely bounded maps from $\mathrm{VN}(G)^{\otimes_{\sigma_h}^n}$ into $\mathrm{VN}(G)^{\otimes_{\sigma_h}^k}$ and hence gives rise to an operator space structure on $M_{\mathcal{P}}^{cb}A(G)$. Namely, given a matrix

$$\varphi = (\varphi_{p,q}) \in M_m(M_\mathcal{P}^{cb}A(G))$$

we let $\|\varphi\|_{M_m(M^{cb}_{\mathcal{P}}A(G))} = \|\Phi_{\varphi}\|_{cb}$, where $\Phi_{\varphi} \stackrel{def}{=} (\Phi_{\varphi_{p,q}})$ is the corresponding mapping from $\mathrm{VN}(G)^{\otimes_{\sigma_h}^n}$ into $M_m(\mathrm{VN}(G)^{\otimes_{\sigma_h}^k})$.

In the next theorem, we relate the completely bounded \mathcal{P} -multipliers to multidimensional Schur multipliers in the case where \mathcal{P} is the (1, n)partition. It generalises Theorem 4.1 of [7], which concerns discrete groups, to arbitrary locally compact groups.

Theorem 5.5. Let $\varphi \in L^{\infty}(G^n)$ and S be the space of all n + 1dimensional Schur multipliers with respect to the left Haar measure on G. The following are equivalent:

- (i) $\varphi \in M_n^{cb}A(G);$
- (ii) The function $\tilde{\varphi} \in L^{\infty}(G^{n+1})$ given by

$$\tilde{\varphi}(x_1,\ldots,x_{n+1}) = \varphi(x_{n+1}^{-1}x_n,\ldots,x_2^{-1}x_1)$$

belongs to \mathcal{S} .

Moreover, if $k \in \mathbb{N}$ and $\varphi_{p,q} \in M_n^{cb}A(G)$, $1 \leq p,q \leq k$, then

$$\|(\varphi_{p,q})\|_{M_k(M_n^{cb}A(G))} = \|(\tilde{\varphi}_{p,q})\|_{M_k(\mathcal{S})}$$

Proof. (i) \Rightarrow (ii) Let $\varphi = (\varphi_{p,q}) \in M_k(M_n^{cb}A(G))$ with $\|\varphi\|_{M_k(M_n^{cb}A(G))}$ < 1, $\Phi_{\varphi_{p,q}}$ be the c.b. normal map from Proposition 5.4, and $\Phi_{\varphi} = (\Phi_{\varphi_{p,q}})$. By [6], there exist operators $V_i \in \mathcal{B}(L^2(G)^{\infty}), i = 2, ..., n,$ $V_1 \in \mathcal{B}(L^2(G)^k, L^2(G)^{\infty})$ and $V_{n+1} \in \mathcal{B}(L^2(G)^{\infty}, L^2(G)^k)$ such that $\Pi_{i=1}^{n+1} \|V_i\| < 1$ and

$$(\varphi_{p,q}(x_{n+1}^{-1}x_n,\ldots,x_2^{-1}x_1)\lambda_{x_{n+1}^{-1}}\lambda_{x_1})_{p,q} =$$

(10)
$$V_{n+1}(\lambda_{x_{n+1}}^{-1}\lambda_{x_n}\otimes 1)V_n(\lambda_{x_n}^{-1}\lambda_{x_{n-1}}\otimes 1)V_{n-1}\dots(\lambda_{x_2}^{-1}\lambda_{x_1}\otimes 1)V_1,$$

where the ampliations are of infinite countable multiplicity. Let $a_1 : G \to \mathcal{B}(L^2(G)^k, L^2(G)^\infty)$ and $a_{n+1} : G \to \mathcal{B}(L^2(G)^\infty, L^2(G)^k)$ be given as follows:

$$a_1(x_1) = (\lambda_{x_1} \otimes 1) V_1(\lambda_{x_1^{-1}} \otimes 1_k), \ a_{n+1}(x_{n+1}) = (\lambda_{x_{n+1}} \otimes 1_k) V_{n+1}(\lambda_{x_{n+1}^{-1}} \otimes 1)$$

Let also $a_i: G \to \mathcal{B}(L^2(G)^\infty), i = 2, ..., n$, be given by

$$a_i(x_i) = (\lambda_{x_i} \otimes 1) V_i(\lambda_{x_i^{-1}} \otimes 1), \quad x_i \in G.$$

It follows from (10) that, for all x_1, \ldots, x_{n+1} , we have

$$\begin{aligned} \varphi(x_{n+1}^{-1}x_n, \dots, x_2^{-1}x_1) \otimes 1_{L^2(G)} \\ &= (\varphi_{p,q}(x_{n+1}^{-1}x_n, \dots, x_2^{-1}x_1)1_{L^2(G)})_{p,q} \\ &= (\lambda_{x_{n+1}} \otimes 1_k)(\varphi_{p,q}(x_{n+1}^{-1}x_n, \dots, x_2^{-1}x_1)\lambda_{x_{n+1}^{-1}}\lambda_{x_1})_{p,q}(\lambda_{x_1^{-1}} \otimes 1_k) \\ &= a_{n+1}(x_{n+1})a_n(x_n)\dots a_1(x_1). \end{aligned}$$

Let ξ be a unit vector in $L^2(G)$ and E be the projection onto the one dimensional subspace of $L^2(G)$ generated by ξ . The last identity implies that $\varphi(x_{n+1}^{-1}x_n, \ldots, x_2^{-1}x_1) = (Ea_{n+1}(x_{n+1}))a_n(x_n) \ldots a_2(x_2)(a_1(x_1)E)$, for all $x_i \in G$, $i = 1, \ldots, n+1$. It follows from Theorem 3.2 that $\tilde{\varphi}_{p,q} \in \mathcal{S}$ and

$$\|(\tilde{\varphi}_{p,q})\|_{\mathbf{m},k} \le \prod_{i=1}^{n+1} \|V_i\| < 1.$$

(ii) \Rightarrow (i) Let $\varphi \in L^{\infty}(G^n)$ and suppose that $\tilde{\varphi}$ is a Schur multiplier with respect to the left Haar measure. By Theorem 3.4 of [15], the function $\psi \in L^{\infty}(G^{n+1})$ given by $\psi(y_1, \ldots, y_{n+1}) = \tilde{\varphi}(y_1^{-1}, \ldots, y_{n+1}^{-1})$, $y_1, \ldots, y_{n+1} \in G$, is also a Schur multiplier with respect to the left Haar measure. Set $y_i = x_i^{-1} x_{i+1}^{-1} \ldots x_n^{-1} s$, $i = 1, \ldots, n$, and $y_{n+1} = s$. We have that

$$\psi(y_1,\ldots,y_{n+1}) = \varphi(y_{n+1}y_n^{-1},y_ny_{n-1}^{-1},\ldots,y_2y_1^{-1}) = \varphi(x_n,x_{n-1},\ldots,x_1).$$

By Theorem 3.4 of [15], there exist functions $a_i : G \to M_{\infty}$, $i = 2, \ldots, n, a_1 : G \to M_{\infty,1}$ and $a_{n+1} : G \to M_{1,\infty}$ such that

$$\psi(y_1,\ldots,y_{n+1}) = a_{n+1}(y_{n+1})a_n(y_n)\ldots a_1(y_1), \quad y_1,\ldots,y_{n+1} \in G.$$

For each i = 2, ..., n, let $A_i \in \mathcal{B}(L^2(G) \otimes \ell^2)$ be the operator corresponding in a canonical way to a_i . Namely, A_i is given by $(A_i \tilde{\xi})(s) = a_i(s)\tilde{\xi}(s), s \in G$, where we have identified $L^2(G) \otimes \ell^2$ with the space $L^2(G; \ell_2)$ of all square integrable ℓ^2 -valued functions on G. Similarly, let $A_1 \in \mathcal{B}(L^2(G), L^2(G) \otimes \ell^2)$ and $A_{n+1} \in \mathcal{B}(L^2(G) \otimes \ell^2, L^2(G))$ be the operators corresponding to a_1 and a_{n+1} , respectively. Let $f \in A(G)$. Then there exist $\xi, \eta \in L^2(G)$ such that

$$\theta(f)(x_n,\ldots,x_1) = (\lambda_{x_n\ldots x_1}\xi,\eta) = \int_G \xi(x_1^{-1}\ldots x_n^{-1}s)\overline{\eta(s)}dm(s).$$

We have

$$\begin{aligned} & (\varphi\theta(f))(x_n, \dots, x_1) \\ &= & \varphi(x_n, \dots, x_1)f(x_n \dots x_1) \\ &= & \int_G \varphi(x_n, \dots, x_1)\xi(x_1^{-1} \dots x_n^{-1}s)\overline{\eta(s)}dm(s) \\ &= & \int_G \psi(x_1^{-1} \dots x_n^{-1}s, \dots, x_n^{-1}s, s)\xi(x_1^{-1} \dots x_n^{-1}s)\overline{\eta(s)}dm(s) \\ &= & \int_G a_{n+1}(s)a_n(x_n^{-1}s) \dots a_1(x_1^{-1} \dots x_n^{-1}s)\xi(x_1^{-1} \dots x_n^{-1}s)\overline{\eta(s)}dm(s) \ . \end{aligned}$$

On the other hand,

$$(A_{n+1}(\lambda_{x_n} \otimes 1)A_n \dots A_2(\lambda_{x_1} \otimes 1)A_1\xi, \eta)$$

$$= ((\lambda_{x_n} \otimes 1)A_n \dots A_2(\lambda_{x_1} \otimes 1)A_1\xi, A_{n+1}^*\eta)$$

$$= \int_G \left(((\lambda_{x_n} \otimes 1)A_n \dots A_2(\lambda_{x_1} \otimes 1)A_1\xi)(s), (A_{n+1}^*\eta)(s) \right)_{\ell_2} dm(s)$$

$$= \int_G a_{n+1}(s)((\lambda_{x_n} \otimes 1)A_n \dots A_2(\lambda_{x_1} \otimes 1)A_1\xi)(s)\overline{\eta(s)}dm(s)$$

$$= \int_G a_{n+1}(s)(A_n \dots A_2(\lambda_{x_1} \otimes 1)A_1\xi)(x_n^{-1}s)\overline{\eta(s)}dm(s)$$

$$= \int_G a_{n+1}(s)a_n(x_n^{-1}s)(\lambda_{x_{n-1}} \otimes 1) \dots A_2(\lambda_{x_1} \otimes 1)A_1\xi)(x_n^{-1}s)\overline{\eta(s)}dm(s)$$

$$= \dots$$

$$= \int_G a_{n+1}(s)a_n(x_n^{-1}s)\dots a_1(x_1^{-1} \dots x_n^{-1}s)\xi(x_1^{-1} \dots x_n^{-1}s)\overline{\eta(s)}dm(s) .$$

It follows that

(11)
$$(\varphi\theta(f))(x_n,\ldots,x_1) = (A_{n+1}(\lambda_{x_n}\otimes 1)A_n\ldots A_2(\lambda_{x_1}\otimes 1)A_1\xi,\eta)$$

and hence $\varphi \theta(f) \in A^n(G)$. Thus, $\varphi \in M_n A(G)$ and, by Remark (ii) after Definition 5.3, the map $f \to \varphi \theta(f)$ is bounded. Equation (11) implies that if Φ_{φ} is its adjoint then (12)

$$\Phi_{\varphi}(\lambda_{x_n} \otimes \cdots \otimes \lambda_{x_1}) = A_{n+1}(\lambda_{x_n} \otimes 1) \dots (\lambda_{x_1} \otimes 1)A_1, \quad x_1, \dots, x_n \in G.$$

Thus, Φ_{φ} is completely bounded, and hence $\varphi \in M_n^{cb}A(G)$. Now suppose that $\varphi = (\varphi_{p,q}) \in M_k(L^{\infty}(G^n))$ and that $\|(\tilde{\varphi}_{p,q})\|_{m,k} < 1$ 1. Let $\psi_{p,q}$ be the map corresponding to $\varphi_{p,q}$ as specified in the case

k = 1 above and $\psi = (\psi_{p,q})$. Theorem 3.2 implies that $\|\psi\|_{m,k} = \|\tilde{\varphi}\|_{m,k} < 1$. Thus, in the notation of Theorem 3.2, $\|\tilde{S}_{\psi}\|_{k} < 1$, where $\tilde{S}_{\psi} = (\tilde{S}_{\psi_{p,q}})_{p,q}$ is the canonical normal completely bounded multilinear map from $\mathcal{B}(L^{2}(G)) \times \cdots \times \mathcal{B}(L^{2}(G))$ into $M_{k}(\mathcal{B}(L^{2}(G)))$. By Theorem 3.2, we can write $\psi(y_{1}, \ldots, y_{n+1}) = a_{n+1}(y_{n+1}) \ldots a_{1}(y_{1})$, where $a_{i}: G \to M_{\infty}, i = 2, \ldots, n, a_{1}: G \to M_{\infty,k}$ and $a_{n+1}: G \to M_{k,\infty}$ are functions such that $\operatorname{esssup}_{y_{1},\ldots,y_{n+1}\in G} \prod_{i=1}^{n+1} \|a_{i}(y_{i})\| < 1$. As before, let $A_{i} \in \mathcal{B}(L^{2}(G)^{\infty}), i = 2, \ldots, n, A_{1} \in \mathcal{B}(L^{2}(G)^{k}, L^{2}(G)^{\infty})$ and $A_{n+1} \in \mathcal{B}(L^{2}(G)^{\infty}, L^{2}(G)^{k})$ be the operators corresponding to the a_{i} 's in the canonical way. Let A_{n+1}^{p} (resp. A_{1}^{q}) be the pth row (resp. the qth column) of A_{n+1} (resp. A_{1}). By (12), $\Phi_{\varphi_{p,q}}(\lambda_{x_{n}} \otimes \cdots \otimes \lambda_{x_{1}}) = A_{n+1}^{p}(\lambda_{x_{n}} \otimes 1)A_{n} \ldots A_{2}(\lambda_{x_{1}} \otimes 1)A_{1}^{q}$, for all $x_{1}, \ldots, x_{n} \in G$. It follows that if $\Phi_{\varphi} = (\Phi_{\varphi_{p,q}})$ then (12) holds in the case under consideration as well. Since $\prod_{i=1}^{n+1} \|A_{i}\| < 1$, we conclude that $\|\Phi_{\varphi}\|_{cb} < 1$ or, equivalently, $\|\varphi\|_{M_{k}(M_{\Sigma}^{cb}A(G))} < 1$.

Corollary 5.6. We have that $B^n(G) \subset M_n^{cb}A(G)$. Moreover, the inclusion map is a complete contraction.

Proof. The inclusion follows from Theorem 4.1, Theorem 5.5 and Theorem 3.4 of [15].

Let $\varphi = (\varphi_{p,q}) \in M_k(B^n(G)), \|\varphi\|_{M_k(B^n(G))} < 1$ and $\Phi : C^*(G)^n \to M_k$ be the completely bounded mapping associated with φ . By Theorem 5.2 of [6], there exist Hilbert spaces H_1, \ldots, H_n , representations $\pi_i : C^*(G) \to \mathcal{B}(H_i)$ and operators $V_1 \in \mathcal{B}(H, \mathbb{C}^k), V_{n+1} \in \mathcal{B}(\mathbb{C}^k, H)$ and $V_i \in \mathcal{B}(H), i = 2, \ldots, n$, such that

$$\Phi(a_1,\ldots,a_n) = V_1\pi_1(a_1)V_2\ldots V_n\pi_n(a_n)V_{n+1}$$

and $\Pi_{i=1}^{n+1} ||V_i|| < 1$. Let $\tilde{\pi}_i : W^*(G) \to \mathcal{B}(H)$ be the canonical normal extension of π_i , $i = 1, \ldots, n$. Since the extension $\tilde{\Phi}$ of Φ to a normal completely bounded map from $W^*(G)^n$ into M_k is unique, we have that

$$\tilde{\Phi}(b_1,\ldots,b_n)=V_1\tilde{\pi}_1(b_1)V_2\ldots V_n\tilde{\pi}_n(b_n)V_{n+1}, \quad b_1,\ldots,b_n\in W^*(G).$$

Let $a_1(y_1) = \tilde{\pi}_n(\omega(y_1))V_{n+1}, a_2(y_2) = \tilde{\pi}_{n-1}(\omega(y_2))V_n\tilde{\pi}_n(\omega(y_2^{-1})), \dots, a_{n+1}(y_{n+1}) = V_1\tilde{\pi}_1(\omega(y_{n+1}^{-1}))$. Then

$$\tilde{\varphi}(y_1,\ldots,y_{n+1}) = \tilde{\Phi}(\omega(y_{n+1}^{-1})\omega(y_n),\ldots,\omega(y_2^{-1})\omega(y_1))$$
$$= a_{n+1}(y_{n+1})\ldots a_1(y_1)$$

and $\operatorname{esssup}_{y_1,\ldots,y_{n+1}\in G} \prod_{i=1}^{n+1} ||a_i(y_i)|| < 1$. Theorems 3.2 and 5.5 imply that the norm of φ as an element of $M_k(M_n^{cb}A^n(G))$ is less than one. Thus, the inclusion $B^n(G) \subset M_n^{cb}A(G)$ is a complete contraction. \diamond We recall that $C_r^*(G)$ is the reduced C*-algebra of G. We write $C_r^*(G)^{\otimes_h^n}$ for $\underbrace{C_r^*(G) \otimes_h \ldots \otimes_h C_r^*(G)}_{P_r}$. Let $B_r(G) = C_r^*(G)^*$ and $B_r^n(G)$

= $(C_r^*(G)^{\otimes_h^n})^*$. It is standard to identify the elements of $B_r(G)$ with functions from B(G) in such a way that the duality between $B_r(G)$ and $C_r^*(G)$ is given by $\langle b, \lambda(f) \rangle = \int f(x)b(x)dm(x), f \in L^1(G)$. We equip $B_r(G)$ and $B_r^n(G)$ with the canonical operator space structure as dual operator spaces. Let M be the completely contractive mapping from $C_r^*(G)^{\otimes_h^n}$ to $C_r^*(G)$ which maps $\lambda(f_1) \otimes \ldots \otimes \lambda(f_n)$ (for $f_1, \ldots, f_n \in$ $L^1(G)$) to $\lambda(f)$, where

$$f(x) = \int_{G^n} f_1(x_1) f_2(x_1^{-1}x_2) \dots f_n(x_{n-1}^{-1}x) dm(x_1) \dots dm(x_{n-1}).$$

It is easy to check that the adjoint mapping M^* maps $f \in B_r(G)$ to $\theta(f) \in B_r^n(G)$ (here $\theta(f)(x_1, \ldots, x_n) = f(x_1 \ldots x_n)$). We define $M_n^{cb}B_r(G)$ to be the space of all $\varphi \in L^{\infty}(G^n)$ such that the mapping $T_{\varphi} : f \mapsto \varphi \theta(f)$ is completely bounded as a map from $B_r(G)$ to $B_r^n(G)$. We note that this map is normal. In fact, if $f_1, \ldots, f_n \in L^1(G)$ then

$$\langle \varphi \theta(f), \lambda(f_1) \otimes \ldots \otimes \lambda(f_n) \rangle$$

$$= \int_{G^n} \varphi(x_1, \ldots, x_n) f(x_1 \ldots x_n) f_1(x_1) \ldots f_n(x_n) dm(x_1) \ldots dm(x_n)$$

$$= \langle f, \lambda(g) \rangle,$$

where g(x) equals

$$\int f_1(x_1) f_2(x_1^{-1}x_2) \dots f_n(x_{n-1}^{-1}x) \varphi(x_1, x_1^{-1}x_2, \dots, x_{n-1}^{-1}x) dm(x_1) \dots dm(x_{n-1}) g(x_1, x_1^{-1}x_2, \dots, x_{n-1}^{-1}x) dm(x_1, x_1^{-1}x_2, \dots, x_{n-1}^{-1}x) dm(x_1, x_1^{-1}x_2, \dots, x_{n-1}^{-1}x) dm(x_1, \dots, x_{n$$

it is easy to see that $g \in L^1(G)$. Therefore T_{φ} has a predual M_{φ} which is given by $\lambda(f_1) \otimes \ldots \otimes \lambda(f_n) \mapsto \lambda(g)$. If $\varphi \in M_n^{cb} B_r(G)$ then M_{φ} is completely bounded and $\|\varphi\|_{M_n^{cb} B_r(G)} = \|M_{\varphi}\|_{cb}$. From the definition of the operator space structure of $B_r(G)$, we have that if $(\varphi_{p,q}) \in$ $M_k(M_{cb}^n B_r(G))$ then $\|(\varphi_{p,q})\| = \|M_{\varphi}\|_{cb}$, where $M_{\varphi} = (M_{\varphi_{p,q}})$ is the corresponding mapping from $C_r^*(G)^{\otimes_n^h}$ to $M_k(C_r^*(G))$.

The following theorem supplements Theorem 5.5 and provides a multidimensional version of Proposition 4.1 of [21].

Theorem 5.7. Let $\varphi \in M_k(L^{\infty}(G^n))$. Then the following are equivalent

(i)
$$\varphi \in b_1(M_k(M_n^{co}A(G)));$$

(ii) the multilinear mapping M_{φ} : $(\lambda(f_1), \ldots, \lambda(f_n)) \mapsto (\lambda(f_{ij}))$, where $f_1, \ldots, f_n \in L^1(G)$ and $f_{ij}(x)$ equals

$$\int f_1(x_1) f_2(x_1^{-1}x_2) \dots f_n(x_{n-1}^{-1}x) \varphi_{ij}(x_1, x_1^{-1}x_2, \dots, x_{n-1}^{-1}x) dm(x_1) \dots dm(x_{n-1})$$

extends to a complete contraction from $C_r^*(G)^{\otimes_h^n}$ into $M_k(C_r^*(G))$; (iii) $\varphi \in b_1(M_k(M_n^{cb}B_r(G))).$

Proof. For the sake of technical simplicity we assume that n = 2; the general case can be treated similarly.

(i) \Rightarrow (ii) Let $\varphi = (\varphi_{p,q}) \in b_1(M_k(M_2^{cb}A(G)))$. By Proposition 5.4, there exist operators $V_0 \in \mathcal{B}(L^2(G)^k, L^2(G)^\infty), V_1 \in \mathcal{B}(L^2(G)^\infty)$ and $V_2 \in \mathcal{B}(L^2(G)^\infty, L^2(G)^k)$ such that $\|V_0\| \|V_1\| \|V_2\| \leq 1$ and

(13)
$$\varphi(x_2, x_1)\lambda_{x_2x_1} = V_2(\lambda_{x_2} \otimes 1)V_1(\lambda_{x_1} \otimes 1)V_0.$$

Let $f_1 = (f_1^{p,q}) \in M_{k,r}(C_r^*(G))$ and $f_2 = (f_2^{p,q}) \in M_{r,k}(C_r^*(G))$. We denote by $\lambda(f_1) \odot \lambda(f_2) \in M_k(C_r^*(G) \otimes_h C_r^*(G))$ a $k \times k$ -matrix whose (p,q) entry equals $\sum_{s=1}^r \lambda(f_{p,s}^1) \otimes \lambda(f_{s,q}^2)$. If $f_{p,q}^l \in L^1(G)$, l = 1, 2, then

$$\begin{split} &M_{\varphi}^{(k)}(\lambda(f_{1})\odot\lambda(f_{2}))\\ = &\left(\sum_{s=1}^{r}\int f_{p,s}^{1}(x_{1})f_{s,q}^{2}(x_{1}^{-1}x_{2})\varphi(x_{1},x_{1}^{-1}x_{2})\lambda(x_{2})dm(x_{1})dm(x_{2})\right)_{p,q}\\ = &\left(\sum_{s=1}^{r}\int f_{p,s}^{1}(x_{1})f_{s,q}^{2}(x_{2})\varphi(x_{1},x_{2})\lambda(x_{1}x_{2})dm(x_{1})dm(x_{2})\right)_{p,q}\\ = &\left(\int\sum_{s=1}^{r}f_{p,s}^{1}(x_{1})f_{s,q}^{2}(x_{2})V_{2}(\lambda_{x_{1}}\otimes1)V_{1}(\lambda_{x_{2}}\otimes1)V_{0}dm(x_{1})dm(x_{2})\right)_{p,q}\\ = &\left(\sum_{s=1}^{r}V_{2}((\int f_{p,s}^{1}(x_{1})\lambda_{x_{1}}dm(x_{1}))\otimes1)V_{1}((\int f_{s,q}^{2}(x_{2})\lambda_{x_{2}}dm(x_{2}))\otimes1)V_{0}\right)_{p,q}\\ = &\left(\sum_{s=1}^{r}V_{2}(\lambda(f_{p,s}^{1})\otimes1)V_{1}(\lambda(f_{s,q}^{2})\otimes1)V_{0}\right)_{p,q}.\end{split}$$

Therefore

$$\|M_{\varphi}^{(k)}(\lambda(f_1) \odot \lambda(f_2)\| \le \|V_0\| \|V_1\| \|V_2\| \|\lambda(f_1)\| \|\lambda(f_2)\|$$

and hence $||M_{\varphi}^{(k)}|| \leq 1$.

(ii) \Leftrightarrow (iii) Follows trivially from the definition of the operator structure of $M_n^{cb}B_r(G)$.

21

(iii) \Rightarrow (i) We only consider the case k = 1. Let $\varphi \in M_n^{cb}B_r(G)$, $\|\varphi\| \leq 1$ and $\psi \in A(G) \cap C_c(G)$, where $C_c(G)$ is the space of compactly supported functions on G. We can find $g \in A(G)$ such that g = 1on the support of ψ so that $\psi g = \psi$. As $\theta(g) \in A^n(G)$ and $A^n(G)$ is an ideal in $B_r^n(G)$ we have $\varphi \theta(\psi) = \varphi \theta(\psi) \theta(g) \in A^n(G)$. Since the $A^n(G)$ -norm and $B_r^n(G)$ -norm coincide on $A^n(G)$ and $A(G) \cap C_c(G)$ is dense in A(G) we obtain that φ is in $b_1(M_n(G))$. Similar arguments show that φ is a completely contractive multiplier. \diamondsuit

We next supply some corollaries of the previous results.

Corollary 5.8. Let G be an amenable locally compact group. Then $B^n(G) = M_n^{cb}A(G)$ completely isometrically.

Proof. If G is amenable then $B^n(G) = B^n_r(G)$ completely isometrically. Hence, by Theorem 5.7, $M_n^{cb}A(G) = M_n^{cb}B(G)$ completely isometrically. Since B(G) contains the constant functions, it is easy to see that $M_n^{cb}B(G) = B^n(G)$ completely isometrically. \diamond

Corollary 5.9. Let \mathcal{P} be the block (k, n)-partition associated with the sequence $n \geq n_k > \cdots > n_1 > 1$ such that each block contains at least two elements, and $\epsilon_i = \pm 1$, $i = 1, \ldots, n$. Assume that G is amenable. Then the function $\psi : G^n \to \mathbb{C}$ given by $\psi(s_n, \ldots, s_1) = \varphi(s_1^{\varepsilon_1} \ldots s_{n_1-1}^{\varepsilon_{n_1-1}}, \ldots, s_n^{\varepsilon_n})$ is a Schur multiplier with respect to the left Haar measure if and only if $\varphi \in B^k(G)$.

Proof. We prove the statement for k = 2 and a partition of the form $\mathcal{P} = \{\{n, \ldots, m\}, \{m-1, \ldots, 1\}\}$; the other cases are similar. Assume ψ is a Schur multiplier. Then $\psi(s_n, \ldots, s_1) = a_1(s_1) \ldots a_n(s_n)$ for some (essentially bounded) functions $a_i : G \to M_{\infty}, i = 2, \ldots, n-1, a_n : G \to M_{\infty,1}$ and $a_1 : G \to M_{1,\infty}$. Therefore, the function

$$(s_1, s_2, s_3) \mapsto \varphi(s_3^{-1} s_2, s_2^{-1} s_1) = \psi(s_1^{\varepsilon_n}, s_2^{-\varepsilon_{n-1}}, e, \dots, e, s_2^{\varepsilon_2}, s_3^{-\varepsilon_1})$$

is a Schur multiplier and hence by Theorem 5.5, $\varphi \in M_2^{cb}A(G) = B^2(G)$.

Let now $\varphi \in B^2(G)$. By Theorem 4.1, there exist representations π_1 , π_2 of G on H and vectors ξ , η such that $\varphi(s_2, s_1) = (\pi_2(s_2)\pi_1(s_1)\xi, \eta)$, and

$$\psi(s_n,\ldots,s_1)=(\pi_2(s_1^{\varepsilon_1}\ldots s_{m-1}^{\varepsilon_{m-1}})\pi_1(s_m^{\varepsilon_m}\ldots s_n^{\varepsilon_n})\xi,\eta).$$

Theorem 3.4 of [15] now easily implies ψ is a Schur multiplier.

Remark 5.10. Since if G is abelian then $B(G) = \{\hat{\mu} : \mu \in M(\hat{G})\}$, Corollary 5.9 implies the following classical result: If G is a discrete abelian group and $\varphi \in l^{\infty}(G)$ then the function ψ given by $\psi(x, y) = \varphi(y^{-1}x)$ is a Schur multiplier if and only if $\varphi = \hat{\mu}$ for some measure $\mu \in M(\hat{G})$.

Here is a more general result:

Corollary 5.11. Let G be a locally compact abelian group, $m_1, \ldots, m_n = \pm 1$, $\varphi \in L^{\infty}(G)$ and ψ be the function given by

 $\psi(s_n,\ldots,s_1)=\varphi(s_1^{m_1}\ldots s_n^{m_n}), \quad s_1,\ldots,s_n\in G.$

Then ψ is a Schur multiplier (with respect to the Haar measure) if and only if $\varphi = \hat{\mu}$ for some measure $\mu \in M(\hat{G})$. In this case, $\|\psi\|_{m} = \|\mu\|$.

We close this section with a multidimensional version of [5, Theorem 1]. We use the notation from Proposition 5.4. Recall [10] that if $f \in A(G)$ and $T \in VN(G)$ then $fT \in VN(G)$ is the operator given by the duality relation $\langle g, fT \rangle = \langle fg, T \rangle$.

Proposition 5.12. Let $\Phi : VN(G)^n \to VN(G)$ be a normal completely bounded multilinear map. Then $\Phi = \Phi_{\varphi}$ for some $\varphi \in M_n^{cb}A(G)$ if and only if

(14)
$$\Phi(\theta(f)(S_1 \otimes \ldots \otimes S_n)) = f \Phi(S_1 \otimes \ldots \otimes S_n),$$

for all $f \in A(G)$ and all $S_1, \ldots, S_n \in VN(G)$.

Proof. Since Φ is a normal completely bounded map, $\Phi = \Psi^*$ for a completely bounded map from A(G) to $A^n(G)$,

$$\langle \Phi(\theta(f)(S_1 \otimes \ldots \otimes S_n)), h \rangle = \langle S_1 \otimes \ldots \otimes S_n, \theta(f) \Psi(h) \rangle$$

and

$$\langle f\Phi(S_1\otimes\ldots\otimes S_n),h\rangle = \langle S_1\otimes\ldots\otimes S_n,\Psi(fh)\rangle$$

Thus, if Φ satisfies (14) then $\theta(f)\Psi(h) = \Psi(fh)$ for all $f, h \in A(G)$. Since A(G) is commutative, $\theta(f)\Psi(h) = \theta(h)\Psi(f)$ and therefore $\Psi(h) = \varphi\theta(h)$ for some function φ on G^n . Since Ψ is completely bounded, $\varphi \in M_n^{cb}A(G)$. Moreover,

$$\langle \Phi(\lambda_{x_n} \otimes \ldots \otimes \lambda_{x_1}), h \rangle = \langle \lambda_{x_n} \otimes \ldots \otimes \lambda_{x_1}, \varphi \theta(h) \rangle = \varphi(x_n, \ldots, x_1) h(x_n \ldots x_1) = \langle \varphi(x_n, \ldots, x_1) \lambda_{x_n \ldots x_1}, h \rangle,$$

that is, $\Phi = \Phi_{\varphi}$.

6. The Abelian Case

In this section we assume that G is abelian. We denote by \hat{G} the character group of G. Let $C_0(G)$ be the algebra of continuous functions vanishing at infinity on G. The Haagerup tensor product $C_0(G) \otimes_{\mathrm{h}} \ldots \otimes_{\mathrm{h}} C_0(G)$ will be denoted by $V_{\mathrm{h}}^n(G)$. The dual space of $\sum_{n=1}^{n} \hat{G}$ Let G(G) be the other function.

 $V_{\rm h}^n(G)$ is the space of *n*-measures on \hat{G} . Let $C_b(G)$ be the C^* -algebra of continuous bounded functions on G and $\mathcal{V}^n(G) = \underbrace{C_b(G) \otimes_{\rm h} \ldots \otimes_{\rm h} C_b(G)}_{\mathcal{L}_b}$.

Denote by \hat{G}_d the group \hat{G} equipped with the discrete topology and recall that the Bohr compactification \bar{G} of G is the dual of \hat{G}_d . We note that there is a canonical inclusion of $V^n_{\rm h}(G)^*$ into $V^n_{\rm h}(\bar{G})^*$: for $\Phi \in V^n_{\rm h}(G)^*$ define $\bar{\Phi} \in V^n_{\rm h}(\bar{G})^*$ by

$$\bar{\Phi}(a_1 \otimes \cdots \otimes a_n) = \Phi(\iota(a_1|_G) \otimes \cdots \otimes \iota(a_n|_G)), \ a_1, \ldots, a_n \in C(\bar{G}),$$

where $\tilde{\Phi}$ is the extension of Φ to a normal completely bounded multilinear map from $(C_0(G)^{**})^{\otimes_{\sigma h}^n}$ to \mathbb{C} , and $\iota : C_b(G) \to C_0(G)^{**}$ is the canonical injection.

We claim that

(15)
$$\|\Phi\|_{V_{\mathbf{b}}^{n}(\bar{G})^{*}} = \|\Phi\|_{V_{\mathbf{b}}^{n}(G)^{*}}.$$

If $a_k = (a_{i,j}^k)$, k = 1, ..., n, are *n* by *n* matrices let $a_1 \odot \cdots \odot a_n$ be the *n* by *n* matrix whose (i, j)-entry is equal to

$$a_{i,i_1}^1\otimes a_{i_1,i_2}^2\otimes\cdots\otimes a_{i_{n-1},j}^n$$

To show (15), first note that if $a_1 \odot \ldots \odot a_n \in V_h^n(\overline{G})$ is a function of unit Haagerup norm then

$$|\bar{\Phi}(a_1 \odot \ldots \odot a_n)| = |\bar{\Phi}(\iota(a_1|_G) \odot \ldots \odot \iota(a_n|_G))| \le ||\Phi||,$$

where for $a = (a_{ij}) \in M_{k,l}(C(\bar{G}))$ we denote by $a|_G$ the matrix $(a_{ij}|_G)$. Hence, $\|\bar{\Phi}\|_{V_h^n(\bar{G})^*} \leq \|\Phi\|_{V_h^n(G)^*}$. Conversely, let \bar{a} denote the canonical extension of a function a from $C_0(G)$ to a function from $C(\bar{G})$ and $\bar{u} \in$ $V_h^n(\bar{G})$ denote the corresponding extension of an element $u \in V_h^n(G)$. Thus, if $u = a_1 \odot \cdots \odot a_n$ then $\bar{u} = \bar{a}_1 \odot \cdots \odot \bar{a}_n$. It follows that $\|\bar{u}\|_{V_h^n(\bar{G})} \leq \|u\|_{V_h^n(G)}$ and hence

$$\begin{split} \|\Phi\|_{V_{h}^{n}(G)^{*}} &= \sup\{|\Phi(u)| : u \in V_{h}^{n}(G), \|u\|_{h} \leq 1\} \\ &= \sup\{|\bar{\Phi}(\bar{u})| : u \in V_{h}^{n}(G), \|u\|_{h} \leq 1\} \\ &\leq \sup\{|\bar{\Phi}(v)| : v \in V_{h}^{n}(\bar{G}), \|v\|_{h} \leq 1\} \\ &= \|\bar{\Phi}\|_{V_{h}^{n}(\bar{G})^{*}}. \end{split}$$

Thus (15) is established. We hence have a canonical isometric embedding of $M^n(\hat{G})$ into $M^n(\hat{G}_d)$, which gives rise to an isometric embedding of $B^n(\hat{G})$ into $B^n(\hat{G}_d)$. The next proposition generalises [12, Theorem 3.3] to the multidimensional case. We note that the proof we give is new in the case n = 2 as well.

Proposition 6.1. Let $f \in B^n(\hat{G}_d)$. Then $f \in B^n(\hat{G})$ if and only if f is continuous.

Proof. It is clear that if $f \in B^n(\hat{G})$ then f is continuous. For the converse direction we use induction on n. If n = 1 the claim follows from a classical result of Eberlein [20, Theorem 1.9.1]. Suppose that n > 1 and fix a continuous function f from $B^n(\hat{G}_d)$. For an element $\gamma \in \hat{G}$ let $\delta_{\gamma} \in B(\hat{G}_d)^*$ be the evaluation functional, $\delta_{\gamma}(h) = h(\gamma)$, $h \in B(\hat{G})$. Using the identification (4), we let $L_{\delta_{\gamma}} : B^n(\hat{G}) \to B^{n-1}(\hat{G})$ be the corresponding slice map. We have that $L_{\delta_{\gamma}}(f) \in B^{n-1}(\hat{G}_d)$ and that $L_{\delta_{\gamma}}(f)$ is continuous. By the induction assumption, $L_{\delta_{\gamma}}(f) \in B^{n-1}(\hat{G})$. Since every element of $B(\hat{G}_d)^*$ can be approximated in the weak* topology by a bounded net consisting of linear combinations of the functionals $\delta_{\gamma}, \gamma \in \hat{G}$, we conclude that $L_{\delta}(f) \in B^{n-1}(\hat{G})$ for every $\delta \in B(\hat{G}_d)^*$. An application of [21, Theorem 2.2] shows that $f \in B(\hat{G}_d) \otimes_{eh} B^{n-1}(\hat{G})$. Repeating the above argument with a right slice map in the place of L_{δ} shows that $f \in B^n(\hat{G})$.

The following lemma generalises a theorem of Eberlein [20, Theorem 1.9.1] to the multidimensional case.

Lemma 6.2. Let $\phi \in L^{\infty}(\hat{G}^n)$. The following are equivalent:

(i) $\phi \in B^n(\hat{G})$;

(ii) ϕ is continuous and there exists a constant C > 0 such that

$$\left|\sum c_{i_1\dots i_n}\phi(\chi_{i_1},\dots,\chi_{i_n})\right| \leq C \left\|\sum c_{i_1,\dots,i_n}\chi_{i_1}\otimes\dots\otimes\chi_{i_n}\right\|_{\mathcal{V}^n(G)}$$

where $\chi_{i_k} \in \hat{G}$ and the summation is over a finite number of indices (i_1, \ldots, i_n) .

Proof. For notational simplicity we assume n = 2. (i) \Rightarrow (ii) Let $\phi \in B^2(\hat{G})$. Then by definition

$$\phi(\chi_1,\chi_2) = \Phi(\omega(\chi_1),\omega(\chi_2))$$

for some $\Phi \in M^2(\hat{G})$. Thus, ϕ is continuous and since $\omega(\chi_i) = \iota(\check{\chi}_i)$, where $\check{\chi}_i(x) = \overline{\chi_i(x)} = \chi_i(x^{-1})$ (see (6)), we have

$$\begin{split} \left| \sum c_{ij} \phi(\chi_i, \chi_j) \right| &= \left| \tilde{\Phi}(\sum c_{ij} \iota(\check{\chi}_i) \otimes \iota(\check{\chi}_j) \right| \\ &\leq \left\| \Phi \right\| \left\| \sum c_{ij} \iota(\check{\chi}_i) \otimes \iota(\check{\chi}_j) \right\|_{C_0(G)^{**} \otimes_{\mathrm{h}} C_0(G)^{**}} \\ &= \left\| \Phi \right\| \left\| \sum c_{ij} \chi_i \otimes \chi_j \right\|_{\mathcal{V}^2(G)}. \end{split}$$

The last equality follows from the injectivity of the Haagerup tensor product.

(ii) \Rightarrow (i) Assume first that G is compact. Then \hat{G} is discrete. Let $T: C_0(G) \odot C_0(G) \rightarrow \mathbb{C}$ be the mapping given by $T(\sum c_{ij}\chi_i \otimes \chi_j) = \sum c_{ij}\phi(\chi_i,\chi_j)$. Then $|T(f)| \leq C ||f||_{\mathcal{V}^2(G)} = C ||f||_{V_h^2(G)}$ for finite sums $f = \sum c_{ij}\chi_i \otimes \chi_j$ and therefore T can be extended to a bounded linear functional on $V_h^2(G)$. Thus, there exists $u \in M^2(\hat{G})$ such that

$$\sum c_{ij}\phi(\chi_i,\chi_j) = \langle u, \sum c_{ij}\chi_i \otimes \chi_j \rangle.$$

In particular, $\phi(\chi_1, \chi_2) = \langle u, \chi_1 \otimes \chi_2 \rangle$, that is, $\phi = \hat{u}_1 \in B^2(\hat{G})$, where $\langle u_1, \chi_i \otimes \chi_j \rangle = \langle u, \check{\chi}_i \otimes \check{\chi}_j \rangle$.

If G is not compact let \overline{G} be the Bohr compactification of G. Extending each $\chi \in \hat{G}$ to a character on \overline{G} we define a linear functional T on the space of all functions f on $\overline{G} \times \overline{G}$ of the form f(x,y) = $\sum c_{ij}\chi_i(x)\chi_j(y), x, y \in \overline{G}$, where $\chi_i, \chi_j \in \hat{G}$, by letting, for f as above, $T(f) = \sum c_{ij}\phi(\chi_i, \chi_j)$. Let $i \in \mathbb{N}, g_i = \sum_k c_k^i \chi_{k,i}$ and $h_i = \sum_j d_j^i \psi_{j,i}$ be trigonometric polynomials on \overline{G} , where $\chi_{k,i}, \psi_{j,i} \in \hat{G}$. Then

$$\left| T\left(\sum_{i} g_{i} \otimes h_{i}\right) \right| = \left| \sum_{i,k,j} c_{k}^{i} d_{j}^{i} \phi(\chi_{k,i},\psi_{j,i}) \right| \leq C \left\| \sum_{i,k,j} c_{k}^{i} d_{j}^{i} \chi_{k,i} \otimes \psi_{j,i} \right\|_{\mathcal{V}^{2}(G)}$$
$$= C \left\| \sum_{i} g_{i} \otimes h_{i} \right\|_{\mathcal{V}^{2}(G)} = C \left\| \sum_{i} g_{i} \otimes h_{i} \right\|_{V_{h}^{2}(\bar{G})}.$$

The last equality follows from the injectivity of the Haagerup tensor product and the fact that $C_b(G)$ is completely isometrically embedded in $C(\bar{G})$. Thus, T can be extended to a bounded linear functional on $V_h^2(\bar{G})$ and hence $\phi(\chi_1, \chi_2) = \langle u, \chi_1 \otimes \chi_2 \rangle$ for $u \in M^2(\hat{G}) = M^2(\hat{G}_d)$, and $\phi \in B^2(\hat{G}_d)$. Since ϕ is continuous, Proposition 6.1 implies that $\phi \in B^2(\hat{G})$. \diamond The following lemma is a multidimensional version of [20, Theorem 3.8.1].

Lemma 6.3. Let $\varphi \in L^{\infty}(G^n)$. Assume $\varphi \theta(g) \in B^n(G)$ for every $g \in A(G)$. Then $\varphi \in B^n(G)$.

Proof. We only consider the case n = 2; the general case can be treated in a similar way. Let $T : A(G) \to B^2(G)$ be the linear mapping defined by $T(g) = \varphi \theta(g)$. We show that T is continuous. If $g_n \to g$ in A(G)and $\varphi \theta(g_n) \to \hat{u}$ in $B^2(G)$, where $u \in M^2(G)$, then

$$\hat{u}(h_1, h_2) = \lim_{n \to \infty} \varphi(h_1, h_2) g_n(h_1 h_2) = \varphi(h_1, h_2) g(h_1 h_2),$$

hence $\hat{u} = \varphi \theta(g)$. By the Closed Graph Theorem, T is continuous and $\|\varphi \theta(g)\|_{B^2(G)} \leq C \|g\|_{A(G)}$.

Given $h_1, \ldots, h_n \in G$, $\varepsilon > 0$, there exists $f \in A(G)$, $||f||_{A(G)} \leq 1 + \varepsilon$, such that $f(h_i h_j) = 1$, for all i, j. Let $u \in M^2(G)$ be such that $\hat{u} = \varphi \theta(f)$. Then

$$\begin{split} \left| \sum c_{ij} \varphi(h_i, h_j) \right| &= \left| \sum c_{ij} \varphi(h_i, h_j) f(h_i h_j) \right| = \left| \sum c_{ij} \hat{u}(h_i, h_j) \right| \\ &= \left| \tilde{u}(\sum c_{ij} \iota(\check{h}_i) \otimes \iota(\check{h}_j)) \right| \\ &\leq C(1 + \varepsilon) \left\| \sum c_{ij} h_i \otimes h_j \right\|_{\mathcal{V}^2(\hat{G})}, \end{split}$$

where \tilde{u} is the extention of u to a normal completely bounded linear map from $(C_0(G)^{**})^n$ to \mathbb{C} and $\iota : C_b(G) \to C_0(G)^{**}$ is the canonical inclusion. Given open sets $V_1, V_2 \subset G$ with compact closures we can find $f \in A(G)$ such that $\theta(f)$ is constant on $V_1 \times V_2$. Therefore, φ is continuous on $V_1 \times V_2$, and hence φ is continuous on $G \times G$. By Lemma 6.2, $\varphi \in B^2(G)$. \diamondsuit

In the next corollary, we denote by M_g the operator of multiplication by the function g.

Theorem 6.4. For every block (k, n)-partition \mathcal{P} , we have that $B^n(G) = M_{\mathcal{P}}^{cb}(G) = M_{\mathcal{P}}(G)$.

Proof. Let \mathcal{P}_1 (resp. \mathcal{P}_2) be the block (1, n)- (resp. (n, n)-)partition. We have that $\theta_{\mathcal{P}_2}$ is the identity map. For any block (k, n)-partition \mathcal{P} we have that

 $\operatorname{ran} \theta_{\mathcal{P}_1} \subseteq \operatorname{ran} \theta_{\mathcal{P}} \subseteq \operatorname{ran} \theta_{\mathcal{P}_2} = A^n(G).$

Thus,

$$M_{\mathcal{P}_2}A(G) \subseteq M_{\mathcal{P}}A(G) \subseteq M_{\mathcal{P}_1}A(G),$$

and similarly for the completely bounded multipliers. By Theorem 5.1, $B^n(G) \subseteq M_{\mathcal{P}_2}A(G)$. By Lemma 6.3, $M_{\mathcal{P}_1}A(G) \subset B^n(G)$ and hence $B^n(G) = M_{\mathcal{P}}(G)$.

The fact that $B^{n}(G) = M_{\mathcal{P}}^{cb}A(G)$ follows in the same way, using Proposition 4.2.

Corollary 6.5. Let $\Psi : A(G) \to A^n(G)$ be a bounded linear map such that $\Psi M_{\chi} = M_{\theta(\chi)} \Psi$ for any $\chi \in \hat{G}$. Then $\Psi(f) = \varphi \theta(f), f \in A(G)$, for some $\varphi \in B^n(G)$.

Proof. It follows from the proof of Theorem 5.12 that $\Psi(f) = \varphi \theta(f)$ for some bounded function φ on G. Thus $\varphi \in M_n A(G)$. The statement now follows from Theorem 6.4. \Diamond

References

- [1] D. P. BLECHER AND C. LE MERDY, Operator algebras and their modules an operator space approach, Oxford University Press, 2004
- [2] D. P. BLECHER AND R. SMITH, The dual of the Haagerup tensor product, J. London Math. Soc. (2) 45 (1992) 126–144
- [3] M. BOZEJKO AND G. FENDLER, Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Colloquium Math. 63 (1992) 311-313
- [4] J. DE CANNIÈRE AND U. HAAGERUP, Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups, Amer. J. Math. 107 (1985), no. 2, 455–500
- [5] C. CECCHINI, Operators on VN(G) commuting with A(G), Colloquium Math. 43 (1980), 137-142
- [6] E. CHRISTENSEN AND A. M. SINCLAIR, Representations of completely bounded multilinear operators, J. Funct. Anal. 72 (1987), 151-181
- [7] E. G. EFFROS AND ZH.-J. RUAN, Multivariable multipliers for groups and their operator algebras, Proceedings of Symposia in Pure Mathematics 51 (1990), Part 1, 197–218
- [8] E. G. EFFROS AND ZH.-J. RUAN, Operator Spaces, London Mathematical Society Monographs. New Series, 23. The Clarendon Press, Oxford University Press, New York, 2000. xvi+363 pp
- [9] E. G. EFFROS AND ZH.-J. RUAN, Operator spaces tensor products and Hopf convolution algebras, J. Operator Theory 50 (2003) 131–156
- [10] P. EYMARD, L'algèbre de Fourier d'un groupe localement compact, Bulletin de la S.M.F. 92 (1964) 181–236
- [11] J. E. GILBERT, T. ITO AND B.M. SCHREIBER, Bimeasure algebras on locally compact groups, J. Funct. Anal. 64 (1985) 134-162
- [12] C. GRAHAM AND B. M. SCHREIBER, Bimeasure algebras on LCA groups, Pacific J. Math. 115 (1984) no. 1, 91-127
- [13] A. GROTHENDIECK, Resume de la theorie metrique des produits tensoriels topologiques, Boll. Soc. Mat. Sao-Paulo 8 (1956), 1-79

- [14] P. JOLISSAINT, A characterisation of completely bounded multipliers of Fourier algebras, Colloquium Math. 63 (1992) 311-313
- [15] K. JUSCHENKO, I. G. TODOROV AND L. TUROWSKA, Multidimensional operator multipliers, Trans. Amer. Math. Soc., in press
- [16] V. PAULSEN, Completely bounded maps and operator algebras, Cambridge University Press, 2002
- [17] V. V. PELLER, Hankel operators in the perturbation theory of unitary and selfadjoint operators, Funktsional. Anal. i Prilozhen. 19 (1985), no. 2, 37–51, 96
- [18] G. PISIER, Similarity problems and completely bounded maps, Second, expanded edition. Includes the solution to "The Halmos problem". Lecture Notes in Mathematics, 1618. Springer-Verlag, Berlin, 2001. viii+198 pp
- [19] G. PISIER, Introduction to Operator Space Theory, Cambridge University Press, 2003
- [20] W. RUDIN, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12 Interscience Publishers (a division of John Wiley and Sons), New York-London 1962 ix+285 pp
- [21] N. SPRONK, Measurable Schur multipliers and completely bounded multipliers of the Fourier algebras, Proc. London Math. Soc. (3) 89 (2004), no. 1, 161–192
- [22] K. YLINEN, Non-commutative Fourier transforms of bounded bilinear forms and completely bounded multilinear operators, J. Funct. Anal. 79 (1988) 144– 165