MULTIPLIERS OF MULTIDIMENSIONAL FOURIER
ALGEBRAS

I. G. TODOROV AND L. TUROWSKA

ABSTRACT. Let G be a locally compact o-compact group. Mo-
tivated by an earlier notion for discrete groups due to Effros and
Ruan, we introduce the multidimensional Fourier algebra A™(G)
of G. We characterise the completely bounded multidimensional
multipliers associated with A™(G) in several equivalent ways. In
particular, we establish a completely isometric embedding of the
space of all n-dimensional completely bounded multipliers into the
space of all Schur multipliers on G"*! with respect to the (left)
Haar measure. We show that in the case G is amenable the space
of completely bounded multidimensional multipliers coincides with
the multidimensional Fourier-Stieltjes algebra of G introduced by
Ylinen. We extend some well-known results for abelian groups to
the multidimensional setting.

1. INTRODUCTION

A classical result in Harmonic Analysis asserts that a bounded func-
tion defined on a locally compact abelian group G is a multiplier of the
Fourier algebra A(G) of G precisely when it is the Fourier transform of a
regular Borel measure on the character group G of G. After the seminal
work of P. Eymard [10], Harmonic Analysis on general locally compact
groups has been closely related to the theory of C*- and von Neumann
algebras. More recent work of E. Effros, M. Neufang, Zh.-J. Ruan, V.
Runde, N. Spronk and others shows that Operator Space Theory plays
a significant role in the subject. The operator space structure of A(G)
has thus become an indispensable tool in non-commutative Harmonic
Analysis. J. de Canniere and U. Haagerup [4] defined the set M A(G)
of completely bounded multipliers of A(G), and M. Bozejko and G.
Fendler [3] provided a characterisation of M®A(G) which, combined
with a classical result of A. Grothendieck [13] and a result of V. Peller
[17] shows that M®A(G) can be isometrically identified with the space
of all Schur multipliers of Toeplitz type. An alternative proof of this
result was given by P. Jolissaint [14]. N. Spronk [21] showed that this
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identification is in fact a complete isometry. We refer the reader to
Sections 5 and 6 of G. Pisier’s monograph [18] for an account of Schur
multipliers.

Building on an earlier work on bimeasures on locally compact groups
[11], [12], K. Ylinen [22] defined a multivariable version B"(G) of the
Fourier-Stieltjes algebra of a locally compact group. A multivariable
version of the Fourier algebra of a discrete group was introduced by E.
Effros and Zh.-J. Ruan in [7], and its completely bounded multipliers
were characterised in terms of a multilinear matrix version of classical
Schur multipliers, introduced in the same paper.

In [15], multidimensional Schur multipliers associated with mea-
sure spaces were introduced and identified with a natural extended
Haagerup tensor product [9] up to an isometry. In the present paper,
we show that this identification is a complete isometry. We define the
n-dimensional Fourier algebra A"(G) of an arbitrary locally compact
group and show that it is a closed ideal of B"(G). We characterise
the set M®A(G) of completely bounded multipliers associated with
A"(@G) in several equivalent ways (Proposition 5.4, Theorem 5.5, The-
orem 5.7). In particular, we show that there exists a completely iso-
metric inclusion of M®A(G) into the space of all n + 1-dimensional
Schur multipliers on G with respect to the (left) Haar measure. Its im-
age is a space of multidimensional Schur multipliers of Toeplitz type.
Our results imply that if G is amenable then B"(G) can be completely
isometrically identified with M®A(G). In the case G is abelian, we
show that B"(G) can be identified with more general classes of multi-
pliers on G arising from partitions of the variables (Theorem 6.4). In
particular, every multiplier of A”(G) is in this case automatically com-
pletely bounded. We obtain a multidimensional version of the classical
result that if ¢ € (>°(Z) then the function ¢ € (*°(Z x Z) given by
o(x,y) = ¢(x — y) is a Schur multiplier if and only if ¢ is the Fourier
transform of a regular Borel measure on the unit circle.

2. PRELIMINARIES

We begin by recalling some basic notions and results from Eymard’s
work [10]. If H and K are Hilbert spaces we let B(H, K) be the space
of all bounded linear operators from H into K. We write B(H) =
B(H, H). Throughout the paper, G will denote a locally compact o-
compact group with a left Haar measure m and a neutral element e.
As usual, LP(G), p = 1,2, will denote the space of all complex valued
Borel functions f on G such that |f|P is integrable with respect to m.
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The space L'(G) is an involutive Banach algebra; its enveloping C*-
algebra is the group C*-algebra C*(G) of G. We denote by W*(G) the
enveloping von Neumann algebra of C*(G) and let w : G — W*(G)
be the canonical homomorphism of G into W*(G). Let A be the left
regular representation of L'(G) on the Hilbert space L?*(G); the closure
of its image in the operator norm is the reduced C*-algebra C}(G) of G,
and its closure in the weak operator topology is the group von Neumann
algebra VN(G) of G. We use the symbol A to also denote the left regular
representation of G on L*(G).

Let B(G) = C*(G)* be the Fourier-Stieltjes algebra of G; if f € B(G)
then f can be identified with a function (denoted in the same way and)
given by f(z) = (f,w(z)). Any such f has the form f(z) = (7(x){,n)
for some unitary representation m : G — B(H) and vectors &, € H,
and the space B(G) is a Banach algebra with respect to the pointwise
product. By A(G) we denote as usual the Fourier algebra of G, that
is, the ideal of B(G) of all functions f of the form f(z) = (A\.&,7)
where £, € L*(G). Then A(G) can be canonically identified with the
predual of VN(G): if f(x) = (A&, m), x € G, then (f,T) = (T¢,n),
T € VN(G).

We next recall some notions and facts from Operator Space Theory.
We refer the reader to [1], [8], [16] and [19] for further details. An
operator space is a closed subspace &€ of B(H, K) for some Hilbert spaces
H and K. If n,m € N, we will denote by M, ,,,(§) the space of all n
by m matrices with entries in £ and let M,(E) = M, (). Note
that M, ,,,(€) can be identified in a natural way with a subspace of
B(H™, K™) and hence carries a natural operator norm. If n = oo
or m = oo, we will denote by M, ,,(€) the space of all (singly or
doubly infinite) matrices with entries in €& which represent a bounded
linear operator between the corresponding amplifications of the Hilbert
spaces and set My () = My (E). We also write M, ,, = M, ,,(C)
and Mo, = My oo(C). If € and F are operator spaces, a linear map
® : & — F is called completely bounded if the map ®*) : M, (£) —
My(F), given by ®*)((a;;)) = (®(ai;)), is bounded for each k € N and

||| e et supy, | @®)|| < co. The map @ is called a complete isometry

if ®*) is an isometry for each k € N, and a complete contraction if
1@l < 1.

If €& (resp. F) is a linear space and || - || is a norm on My (&)
(resp. My(F)), k € N, then one may speak of completely bounded,
completely contractive and completely isometric mappings from &€ into
F as described above. Ruan’s celebrated abstract characterisation of
operator spaces identifies a set of axioms on the family (|| - ||x)7>, of
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norms in order that £ be completely isometric to an operator space;
see [8] for a description of these axioms and applications. An operator
space structure on a linear space £ is a family (|| - ||x)52, where || - ||&
is a norm on M;(&), with respect to which £ is completely isometric
to an operator space.

Let £,&1,...,&, be operator spaces, ® : & x --- x &, — & be a
multilinear map and

OE) 2 Mi(E)) X My(E) x -+ x Mp(E,) — My(E)

be the multilinear map given by

k 1 n 1 2 n
(1) oW, aMyy = Y B(a),,. a2, Al ),
p27“'7pn
where o' = (a,,) € Mi(&), 1 < p,q¢ < k. The map ® is called
completely bounded if there exists C' > 0 such that for all £ € N and
all elements a’ € My(&;),i=1,...,n, we have
[eW(a,....a")| < Clla'] ... [la"].
If £ and &, i« = 1,...,n, are dual operator spaces we say that &

is mormal if it is weak™® continuous in each variable. We denote by
CB7(& x -+ x &,,E) the set of all normal completely bounded multi-
linear maps from & x --- x &, into &; this space can be equipped with
an operator space structure in a canonical way (see [9]).

E. Christensen and A. Sinclair [6] gave a characterisation of com-
pletely bounded (resp. normal completely bounded) multilinear maps
defined on the direct product of finitely many C*-algebras (resp. von
Neumann algebras). We will need the following generalisation of Corol-
laries 5.7 and 5.9 of [6] whose proof is a straightforward generalisation of
the proof of Corollary 5.9 of [6]. If A is aset welet A" = Ax - x A.

—_—

n

If M is a von Neumann algebra and R; C M, j =1,...,n — 1, are
von Neumann subalgebras, we say that a mapping ® : M" — B(H) is
(R1, ..., Ryn_1)-modular if

O(ayry, aora, ... a,) = ®(ay, riag, ..., re_1a,),
forall aj,...,ap, € M, 17, €R;,j=1,...,n—1

Theorem 2.1. Let M C B(K) be a von Neumann algebra, R; C M be
a von Neumann subalgebra, j =1,...,n—1, H be a Hilbert space and
O M™ — B(H) be a multilinear map. The following are equivalent:
(i) ® is completely bounded, normal and (R4, ..., R,—1)-modular;
(ii) there exists an index set J and operators V; € M;(R}), j =
L...,n—1, Vo € B(K',H) and V,, € M, ;(H,K”) such that for all
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ai,...,a, € M, we have
D(ay, ... a,) = Volar @ 17)V1 ... Vooi(a, @ 1) V.

Moreover, if (i) holds then ||®||4 equals the infimum of ||Vo|| ... || V.l
over all representations of ® as in (ii) and this infimum is attained.

Tensor products will play a substantial role in the paper. We denote
by V' © W the algebraic tensor product of the vector spaces V and W.
If & C B(H;) and & C B(H,) are operator spaces and u € & © &,
the Haagerup norm of u is given by

k
> b
j=1

The completion & ®;, E; of &1 ® &, with respect to || - ||, is the Haagerup
tensor product of & and &. We refer the reader to [8] for its properties
and to [9] for the definition and properties of the extended Haagerup
tensor product £ ®.,E and the normal Haagerup tensor product £ ®,p,
&y of & and &. We recall the canonical identifications (£ ®j, £)* =
EY Ren &5 and (&1 ®ep E2)* = EF ®op 5. 1 § € & then the left slice
map Ls : & Rep E2 — &5 is the unique completely bounded map given
on elementary tensors by Ls(a ® b) = §(a)b [9]. Similarly, for § € &
one defines the right slice map Rs : & Qcp E2 — &5

If X is a Banach space we denote by by (X’) the unit ball of X. Banach
space duality is denoted by (-, -). We denote by 1y the identity operator
on a Hilbert space H and, for a cardinal J, write 1; = 1,2(5. The
identity operator on £(N) is often denoted simply by 1.

1
2 k

:u:Zaj@)bj

=1

1
k 2

§ *

j=1

[ulln = inf

3. THE OPERATOR SPACE OF SCHUR MULTIPLIERS

In this section we recall the definition of multidimensional Schur
multipliers associated with measure spaces and prove a completely iso-
metric version of the characterisation result, Theorem 3.4, of [15].

Let (X, pi), i = 1,...,n, be standard measure spaces and

D(X1,..., X)) =LA X1 x X3) 00 LA (X1 x X,),

where the direct products are equipped with the corresponding product
measures. We identify the elements of I'( Xy, ..., X,,) with functions on

Xy X Xogx Xogx -+ x X1 X X,_1 XX,

in the obvious fashion. We equip I'(X3,..., X)) with the Haagerup
tensor norm ||-||,,, where the L?-spaces are given their opposite operator
space structure (see [19]) arising from the identification f «— T} of
L*(X xY') with the class of Hilbert-Schmidt operators from L?*(X) into
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L*(Y) where, for f € L*(X x Y), we let T} be the (Hilbert-Schmidt)
operator given by

@ (W) = /X fape@)de, €€ LX), ye,

dr denoting integration with respect to u. If f € L?*(X x Y) we let
| fllop be equal to the operator norm of 7.
For each ¢ € L>®(X; x -+ x X,,) let

Sy T(X1,. .., X,) — L*(X1 x X,,)

be the map sending f; ® --- ® f,o1 € I'(Xy,...,X,) to the function
which maps (z1, z,) to

/(,D(ZEl, Ce ,ZL‘n>f1(ZL‘1, ZEQ)fQ(ZEQ, 173) . fn—l(xn—ly l’n)dl‘g Ce dl’n—l-

It was shown in Theorem 3.1 of [15] that S, is a bounded mapping
when I'(X7, ..., X,,) is equipped with the projective norm where each
of its terms is given the L*-norm, and that ||S,|| = [|¢]|c-

Definition 3.1. A function ¢ € L>®(X; X --- x X,,) is called a Schur
multiplier (relative to the measure spaces (X1, 1), ... (Xn, ftn)) if there
exists C' > 0 such that ||S,(u)|lop < Cllully, for alluw e I'(Xy,...,X,).

The smallest constant C' with this property is denoted by ||¢||m-

Let H; = L*(X;), i =1,...,n, and ¢ € L>(X; x --- X X,,) be a
Schur multiplier. It was shown in Section 3 of [15] that ¢ induces a
normal completely bounded multilinear map

S, B(H, 1, H,) x --- x B(Hy, Hy) — B(H,, H,)

such that ||S<p||cb = H‘PHm and S¢<Tfn717""Tf1) = S@D(fl ® - ®
fno1), for all f; € L?*(X; x X;11), i = 1,...,n. We denote by S =
S(Xy,...,X,) the collection of all Schur multipliers in L>(X; X -+ x
X,). It follows that S can be canonically embedded into CB?(B(H,,—1,
H,) x---xB(Hy, Hy),B(Hy, H,)). Thus, S inherits an operator space

structure from the latter space. More precisely, if ¢ = (¢,4) € Mi(S)

we have [|@llme = [1(S,,.,)llen, where S, = (S, ) is identified with

a normal completely bounded multilinear map from B(H,_ i, H,) X
.-+ x B(Hy, Hy) into My,(B(Hy, Hy,)). Note that a matrix ¢ = (¢, ,) €
M;(S) can be viewed as a map ¢ : Xy X -+ X X, — M, by letting
o(x1,. .., xn) = (Ppg(T1, ..., 7)) € M.

The following result is a matricial version of Theorem 3.4 of [15].

Theorem 3.2. Let ¢ = (v,,4) € My(S). The following are equivalent:
(i) llelmr <1;
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(1) there exist essentially bounded functions a1 : X; — Mooy, ay :
Xn = My and a; : X; — My, 1 =2,...,n—1, such that, for almost
all (z1,...,2,) € X1 X -+- X X,,, we have

o(x1, ... xn) = an(zp)an—1(Tp_1) ... a1(x1) and esssupH l|la;(x;)| < 1.
r; €X; i=1

Proof. (1)=(ii) Let D; be the multiplication masa of L>°(X;). The

proof of Theorem 3.4 of [15] implies that the mapping

S, < (S, ):B(H, 1, H,) x - x B(Hy, Hy) — M(B(Hy, H,))

is normal, completely bounded, and (D,, ..., D;)-modular in the sense
that

gcp(AnTn—lAn—ly e 7T1A1) -

(An ®@ 1) S (1, An 1 T, -+, AT ) (AL @ 1),
whenever A; € D;, i = 1,...,n. A modification of Corollary 5.9 of
[6] shows that there exist operators V; : Hf — H® V;: H® — HX,
i=2,...,n—1and V, : H® — H" such that the entries of V; belong
to D;, 1T, ||V;|| < 1 and
S‘p(Tn_l, e ,Tl) == Vn(Tn—l & I) e (Tl X ])Vi,

for all T; € B(H;, Hiy1), i = 1,...,n. If Vi = (AL,)ss, where A,
is the multiplication operator corresponding to a;t € L>(X;) let a; :
X; — M be the function given by a;(x;) = (al,(2))ss, i € X;,
t=1,...,n. Define a; : X1y — My and a,, : X,, — M}, « similarly.
Then esssup,, cx, [ 11y llai(zs)|| = I [|Vi]| < 1.

Let VP (resp. Vi?) be the pth row (resp. the gth column) of V,, (resp.
Vi). Let a? : X,, — Mo (resp. af : X1 — M) be the function
corresponding to VP (resp. V}). We have that

Spyi(Tnty oo, 1) = V(T @ DV Vo(Th @ TV,

for all T; € B(H;, H;i11),i=1,...,n— 1. It follows from Theorem 3.4
of [15] that

Opg(T1, o Ty) = ab(Tn)an-1(Tn_1) ... az(z2)ai(zy), ae. x; € X,
Since this holds for all p,q =1,...,k, we have that

o(x1, .. ) = ap(zp)an_1(Tp_1) - .. az(x2)ai(xy)

for almost all x; € X;,i=1,...,n.
(ii)=(i) In the notation of (i) we have that

Ppg(T1; - ) = a@p(Tn)an—1(Tn-1) . . . az(22)ai(21),
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for almost all x; € X;, ¢ =1,...,n, which in turn implies that
Sppi(Tnty oo, 1) = V(T @ DV . Va(Th @ TV,
and hence that
So(Tp1,.. ., 1) = VT @ DVyy ... Vao(Ty @ DV,

for all T, € B(H;, Hi41), i =1,...,n — 1. It follows that ||S,| < 1 and
50 [|@llme < 1. <

Remark 3.3. Theorem 3.2 amounts to the statement that the identifi-
cation of the set of all n-dimensional Schur multipliers on X; x---x X,
with the extended Haagerup tensor product L>®(X,,) ®ep -+ - @ep L(X7)
discussed in the remark after Theorem 3.4 of [15] is completely isomet-
ric.

4. THE MULTIDIMENSIONAL FOURIER-STIELTJES ALGEBRA

In this section we recall the notion of the Fourier transform of a com-
pletely bounded multilinear map on the direct product of finitely many
group C*-algebras studied in [22], which will provide the basis for our
study of multidimensional multipliers. We discuss a description of the
multidimensional Fourier-Stieltjes algebra in terms of tensor products
and explain its relation to the one dimensional case as well as to the
notion of a bimeasure studied in [11].

Let n € N. An n-measure on G is a completely bounded multilinear
map ¢ : C*(G)" — C. We note that the term “bimeasure” was used
in [11] to designate a bounded bilinear form on Cy(G) x Cy(H ), where
G and H are locally compact groups. We will show below that in the
case H = (G is abelian, the notion of a bimeasure agrees with that of a
2-measure.

We let M™(G) denote the space of all n-measures on G; by the
universal property of the Haagerup tensor product, we have that

*

We equip M"(G) with the standard operator space structure of a dual
operator space arising from the above identification. Suppose that
® € M"(G). It is standard (see p.156 of [22]) to extend P to a normal
completely bounded map P : W*(G) Rgh *** Qoh W*(GZ — C.

n

Let
B"(G) ={f € L*(G") : there exists & € M"(G) such that
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(3) flay, .. x) = D(w(x), ... ,wl,)), T1,...,2, € G}

Since {w(x) : x € G} generates W*(G) as a von Neumann algebra, we
have that the element ® € M"(G) associated with f € B"(G) in (3) is
unique. We call f the Fourier transform of ® and write f = d. Thus,
B™(@) is in one-to-one correspondence with M™(G); we equip it with
the operator space structure arising from this correspondence. Thus, if
(frq) € M(B™(G)) and ®,, € M"™(G) is such that ®,, = f,,, we have
that ||(fo.o) |l Br@) = | (Ppg) || aam (). Since the map x — w(x) is
weak™® continuous, the space B"(G) consists of continuous functions.
By Corollary 5.4 of [22], B*(G) is closed under the pointwise product.
By [2],

(@) B"(G) = B(G) Sur -+ Gun B(C)

N /
-

n

up to a complete isometry. We note that if f € B"(G) and a; € L'(G),
t=1,...,n, then

(5)

(1®- - -Qap, f) = . flzr, .o xn)ar(xq) .. an(x,)dm(zy) ... dm(z,,).

Indeed, (5) is obviously true if f is an elementary tensor, and by lin-
earity, if f is in the algebraic tensor product of n copies of B(G). If
f € B™(G) then there exists a bounded net {f,}, in the algebraic
tensor product of n copies of B(G) which tends to f in the topology
determined by the duality between B"(G) and W*(G) © --- © W*(G)

n

[9]. But then
fu(-flw--;mn) = <f,j7w($1)®"'®W(l'n)>
— (fiw(x) @ - Quw(z,)) = f(x1,...,2,)

for all x1,...,2, € G and (5) follows from the Lebesgue Dominated
Convergence Theorem.
The following fact proved in [22] will be of importance to us.

Theorem 4.1. [22] A function f belongs to B"(G) if and only if there
exist a Hilbert space H, vectors £, € H and continuous unitary rep-
resentations m; of G on H, 1 =1,...,n, such that

fzp, ... x) = (m(zy) ... m(20)E,m), 21,...,2, € G.

Moreover, the norm of f equals the infimum of the products ||€||||n]|
over all representations of f of the above form.

Theorem 4.1 has the following consequence.



10 I. G. TODOROV AND L. TUROWSKA

Proposition 4.2. The multiplication in B"(G) is completely contrac-
tive.

Proof. Let (fpq); (9pq) € Mp(B"(G)) and ®,, (resp. ¥,,) be the n-
measure such that ®,, = f,, (resp. W, , = gpq). Let & = (O,,)
and U = (U, ,); then ® and ¥ can be viewed as completely bounded
mappings from C*(G)" into M. Moreover, ||(fpq)llme @) = [Pl
and [[(gp.q) 8@y = (W ]]eb-

Let h,q = Zle fprGrq and Q,, : C*(G)" — M be the map given
by

k
Qq(ar, ... a ZCI)M a, ..., an)¥, (ar,. .., a,)
r=1

(the product on the right hand side being that of M;). Then €, is
glven in the same way as qu, with ®,, and ¥, , replaced by (DpT and

\Ifrq, respectively. Moreover, QM = h, 4. It is clear that if Q = (€, ,)
then ||Q|o < ||P||co|| V]| cp- The claim follows. <

We note that Theorem 4.1 implies that B'(G) coincides with the
Fourier-Stieltjes algebra B(G) of the group G introduced by Eymard
[10].

Suppose that G is abelian and n = 2. In this case M?(G) coincides
with the set of all bimeasures on the character group G of G studied
n [12], while B?(G) coincides with the set of their Fourier transforms.
Indeed, let ® € M?(G). Since G is abelian, C*(G) is canonically *-
isomorphic to CO(G). Thus, ® can be considered as a bounded bilinear
form on Cy(G) x Cy(G) (in other words, a bimeasure on G in the sense
of [12]). On the other hand, for any locally compact Hausdorff space
X there exists a canonical injection ¢ : L2(X) — Cy(X)** (where
L°(X) is the algebra of all bounded Borel functions on X)) given by
() () = [y fdp, p e Co(X)*. Let @y : L>(G) x L2(G) — C be the
extension of ® described in Corollary 1.3 of [12]. If z € G let & be
the character of G corresponding to x~1. It is straightforward to check
that

(6) 1(Z) = w(x).

We next observe that

(7) O(u(f), (9)) = @u(f,9), [f.9€ L7(G).

To this end, let p; and po be probability measures associated with @
through Grothendieck’s inequality and let {f,} C Co(G) and {ga} C
Co(G) be bounded nets such that f, — «(f) and go — u(g) in the



MULTIPLIERS OF MULTIDIMENSIONAL FOURIER ALGEBRAS 11

weak* topology of W*(G). Then f, — f in L2(G, 1) and go — g
in L?(G, pa). By the definition of ®,(f,g) (see [12]), we have that
it is the limit of the net {®(fa,ga)}a. Identity (7) now follows by
approximation.
Now note that (6) and (7) imply
1(7,9) = (w(x),w(y), .y €G.

It follows from Definition 1.10 of [12] that B?(G) coincides with the set
of all Fourier transforms of bimeasures on G.

5. MULTIPLIERS OF A™(G): NON-ABELIAN GROUPS

In this section, we introduce the multidimensional Fourier algebra
A™(G) of a locally compact group G. For each partition P of the set
{n,...,1} into k subsets, we define a completely isometric embedding of
A*(@) into A™(G). Using these embeddings, we define the (completely
bounded) multipliers of G relative to P. We characterise the completely
bounded multipliers corresponding to the partition with £ = 1 in a
number of ways, generalising results from [7] and [21].

Let

AM(G) ={f € L=(G") : there exists a normal c.b. multilinear map

¢ : VN(G)" — C such that f(z,,...,21) = P(As,s -, Asy) }-
Since {A; : * € G} generates VN(G) as a von Neumann algebra, the
element ¢ associated with f € A"(G) in the above definition is unique.

As before, we call f the Fourier transform of ® and write f = ®.
Set VN(G)®sn = VN(G) Qqp - - - ®on VN(G). By [9], A*(G) can be

-~

identified with the predual of the operator space VN(G)%n (see [9]).
Hence, A™(G) possesses a canonical operator space structure; up to a
complete isometry,

AMG) = AG) @en -+ Do A(G).

-~
n

In particular, || f||an(q) is by definition equal to the completely bounded
norm of its associated map ®. Moreover, the elements f € A"(G) have
the form

f(CCn,...,iCl) = <)‘In ®®)\I17f>? Tn,...,T1 € G.

It follows from Corollary 5.7 of [6] that a function f € L>°(G") belongs
to A™(G) if and only if there exists an index set J, operators V; €
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B(L*(G)”),i=1,...,n—1 and vectors £, € L?(G)” such that for all
Tp,...,2r1 € G we have

(8)
f(xna s 7x1> = ((Axn ® 1])Vn71()\xn_1 ® 1J)Vn72 s ()\xl @ 1])5777) :
Moreover, || f|lanc) is equal to the infimum of |Vi||...{|[Va—1[[[[E]l[|nll

over all representations of the form (8) and this infimum is attained.

A fundamental fact proved by Eymard [10] is that A(G) is an ideal
of B(G). We now prove the multidimensional version of this result. In
the case G is discrete, this was stated in [7] (p. 214).

Theorem 5.1. A™(G) is a closed ideal of B"(G).

Proof. We only consider the case n = 2; the general case can be treated
similarly. Let f € A%(G). Then f(z,y) = (A @ 1)V(\, ® 1,)&,7)
for some index set .J, vectors &,n € L*(G)” and a bounded operator
V € B(L*(G)”). Letting m be the ampliation of multiplicity J of the left
regular representation of C*(G) on L*(G)” and ® € (C*(Q) @, C*(G))*
be given by ®(a,b) = (w(a)Vn(b)§,n) we see that f = ® and hence
f € B3(G). Thus, A*(G) C B*(G); from the injectivity of the extended
Haagerup tensor product it is clear that A?(G) is closed.

Now let f € A%(G) be given as in the first paragraph and g € B*(G).
By Theorem 4.1, g(z,y) = (7(z)p(y){’,n’) for some representations
m,p: G — H and vectors £,/ € H. Thus,

(f9)(@,y) = (M@ Ly@m(2))(Veln)(A @1l @py)(ERE),nen).

By [4, Lemma 2.1], there exist unitary operators U and W and index
sets J' and J” such that U\, ® 1, @ w(z))U* =\, ® 1 and W (A, ®
1y @ p(y))W* =\, @ 1. It follows that

(f9)(,y) = (Aa @ 1) T (Ay @ 152)&0, 7o),

where T = U(V @ Ig)W*, & =W(E @) and g = U(n®@n'). This
clearly implies that fg € A*(G). <

Suppose that 1 < k < n. By a block (k,n)-partition we mean a
partition of the ordered set {n,n —1,...,1} into k subsets of the form
Hn,...;nk—1}y ooy {na — 1, ... 1}} where n > ngy > -+ > ny >
1. Suppose that P is the block (k,n)-partition associated with the
sequence n > ny_1 > --- > ny > 1 as above. We define a mapping 6p :
Ak(G) - An(G) by lettlng (67)f)(.1'n, s 7x1) = f(yk7 s 73/1) where
Yi = Tp;—1---Tn,_,, L =1,...,k, and we have set no =1, np =n + L.
It follows from (8) that 6p maps A*(G) into A™(G). We let § = 0p,
where Py is the (1, n)-partition; thus, # maps A(G) into A"(G).
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If A and B are algebras and P is the (k, n)-partition associated with
the sequence n > ny_1 > -+ >n; > 1, we say that a map ¢ : A" — B
is P-modular if

D(ay,...,qa,a;1,...,a1) = P(an,...,a;,aa; 1,...,a1)
whenever a,ay,...,a, € Aand i & {1,ny,...,nk_1}.

Proposition 5.2. For each block (k,n)-partition P, the map 0p :
A¥(Q) — A™(G) is a completely isometric homomorphism. Moreover,

ranfp = {U : U : VN(G)" — C is P-modular}.

Proof. Suppose that P is associated with the sequence n > ny_; >

- > nq > 1. It is obvious that p is linear and multiplicative. Suppose
that (f,,) € M.(A*G)) and let ®,, : VN(G)* — C be such that
Dpy = frg Set ® = (d,,); then & can be viewed as a completely
bounded multilinear mapping from VN(G)* into M,. There exist an
index set J and operators Vi, ..., Vi1 € B(L*(G)7), Vo : C" — L*(G)’
and V; : L2(G)” — C" such that

(I)()‘ykv T 7/\111) = Vk(Ayk ® ]‘J>vk—1(>\yk71 ® 1J>Vk—2 s ‘/1()‘% ® 1J)VEJ

and || @[ = TTEo||Vi||l. Let ¥,, : VN(G)" — C be such that ¥,, =
Op(fpq): 1 <p,q<rand ¥ = (¥,,). Then

(9) \I[(/\a:n; cee 7)\:51) = Vk()\mn:pnk71 ® 1J)Vk—1 s ()\mn1,1...ml ® 1J>‘/0
It follows that

10 (o)) It aniey < ol Vill = 11(Fa) lag, car(c»
Thus, 0p is completely contractive.

Suppose that for some f € A*(G) we have 0p(f) = 0. This implies
that f(x,...%n_ . s @py—1...21) =0 forall z; € G, i =1,...,n.
Setting x; = e whenever ¢« & {1,ny,...,n,_1}, we see that f =
Thus, 0p is injective.

Fix f = (foq) € M.(A¥(@Q)). Tt is clear from (9) that the element
U = (U,,) for which U, , = 0p(f,,) is P-modular over VN(G). By
Theorem 2.1,

165 (llar (@) = inf gl IVil,
where the infimum is taken over all operators V; for which U(\,, ...,
Az, ) equals the right hand side of (9), for all z,...,z, € G. Since 0 is
injective, if (9) is a representation for ¥ then

f(yk: s 7?J1) = Vk()‘yk & ]-J)‘/}c—l<>\yk 1 X ]-J)‘/k 2 (/\ml ® ]-J)‘/E)a
for all y1,...,yr € G. Tt follows that || f||as, are) < TEgl|Vi]| and so
I f I, cak () < H@P (f)||am,(an(c))- Thus, Op is a complete isometry.
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Let ¥ : VN(G)* — C be P-modular. It remains to show that
U € ranfp. By Theorem 2.1, there exist an index set and operators
Vi,...,Vk_1 and vectors &, n such that

U(an,...,a1) = ((an...an, @1)Vier ... Vi(an,—1...a1 @ 15)&,m),
a,...,a, € VN(GQ). Letting f € A*(G) be the function

f(ykv cee 7y1> = (()\yk ® 1J)‘/k*1 s ‘/1<)\y1 ® 1J)£,77),

we see that Op(f) = U O

Definition 5.3. Let P be a block (k,n)-partition. We call a function
© € L>®(G™) a P-multiplier of A(G) if

FeANG) = @bp(f) € A"(G).

We denote by MpA(G) the collection of all P-multipliers of A(G).
If o € MpA(G) and the map f — ©Op(f) from A¥(G) into A™(G)
is completely bounded we call ¢ a completely bounded (or c.b.) P-
multiplier of A(G). We denote by M A(G) the collection of all c.b.
P-multipliers of A(G).
If P is the block (1,n)-partition we set M, A(G) = MpA(G) and
MPAG) = MPA(G).

Remarks (i) If £ = n = 1 the above definition reduces to that of
multipliers and completely bounded multipliers of A(G).

(ii) An application of the Closed Graph Theorem shows that if ¢ €
MpA(G) then the map f — ©0p(f) from A*(G) into A"(G) is bounded.

Proposition 5.4. Let P be the block (k,n)-partition associated with

the sequence n > ny_1 > --- >mnq > 1. The following are equivalent:
(i) ¢ € MPAG);
(ii) The map

(Azps s Azy) = @(Tny oo T1) Mgy, @A Q@ Ay 1oy

Tng—1--Tnp_q

extends to a c.b. normal map ®, : VN(G)"” — VN(G)®on.

Proof. Suppose that the map T, : A*(G) — A"(G) given by f — ©0(f)
is completely bounded. Then its adjoint

77 : VN(G)®n — VN(G)%on
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is completely bounded. For z1,...,2, € Gsetyp =@y ... Tpy, ..., U1 =
Tpy—1...21. If f € A(G) we have

(To(Aen @@ A1), f) = (Ao @ @ Aa T f)
Az, @ -+ @ Aay, 00(f)) = (00(f)) (n, - 71)
= ©(@ny o2 fWry - 1) = (@ Xy oo, T1) Ay, @ - @ Ay )
Thus, the map @, in (i) can be taken to be T. Conversely, if (ii)

holds then the map @, in (ii) has a completely bounded predual T,
and the chain of equalities above implies (i). <

The mapping ¢ — @, from Proposition 5.4 is an embedding of
Mg A(G) into the space of all normal completely bounded maps from
VN(G)®n into VN(G)®n and hence gives rise to an operator space
structure on M@ A(G). Namely, given a matrix

¥ = (Sop,q) S Mm(MbeA<G))

we let ||<p||Mm(M7gbA(G)) = ||®y|lcr, where @, = (®y,,) is the corre-
sponding mapping from VN(G)®sn into M, (VN(G)®on).

In the next theorem, we relate the completely bounded P-multipliers
to multidimensional Schur multipliers in the case where P is the (1,n)-
partition. It generalises Theorem 4.1 of [7], which concerns discrete
groups, to arbitrary locally compact groups.

Theorem 5.5. Let ¢ € L®(G") and S be the space of all n + 1-
dimensional Schur multipliers with respect to the left Haar measure on
G. The following are equivalent:

(i) @€ MPAG);
(ii) The function p € L>(G™*1) given by
ATy, Tpyr) = gp(x;}rlxm o myta)
belongs to S.
Moreover, if k € N and p,, € MPA(G), 1 < p,q <k, then

(ep)lanearzaicy = 1(@pa)llans)-

Proof. ()= (ii) Let ¢ = (ppq) € Mp(MPA(G)) with [[o]|ag e acey)
<1, &,,, be the c.b. normal map from Proposition 5.4, and ®, =
(®y,.,)- By [6], there exist operators V; € B(L*(G)>), i = 2,...,n,
Vi € B(L*(G)*, L*(G)®) and V, 1 € B(L*(G)>~, L*(G)*) such that
ITZHIVil < 1 and

(@p,q(x;ilxm S 7x51$1)Ax;i1A$1)p,q =

(10) Var1Oyor Aay @ DVaArida,, © DVot o (e, @ DWA,
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where the ampliations are of infinite countable multiplicity. Let a; :
G — B(L*(G)*, L*(G)*®) and a, 11 : G — B(L*(G)>®, L*(G)*) be given
as follows:

ar(21) = Ae @DVI(A, 1 @1k), ang1(@ng1) = (Aa s @16) Vaga (A1 ®1).
Let also a; : G — B(L*(G)*), i =2,...,n, be given by

ai(x;) = (A, ® V(A1 @ 1), ;€ G
It follows from (10) that, for all xy, ..., 2,1, we have

go(x;}rlxm Ty ) ® L2
(@p,q(x;-sl-lxm e vmglxl)lLQ(G))nq
Aznis @ L) (@pg(Tnir@n, - - >x51$1)Ax;ilel)p,q(Ax;1 ® 1x)

= Gpi1(Tpi1)an(Ty) ... a1 ().

Let & be a unit vector in L?(G) and E be the projection onto the one
dimensional subspace of L?(G) generated by . The last identity implies
that ©(z, L@, 25 '21) = (Bani1(Tni1))an(2s) - . . as(z) (a1 (1) E),
for all z; € G, i = 1,...,n+ 1. It follows from Theorem 3.2 that
©pq €S and

”(Sopq)“mk < HRHHVH < 1.

(ii)=(i) Let ¢ € L*(G™) and suppose that ¢ is a Schur multiplier
with respect to the left Haar measure. By Theorem 3.4 of [15], the

fU.HCtiOH ¢ € Loo(Gn+1) given by d](yl? cee 7yn+1) = @(yl_la e ay;—il—l)a
Y1, - - Yne1 € G, is also a Schur multiplier with respect to the left Haar
measure. Set y; = x;lx;rll coats, i =1,...,n, and ¥y, = s. We
have that

VWYL, Unst) = CWUnsr¥n s Unn s Y2y ) = @(Tny Tty - . ., 21).

By Theorem 3.4 of [15], there exist functions a; : G — My, i =
2,...,n,a1:G— My, and ap41 : G — M o such that

VW1, Ynt1) = gt Ynt1)@n(Yn) - - - al(yl)u Yt Uns1 € G.

For each i = 2,... n, let A; € B(L*(G) ® ¢*) be the operator corre-
sponding in a canonical way to a;. Namely, A; is given by (Azé )(s) =
a;(s)E(s), s € G, where we have identified L?(G) ® (% with the space
L?(G; ly) of all square integrable ¢?-valued functions on G. Similarly,
let Ay € B(L*(G), L*(G) ® () and A,,, € B(L*(G) ® 2, L*(G)) be

the operators corresponding to a; and a, 1, respectively.
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Let f € A(G). Then there exist &,n € L*(G) such that

O(F)(ns o s21) = Oy s 1) = /G E(ar? . o s)n(s)dml(s).

We have

(L0(f))(zn, .. 11)
= p(zn,...,x1)f(xn...21)

e
= / 1 (8)an(zbs) . ag(x7t . ats)E(art .. a ts)n(s)dm(s)
e
On the other hand,

(Anp1(Ae, @ DA, Ar(Ag, @ 1) AL )

[ (e ® DA Ay © DA, (A1), i)
- / i1 (5) (P ® DAy - As(Ay, ® 1) A48)()7()dm(s)

- / i1 (8)(An ... As(Ngy ® 1) ALE) (2, 8)n(s)dm(s)

= / ans1(8)an(x;ts) . cay (ot x ) (et ts)n(s)dm(s) .
G
It follows that

(11)  (@0(f))(@n; - - -, 21) = (An1(Aa, ® D An ... Ax(As, ® 1) AiE, )

and hence p0(f) € A™(G). Thus, ¢ € M,A(G) and, by Remark (ii)
after Definition 5.3, the map f — ¢f(f) is bounded. Equation (11)
implies that if ®, is its adjoint then

(12)

DNy, @ @ Agy) = Anp1( Mg, ®1) 0. (A @D A, 29,...,2, €G.
Thus, ®,, is completely bounded, and hence ¢ € ML A(G).

Now suppose that ¢ = (¢,4) € Mi(L>*(G™)) and that ||(Ppg)||mi <
1. Let 9, , be the map corresponding to ¢, , as specified in the case
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k = 1 above and ¢ = (¢,,). Theorem 3.2 implies that [|¢||mr =
|@|lme < 1. Thus, in the notation of Theorem 3.2, ||Sy||x < 1, where
Sy = (Sy, . )pq is the canonical normal completely bounded multilinear
map from B(L*(G)) x --- x B(L*(G@)) into M(B(L*(G))). By Theo-
rem 3.2, we can write Y(y1, ..., Yn+1) = Gni1(Ynt+1) ... a1(y1), where
a, G —= My, 1 =2,....,n, a1 : G = Myyand a1 : G — M
are functions such that esssup,, . . ¢ M Has(y:)]| < 1. As be-
fore, let A; € B(L*(G)>®), i = 2,...,n, Ay € B(L*(G)*, L*(G)*) and
A1 € B(L*(G)*°, L*(G)¥) be the operators corresponding to the a;’s
in the canonical way. Let A? , (resp. A{) be the pth row (resp. the
qth column) of A,y (resp. A;). By (12), @, (As, @ - @ Ap,) =
AP (Ag, @ DA, .o As(N, @ 1)AS, for all y,... 2, € G. It follows
that if &, = (®,,,) then (12) holds in the case under consideration
as well. Since TI71}'[|4;|| < 1, we conclude that ||®,|s < 1 or, equiva-
lently, [|olla, ugray < 1. ¢

Corollary 5.6. We have that B"(G) C M®A(G). Moreover, the in-

clusion map is a complete contraction.

Proof. The inclusion follows from Theorem 4.1, Theorem 5.5 and The-
orem 3.4 of [15].

Let ¢ = () € My(B(G)), [pllan(smy < 1 and ® : C*(G)" —
M, be the completely bounded mapping associated with . By The-
orem 5.2 of [6], there exist Hilbert spaces Hy, ..., H,, representations
m; » C*(G) — B(H;) and operators V; € B(H,CF), V,,., € B(C* H)
and V; € B(H), 1 =2,...,n, such that

(I)(ala ce- 7an) = ‘/171'1(@1)‘/2 s Vnﬂ-n<an)vn+1

and T4 Vi|| < 1. Let #; : W*(G) — B(H) be the canonical normal
extension of m;, ¢ = 1,...,n. Since the extension ® of ® to a normal
completely bounded map from W*(G)™ into M, is unique, we have that

by, by) = ik (b)Va .. Vaitu(ba) Vi1, bi,... by € WH(G).

Let ai(y1) = Tn(w(¥1)) Vas1, a2(ye) = %nfl(w(yQ))Vnﬁn<w(y2_l))> cee
i1 (Yn+1) = ViT1 (@ (Yny1))- Then
B nr1) = PwWpl)wWn) - wlyy wly))
= Qap41 (ynJrl) ceeay (yl)

and esssup,, o 110 |a;(y;)]] < 1. Theorems 3.2 and 5.5 imply

that the norm of ¢ as an element of My (M®A™(G)) is less than one.
Thus, the inclusion B"(G) C M A(G) is a complete contraction. <
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We recall that C}(G) is the reduced C*-algebra of G. We write
CH(G)%h for CH(G) @y, ... @, CHG). Let B,(G) = C(G)* and B™(Q)

-~

= (C*(G)®r)*. Tt is standard to identify the elements of B,(G) with
functions from B(G) in such a way that the duality between B,.(G) and
C*(G) is given by (b, \(f)) = [ f(z)b(z)dm(z), f € L*(G). We equip
B,(G) and B}'(G) with the canonical operator space structure as dual
operator spaces. Let M be the completely contractive mapping from
CH(G)®% to C*(G) which maps A(fi) ® ... ® A(fo) (for fi,..., fa €
LY(G)) to A(f), where

flz) = - fi(@y) fola as) ... folz y)dm(zy) . . dm(z,_y).

It is easy to check that the adjoint mapping M* maps f € B,(G)
to 6(f) € BMNG) (here O(f)(x1,...,2,) = f(z1...2,)). We define
M B,(G) to be the space of all ¢ € L>°(G") such that the mapping
T, : f+— ¢0(f) is completely bounded as a map from B, (G) to B'(G).
We note that this map is normal. In fact, if fi,..., f, € L'(G) then

(@O(f), AMf1) @ ... @ A(fa))
= /Gn (@1, .y xn) f(Tr . xn) fi(xy) o folzn)dm(zy) ... dm(z,)
= (£, A(9)),

where g(x) equals

/f1 (z1) folay as) . fulm Ly 2) (g, 27 g, . 2 2)dm() . dm(2,_y);

it is easy to see that g € L*(G). Therefore T, has a predual M, which
is given by A(f1) @ ... @ MN(fn) — Ag). If ¢ € MPB,(G) then M, is
completely bounded and |||l azev5, () = [[My |- From the definition
of the operator space structure of B,(G), we have that if (¢,,) €
My(M3BG)) then (@)l = [ Mol where M, = (M,,,) i the
corresponding mapping from C*(G)®r to Mi(Cr(Q)).

The following theorem supplements Theorem 5.5 and provides a mul-
tidimensional version of Proposition 4.1 of [21].

Theorem 5.7. Let ¢ € My(L>*(G")). Then the following are equiva-
lent

(i) ¢ € bi(Mp(MPA(G)));
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(1) the multilinear mapping M, = (A(f1),..., A(fn)) — (A(fi)),
where fi, ..., fn € LYG) and fi;(z) equals

/fl(l‘l)f2($1_11‘2) (@) (e, a ey, ) dm(an) - dm(a, )
extends to a complete contraction from C*(G)®r into Mi(CH(G));
(iii) ¢ € by (My(M;?B.(G))).

Proof. For the sake of technical simplicity we assume that n = 2; the
general case can be treated similarly.

(i)=(ii) Let ¢ = (ppq) € bi(Mi(MPA(G))). By Proposition 5.4,
there exist operators Vy € B(L*(G)*, L*(G)*), Vi € B(L*(G)>®) and
Va € B(L*(G)>, L*(G)*) such that ||[Vo|[[[V[[[[V2] < 1 and

(13) 90(x27$1))‘$2x1 = ‘/2()‘562 ® 1>V1(/\a:1 & 1)%

Let fi = (f1") € M, (C3(G)) and fo = (f3) € Mnk(CF(G)). We
denote by A\(f1) ©® A(f2) € Mp(C}HG) ®, CHG)) a k x k-matrix whose
(p, q) entry equals S M) @A(f2,)- I fl, € LYG), I = 1,2, then

A(f1) © A(f2))
— (Z/f;s x1) fi (27 xz)gp(xl,xllxg))\(xg)dm(xl)dm(xg)>

- (S st st

- ( / prswl ) 24(@2)Va(har ® DVi(As, © >%dm<x1>dm<x2>>

p.q
p.q

p.q

- (Z% /fps 1) Az, dm(zy)) @ 1)Vi(( /fsq T2) Az, d(22)) @ 1)V)

= (ZVQ ) © DA 3q>®1)vo)

Therefore

1M AR © A< IVOllIVAIIVRll A TIACE)I
and hence ||M<E,k)|| <1.

p.q

p.q

(ii)<(iii) Follows trivially from the definition of the operator struc-
ture of M?B,(G).
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(iii)=-(i) We only consider the case k = 1. Let ¢ € M®B,.(G),
llell < 1and € A(G)NC.(G), where C.(G) is the space of compactly
supported functions on G. We can find g € A(G) such that g = 1
on the support of ¥ so that ¥g = ¢. As 0(g) € A"(G) and A"(G) is
an ideal in B'(G) we have ¢0(¢) = pf(1)0(g) € A™(G). Since the
A"(G)-norm and B}'(G)-norm coincide on A"(G) and A(G) N C.(G) is
dense in A(G) we obtain that ¢ is in b (M,(G)). Similar arguments
show that ¢ is a completely contractive multiplier. <

We next supply some corollaries of the previous results.

Corollary 5.8. Let G be an amenable locally compact group. Then
B"(G) = M®A(G) completely isometrically.

Proof. If G is amenable then B"(G) = BJ'(G) completely isometrically.
Hence, by Theorem 5.7, MPA(G) = M®B(G) completely isometri-
cally. Since B(G) contains the constant functions, it is easy to see that
M B(G) = B"(G) completely isometrically. <

Corollary 5.9. Let P be the block (k,n)-partition associated with the

sequence n > ny > --- > ny > 1 such that each block contains at

least two elements, and ¢; = £1, ¢ = 1,...,n. Assume that G is

amenable. Then the function ¢ : G* — C given by ¥(sp,...,81) =
Eny—1 Eng_1q En

O .8,y Sy . sr) is a Schur multiplier with respect to
the left Haar measure if and only if o € B*(G).

Proof. We prove the statement for £ = 2 and a partition of the form

P={{n,...,m}, {m—1,...,1}}; the other cases are similar. Assume
¥ is a Schur multiplier. Then ¥ (s, ..., s1) = a1(s1) ... ay(s,) for some
(essentially bounded) functions a; : G — My, i = 2,...,n—1, a, :

G — My, and a; : G — M, . Therefore, the function

n—1

(517 52, 33) — @(3[;1327 52_151) = ¢(Sin7 3;€ 1€y ey € 8327 SZ;EI)

is a Schur multiplier and hence by Theorem 5.5, ¢ € M$LA(G) =
B2(G).

Let now ¢ € B%(G). By Theorem 4.1, there exist representations 7y,
79 of G on H and vectors &, n such that ¢(ss, s1) = (ma(s2)m1(51)€, 1),
and

Y(sny - ons) = (ma(si s )m(sar o s5m)8m).-

Theorem 3.4 of [15] now easily implies ¢ is a Schur multiplier. <
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N

Remark 5.10. Since if G is abelian then B(G) = {1 : p € M(G)},
Corollary 5.9 implies the following classical result: If GG is a discrete
abelian group and ¢ € [*°(G) then the function ¢ given by ¥ (x,y) =
@(y~'x) is a Schur multiplier if and only if ¢ = ji for some measure

we M(G).
Here is a more general result:

Corollary 5.11. Let G be a locally compact abelian group, my, ..., m, =
+1, p € L>®°(G) and ¢ be the function given by
Y(Spy.voys1) =@(s1h o 50™),  S1,...,8, € G.

Then 1 is a Schur multiplier (with respect to the Haar measure) if and

~

only if ¢ = i for some measure p € M(G). In this case, ||¥]|m = ||p]|-

We close this section with a multidimensional version of [5, Theo-
rem 1]. We use the notation from Proposition 5.4. Recall [10] that if
f € A(G) and T € VN(G) then fT € VN(G) is the operator given by
the duality relation (g, fT) = (fg,T).

Proposition 5.12. Let & : VN(G)" — VN(G) be a normal completely
bounded multilinear map. Then ® = @, for some ¢ € MPA(G) if and

only if
(14) POf)(S1®...08,))=fP(S1®...05,),
for all f € A(G) and all Sy,...,S, € VN(G).

Proof. Since ® is a normal completely bounded map, ® = ¥* for a
completely bounded map from A(G) to A*(G),

(PO(f)(S1®...®08,)),h) =(S1®...05,,0(f)¥(h))
and
(fP(S1®...085,),h) =(S1®...® S, V(fh))

Thus, if ® satisfies (14) then 0(f)W¥(h) = VU(fh) for all f, h € A(G).
Since A(G) is commutative, 0(f)W(h) = 0(h)¥(f) and therefore ¥(h) =
©f(h) for some function ¢ on G™. Since ¥ is completely bounded,
v € MPA(G). Moreover,

(DN, ®...Q N, ),h) = (Np, @ ...Q Agy, 00(h)) =
Oy oy x)h(xgy . o) = (p(Tny oo 1) Ay gy B
that is, ® = ®,. ¢
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6. THE ABELIAN CASE

In this section we assume that G is abelian. We denote by G
the character group of G. Let Cy(G) be the algebra of continuous
functions vanishing at infinity on G. The Haagerup tensor product
?O(G) Ry - .- Oy Co(Gl will be denoted by V*(G). The dual space of

-
n

Vi"(G) is the space of n-measures on G. Let Cy(G) be the C*-algebra of
continuous bounded functions on G and V"*(G) = Cy(G) ®y, ... @, Cu(G).

-~

Denote by G, the group G equipped with the discrete topolqu and
recall that the Bohr compactification G of G is the dual of Gy. We

note that there is a canonical inclusion of V'(G)* into V;*(G)*: for
¢ € V'(G)* define ® € V*(G)* by

Pla @ ®ay) =Plar|g) @ @ an]a)), ai,...,a, € C(G),

where @ is the extension of ® to a normal completely bounded mul-
tilinear map from (Co(G)**)®n to C, and ¢ : Cy(G) — Co(G)** is the
canonical injection.

We claim that

(15) 12llve @y = 1@llvir (-

If a, = (af;), k =1,...,n, are n by n matrices let a; ® - - - © a,, be the
n by n matrix whose (i, j)-entry is equal to

a;h@az ®®an

11,42 In—1,J°

To show (15), first note that if a; ® ... ® a, € V;"(G) is a function of
unit Haagerup norm then

(@01 © ... © an)| = [B(e(ar]6) © ... © tlanle))] < 2

where for a = (a;;) € M (C(G)) we denote by al¢ the matrix (a;q).
Hence, [|®]|yn@)- < [[®[lyrc)+. Conversely, let @ denote the canonical

extension of a function a from Cy(G) to a function from C(G) and u €

Vi*(G) denote the corresponding extension of an element u € V;*(G).
Thus, if u = a; ®---®a, then 4 = a; ® --- ® a,. It follows that
HﬂHth(@) < || V() and hence
[Pl = sup{|@(u)] - u € VG, [lully < 1}
= sup{|®(a)| : u € V(G), [lull, < 1}
< sup{|®(v)] : v € ' (G), [lvlly < 1}
= H(i)”vgl(é)*-
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Thus (15) is established. We hence have a canonical isometric em-
bedding of M™(G) into M™(Gy), which gives rise to an isometric em-
bedding of B"(G) into B"(Gy). The next proposition generalises [12,
Theorem 3.3] to the multidimensional case. We note that the proof we
give is new in the case n = 2 as well.

Proposition 6.1. Let [ € B”(G’d). Then f € B”(é) if and only if f
18 continuous.

~

Proof. 1t is clear that if f € B"(G) then f is continuous. For the
converse direction we use induction on n. If n = 1 the claim follows
from a classical result of Eberlein [20, Theorem 1.9.1]. Suppose that
n > 1 and fix a continuous function f from B"(G). For an element
v € G let 8, € B(Gy)* be the evaluation functional, d,(h) = h(y),
h € B(G). Using the identification (4), we let Ls, : B"(G) — B" (@)
be the corresponding slice map. We have that L; (f) € B" (Gy)
and that L (f) is continuous. By the induction assumption, Ls_ (f) €
B"(@G). Since every element of B(Gy)* can be approximated in the
weak™ topology by a bounded net consisting of linear combinations
of the functionals d,, v € G, we conclude that Ls(f) € B"'(G) for
every § € B(G4)*. An application of [21, Theorem 2.2] shows that
f € B(Gy) @ B 1(G). Repeating the above argument with a right

~

slice map in the place of Ls shows that f € B"(G). &

The following lemma generalises a theorem of Eberlein [20, Theo-
rem 1.9.1] to the multidimensional case.

Lemma 6.2. Let ¢ € L“(é"). The following are equivalent:
(i) ¢ € B"(G);
(i1) ¢ is continuous and there exists a constant C > 0 such that

‘Z Ciyoviin®(Xirs -+ > Xin)

b

V(@)

where x;, € G and the summation is over a finite number of indices
(11, 0n)-

Proof. For notational simplicity we assume n = 2.
(i)=(ii) Let ¢ € B*(G). Then by definition

d(x1. x2) = P(w(x1), w(x2))
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for some ® € M?(G). Thus, ¢ is continuous and since w(x;) = ¢(X:),

where x;(z) = x;(x) = xi(x™1) (see (6)), we have
Dol = |8 (i) © )

< @l || e) @ o)

= ol ||> e @ x

Co(G)**®@nCo(G)**

V(@)

The last equality follows from the injectivity of the Haagerup tensor
product.

(ii)=(i) Assume first that G is compact. Then G is discrete. Let
T : Cy(G) ® Cy(G) — C be the mapping given by T'(>" cijxi @ x;) =
> cijd(xi, x5)- Then [T(f)| < Clfllve@) = Cll fllvz(e) for finite sums
f=>_cixi®x; and therefore T" can be extended to a bounded linear
functional on V2(G). Thus, there exists u € M?(G) such that

Z cii®(Xis Xj) = (u, Z CijXi @ X;)-

In particular, ¢(x1, x2) = (u, x1 ® x2), that is, ¢ = 1 € BQ(C?), where
(U1, Xi ® x5) = (U, Xi @ Xj)-

If G is not compact let G be the Bohr compactification of G. FEx-
tending each y € G to a character on G we define a linear functional
T on the space of all functions f on G x G of the form f(z,y) =
S eixi(2)x;(y), ,y € G, where x;, x; € G, by letting, for f as above,
T(f) = > cijo(xir xj)- Leti €N, g; =3, CZXk,z' and h; = Z]- diji
be trigonometric polynomials on G, where xy.;, ;. € G. Then

T (Z 9i © hi) ‘ - Z Ci:d;‘¢(Xk,ia V)| < C Z C;'gd;’Xk,i ® Y
i ik, ik, V2(G)
= C Zgi®hi =C Z%@hi
: V(@) : VE(@)

The last equality follows from the injectivity of the Haagerup tensor
product and the fact that C,(G) is completely isometrically embedded

in C(G). Thus, T can be extended to a bounded linear functional on

V2(G) and hence ¢(x1,x2) = (u, x1 ® x2) for u € M2(é) = MQ(Gd),
and ¢ € B*((Gy). Since ¢ is continuous, Proposition 6.1 implies that

¢ € BAG). ¢
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The following lemma is a multidimensional version of [20, Theorem
3.8.1].

Lemma 6.3. Let ¢ € L>®(G™). Assume ©0(g) € B"(G) for every
g € A(G). Then p € B™(G).

Proof. We only consider the case n = 2; the general case can be treated
in a similar way. Let T : A(G) — B?*(G) be the linear mapping defined
by T(g9) = ¢f(g). We show that T is continuous. If g, — ¢ in A(G)
and ©0(g,) — @ in B*(G), where u € M?(G), then

i(hy, hy) = Jim ©(h1, h2)gn(hihs) = o(h1, ha)g(hihs),

hence 4 = pf(g). By the Closed Graph Theorem, 7" is continuous and
l0(9)llB2(c) < Cllgllae)-

Given hy, ..., h, € G, € > 0, there exists f € A(G), || f|lae) < 1+-¢,
such that f(h;h;) = 1, for all i,j. Let u € M?*(G) be such that 4 =
©d(f). Then

‘Z Cij@(hia hj)

= ‘Zcij¢(hiahj)f(hihj> = )Zcija(hi’hj)
= [a(3 eulhi) @ o(hy))]

A

V2(G)

where @ is the extention of u to a normal completely bounded linear
map from (Co(G)*™)" to C and ¢ : Cy(G) — Co(G)*™ is the canonical
inclusion. Given open sets V;, Vo C G with compact closures we can
find f € A(G) such that 6(f) is constant on Vj x V,. Therefore, ¢

is continuous on V; x V5, and hence ¢ is continuous on G x G. By
Lemma 6.2, p € B*(G). ¢

In the next corollary, we denote by M, the operator of multiplication
by the function g.

Theorem 6.4. For every block (k,n)-partition P, we have that B"(G) =
MR(G) = Mp(G).

Proof. Let Py (resp. Pa) be the block (1,n)- (resp. (n,n)-)partition.
We have that 6p, is the identity map. For any block (k,n)-partition P
we have that

ranfp, C ranfp C ranfp, = A"(G).

Thus,
M'P2A(G) - MPA<G) - MP1A<G)a
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and similarly for the completely bounded multipliers. By Theorem
5.1, B*(G) € Mp,A(G). By Lemma 6.3, Mp A(G) C B"(G) and
hence B"(G) = Mp(G).

The fact that B"(G) = MZ@A(G) follows in the same way, using
Proposition 4.2. <

Corollary 6.5. Let ¥ : A(G) — A™(G) be a bounded linear map such
that WM, = MoV for any x € G. Then U(f) = ¢0(f), f € A(G),
for some ¢ € B™(QG).

Proof. 1t follows from the proof of Theorem 5.12 that W(f) = ¢f(f) for
some bounded function ¢ on G. Thus ¢ € M, A(G). The statement
now follows from Theorem 6.4. <
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