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Abstract. Let (X, µ) and (Y, ν) be standard measure spaces. A function
ϕ ∈ L∞(X×Y, µ×ν) is called a (measurable) Schur multiplier if the map
Sϕ, defined on the space of Hilbert-Schmidt operators from L2(X, µ) to
L2(Y, ν) by multiplying their integral kernels by ϕ, is bound-ed in the
operator norm.

The paper studies measurable functions ϕ for which Sϕ is closable
in the norm topology or in the weak* topology. We obtain a charac-
terisation of w*-closable multipliers and relate the question about norm
closability to the theory of operator synthesis. We also study multipliers
of two special types: if ϕ is of Toeplitz type, that is, if ϕ(x, y) = f(x−y),
x, y ∈ G, where G is a locally compact abelian group, then the closabil-
ity of ϕ is related to the local inclusion of f in the Fourier algebra
A(G) of G. If ϕ is a divided difference, that is, a function of the form
(f(x) − f(y))/(x − y), then its closability is related to the “operator
smoothness” of the function f . A number of examples of non-closable,
norm closable and w*-closable multipliers are presented.
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47L60, 43A22.

1. Introduction

Let (X,µ) and (Y, ν) be standard measure spaces, H1 = L2(X,µ), H2 =
L2(Y, ν), and let B(H1,H2) be the space of all bounded linear operators
from H1 into H2. There is a method, due mainly to Birman and Solomyak
[2, 3, 4, 5], to associate to certain bounded measurable functions ϕ on X ×
Y , linear transformations Sϕ on B(H1,H2); these transformations are called
Schur multipliers or, in the more general setting of spectral measures in the
place of µ and ν, double operator integrals. Namely, one first defines the
map Sϕ on the space of all Hilbert-Schmidt operators by multiplying their
integral kernels by ϕ; if Sϕ is bounded in the operator norm, one extends it
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to the space K(H1,H2) of all compact operators by continuity. The map Sϕ
is defined on B(H1,H2) by taking the second dual of the constructed map on
K(H1,H2).

The function ϕ is thus called a Schur multiplier if the multiplication map
Sϕ, initially defined on the space of Hilbert-Schmidt operators, is bounded
in the operator norm. Equivalently, ϕ is a Schur multiplier if ϕ(x, y)k(x, y)
is the integral kernel of a nuclear operator provided k(x, y) is such. The set
of all Schur multipliers will be denoted by S(X,Y ).

Many years ago, Professor Solomyak informed the first author that at
the early stages of the development of the theory of double operator integrals,
there existed an idea to define Sϕ for a more general class of functions ϕ
(perhaps for all measurable ones) as the closure of a densely defined linear
operator in the operator norm, or in the weak operator, topology. However,
this approach was not pursued because no information on the closability of
the multiplication maps Sϕ was obtained at that time.

The aim of this paper is to study the classes of functions ϕ for which
Sϕ is closable in the norm topology, or in the weak* topology, of B(H1,H2).
By weak* topology we mean the topology σ(B(H1,H2), C1(H2,H1)) induced
on B(H1,H2) by its duality with the space C1(H2,H1) of nuclear operators
from H2 into H1. We denote these classes of functions by Scl(X,Y ) and
Sw∗(X,Y ), respectively.

We obtain a satisfactory characterisation of the class Sw∗(X,Y ). In or-
der to describe it, let us denote by Sloc(X,Y ) the class of functions ϕ with the
following property: for each ε > 0 there exist subsets Xε ⊆ X and Yε ⊆ Y of
measure not exceeding ε, such that the restriction of ϕ to (X\Xε)×(Y \Yε) is
a Schur multiplier. We prove in Theorem 3.6 that the elements of Sloc(X,Y )
(which we call local Schur multipliers) can be characterised in terms similar
to those of Peller’s characterisation of Schur multipliers [26]. Namely, they
are precisely the functions of the form (a(x), b(y)), where a(·) (resp. b(·))
is a measurable function from X (resp. Y ) into a separable Hilbert space.
Then we show in Theorem 4.4 that the w*-closable multipliers (that is, the
elements of Sw∗(X,Y )) are precisely the functions of the form t(x, y)/s(x, y)
where t and s are local Schur multipliers and s(x, y) 6= 0 for marginally al-
most all (x, y). In particular, Sw∗(X,Y ) is an algebra of (equivalent classes
of) functions.

For any measurable function ϕ on X × Y , there exists a maximal (in
a sense that we make precise in Section 4) countable family of rectangles on
each of which ϕ is w*-closable; the complement of their union is denoted by
κw

∗

ϕ . The “size” of κw
∗

ϕ can be considered as a measure of the extent to which
ϕ fails to be a w*-closable multiplier.

The information we obtain about Scl(X,Y ) is less precise. Roughly
speaking, we show that, in order to verify whether ϕ belongs to Scl(X,Y ),
one needs to check whether the set κw

∗

ϕ supports a non-zero compact operator.
More precisely: if κw

∗

ϕ does not support a non-zero compact operator then ϕ ∈
Scl(X,Y ) while if there exists a non-zero compact operator in the smallest
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masa-bimodule with support κw
∗

ϕ then ϕ /∈ Scl(X,Y ). The difference between
the smallest masa-bimodule with support κw

∗

ϕ and the largest one (the set
of all operators supported on κw

∗

ϕ ) is subtle; it is the subject of the theory
of operator synthesis [1, 28], an operator analogue of the theory of spectral
synthesis [15, 20]. We prove that Scl(X,Y ) is an algebra and present various
examples of multipliers which are not norm-closable and of norm-closable
multipliers which are not w*-closable.

The product of two measure spaces possesses natural “pseudo-topological
structures”, namely the ω-topology and the τ -topology, which are related to
the problem of closability of multipliers. A set is called τ -open (resp. ω-open)
if it is a countable union of measurable rectangles and a null set (resp. a set
contained in (X0 × Y ) ∪ (X × Y0), where X0 and Y0 are null sets). Denot-
ing by Cτ (X × Y ) (resp. Cω(X × Y )) the space of all τ -continuous (resp.
ω-continuous) complex valued functions on X × Y , we prove that

Scl(X,Y ) ⊆ Cτ (X × Y ) and Sw∗(X,Y ) ⊆ Cω(X × Y )

(if one identifies functions equivalent with respect to the product measure).
Both inclusions are shown to be strict.

We present examples which show that in the chain

S(X,Y ) ⊆ Sloc(X,Y ) ⊆ Sw∗(X,Y ) ⊆ Scl(X,Y )

the first and the third inclusions are strict. The question of whether the
second inclusion is strict is left open.

The paper is organised as follows. In Section 2 we state some basic defini-
tions and results about subsets of, and functions on, product measure spaces,
bimodules over maximal abelian selfadjoint algebras, Schur multipliers and
closable operators. In Section 3 we examine local Schur multipliers, while
Sections 4 and 5 are devoted to the study of w*-closable and norm-closable
multipliers, respectively.

In Sections 6 and 7 we study multipliers of special types. Given a com-
plex function f defined on a subinterval of the real line, one may consider
its divided difference, in other words, the function f̌ on two variables given
by f̌(x, y) = (f(x) − f(y))/(x − y). The corresponding class of multipliers
plays an important role in Perturbation Theory and Spectral Theory (see,
for example, [26] and the references therein). We show that such multipliers
are always norm-closable; in Theorem 6.3 and Corollary 6.4 we formulate
necessary and sufficient conditions for f̌ to be a local Schur multiplier.

Toeplitz multipliers are (Schur, local, norm-closable or w*-closable) mul-
tipliers ϕ of the form ϕ(x, y) = f(x−y), where f is a complex function defined
on a locally compact abelian group G (equipped with Haar measure µ). The-
orem 7.8 asserts that a function f(x − y) is a w*-closable multiplier if and
only if it is a local Schur multiplier, and that this occurs precisely when f
is equivalent to a function which belongs locally to the Fourier algebra of G.
The closability of Toeplitz multipliers is shown to be related to some ques-
tions about sets of multiplicity in harmonic analysis. We describe also those
functions of the form f(x−y) which are ((µ×µ)-equivalent to) ω-continuous
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or τ -continuous functions. En route, we obtain an example of a continuous
(hence ω-continuous) function on G×G which is not a norm-closable multi-
plier.

Acknowledgements. The authors are very grateful to M. Roginskaya
and T. W. Körner for their friendly and helpful advice, and to the referee for
suggestion to consider a Cp-version of Problem 4 (see Remark 8.1(i)).

2. Preliminary results

2.1. Pseudo-topologies on the product of measure spaces

In what follows, we write B(Z) = B(Z, γ) for the algebra, with respect to
the pointwise product, of all measurable complex valued functions defined on
a measure space (Z, γ). Let (X,µ) and (Y, ν) be standard σ-finite measure
spaces, which will be fixed throughout the paper. We will often write B(X×
Y ) in the place of B(X × Y, µ× ν).

A subset of X × Y is said to be a measurable rectangle (or simply a
rectangle) if it is of the form α× β, where α ⊆ X and β ⊆ Y are measurable
subsets. A subset E ⊆ X × Y is called marginally null if E ⊆ (X0 × Y ) ∪
(X × Y0), where µ(X0) = ν(Y0) = 0. We call two subsets E,F ⊆ X × Y
marginally equivalent (and write E ' F ) if the symmetric difference of E
and F is marginally null. We say that E marginally contains F (or F is
marginally contained in E) if F \ E is marginally null; E and F are said to
be marginally disjoint if E ∩ F is marginally null.

A subset E of X × Y is called ω-open if it is marginally equivalent to
the union of a countable set of rectangles. The complements of ω-open sets
are called ω-closed. It is clear that the class of all ω-open (resp. ω-closed) sets
is closed under countable unions (resp. intersections) and finite intersections
(resp. unions); in other words, the ω-open sets form a pseudo-topology.

The following lemma shows that in some cases one can form a certain
kind of a union of a given, possibly uncountable, family of ω-open subsets.

Lemma 2.1. Let E be a family of ω-open subsets of X × Y . Let Eσ be the set
of all countable unions of elements of E. Then there exists a (unique up to
marginal equivalence) set E ∈ Eσ which marginally contains every set in E.

Proof. First assume that the measures µ and ν are finite. On the set Π of all
measurable rectangles we introduce a metric ρ, setting, for R1 = X1 × Y1,
R2 = X2 × Y2 in Π, ρ(R1, R2) = µ(X1OX2) + ν(Y1OY2) (here O denotes
symmetric difference). Then Π is a separable metric space whence the set F
of all rectangles that are contained in elements of E is also separable. Let
{Rn : n ≥ 1} be a dense sequence in F and E = ∪∞n=1Rn. Then it is clear
that E marginally contains all R ∈ F and therefore all E ∈ E .

In the general case, letX = ∪∞n=1Xn and Y = ∪∞m=1Ym with µ(Xn) <∞
and ν(Ym) <∞, n,m ∈ N. For each pair n,m, let En,m = {E ∩ (Xn × Ym) :
E ∈ E}, let En,m be the ω-union of En,m, and set E = ∪∞n,m=1En,m.

The uniqueness is obvious. �
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The set whose existence is guaranteed by Lemma 2.1 will be called the
ω-union of E .

We will say that two functions ϕ,ψ ∈ B(X × Y ) are equivalent, and
write ϕ ∼ ψ, if the set D = {(x, y) ∈ X × Y : ϕ(x, y) 6= ψ(x, y)} is null with
respect to the product measure. IfD is marginally null then we say that ϕ and
ψ coincide marginally everywhere, or that they are marginally equivalent, and
write ϕ ' ψ. By L∞(X×Y ) we denote as usual the subalgebra of B(X×Y )
of all (equivalence classes of) essentially bounded functions.

Let E ⊆ X × Y be an ω-open set. A measurable function ϕ : E → C
is called ω-continuous if the set ϕ−1(G) is ω-open for every open subset
G ⊆ C. As in [10, Corollary 3.2] one can see that the set Cω(E) of all ω-
continuous functions on E is a subalgebra of B(E). For an arbitrary set
M⊆ Cω(X×Y ) ⊆ B(X×Y ), we let its null set null(M) be the complement
of the ω-union of the family E = {h−1(C \ {0}) : h ∈M}.

We will need the following simple result from [21] (see the remark after
[21, Proposition 8.1]).

Lemma 2.2. Let E ⊆ X × Y be an ω-open set and let f : E → C be an
ω-continuous function. If f ∼ 0 then f ' 0.

Thus if two ω-continuous functions are equivalent then they are marginally
equivalent, and if a function is equivalent to an ω-continuous function then
the latter is defined uniquely up to marginal equivalence.

We will also need another pseudo-topology on X × Y . Two subsets E1,
E2 of X × Y will be called µ × ν-equivalent if their symmetric difference
is a µ × ν-null set. We will say that a subset E ⊆ X × Y is τ -open if it
is µ × ν-equivalent to a countable union of rectangles. It is clear that the
pseudo-topology τ is stronger than ω.

2.2. Bimodules

If H1 and H2 are Hilbert spaces, we denote by B(H1,H2) the space of
all bounded linear operators from H1 into H2, and by K(H1, H2) (resp.
C1(H1,H2), C2(H1,H2)) the space of compact (resp. nuclear, Hilbert-Schmidt)
operators in B(H1,H2). Let ‖T‖op denote the operator norm of T ∈ B(H1,H2).
As usual, we write B(H) = B(H,H). The space C1(H2,H1) (resp. B(H1,H2))
can be naturally identified with the Banach space dual of K(H1,H2) (resp.

C1(H2,H1)), the duality being given by the map (T, S) → 〈T, S〉 def= tr(TS).
Here trA denotes the trace of a nuclear operator A. For a subset W ⊆
C1(H2,H1), let W⊥ = {T ∈ B(H1,H2) : 〈T, S〉 = 0, for each S ∈ W}.

For the rest of the paper we let H1 = L2(X,µ) and H2 = L2(Y, ν).
The space L2(X ×Y ) will be identified with C2(H1,H2) via the map sending
an element k ∈ L2(X × Y ) to the integral operator Ik given by Ikξ(y) =∫
X
k(x, y)ξ(x)dµ(x), ξ ∈ H1, y ∈ Y . In a similar fashion, C1(H2,H1) will be

identified with the space Γ(X,Y ) of all functions F : X×Y → C which admit
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a representation

F (x, y) =
∞∑
i=1

fi(x)gi(y),

where fi ∈ L2(X,µ), gi ∈ L2(Y, ν), i ∈ N,
∑∞
i=1 ‖fi‖22 <∞ and

∑∞
i=1 ‖gi‖22 <

∞. Equivalently, Γ(X,Y ) can be defined as the projective tensor product
L2(X,µ)⊗̂L2(Y, ν). It was shown in [10, Theorem 6.5] that Γ(X,Y ) consists of
ω-continuous functions. For brevity, we often identify a function h ∈ Γ(X,Y )
with the corresponding integral operator Ih ∈ C1(H2,H1). It will be conve-
nient to write Γ(X × Y ) in the place of Γ(X,Y ) (this allows for example to
write Γ(κ), where κ is a rectangle).

If f ∈ L∞(X,µ), let Mf ∈ B(H1) denote the operator of multiplication
by f . We will often identify the collection {Mf : f ∈ L∞(X,µ)} of all such
operators with the function space L∞(X,µ). If α ⊆ X is measurable, we write
P (α) = Mχα

for the multiplication by the characteristic function of the set
α. Similar definitions and identifications are made for L∞(Y, ν). A subspace
W ⊆ B(H1,H2) will be called a bimodule if MψTMϕ ∈ W for all T ∈ W,
ϕ ∈ L∞(X,µ) and ψ ∈ L∞(Y, ν). One defines bimodules in B(H2,H1) in a
similar fashion.

We say that an ω-closed subset κ ⊆ X × Y supports an operator
T ∈ B(H1,H2) (or that T is supported on κ) if P (β)TP (α) = 0 whenever α×β
is marginally disjoint from κ. For any subset M⊆ B(H1,H2), there exists a
smallest (up to marginal equivalence) ω-closed set suppM which supports ev-
ery operator T ∈M [10]. By [28], for any ω-closed set κ there exists a smallest
(resp. largest) w*-closed bimodule Mmin(κ) (resp. Mmax(κ)) with support κ
in the sense that if M ⊆ B(H1,H2) is a w*-closed bimodule with supp M = κ
then Mmin(κ) ⊆ M ⊆ Mmax(κ). If Mmin(κ) = Mmax(κ), the set κ is called
synthetic. By [28, Theorem 4.4], Mmin(κ) = {Ih : h ∈ Γ(X,Y ), hχκ ' 0}⊥.

Lemma 2.3. Let W ⊆ C1(H2,H1) be a bimodule and {fn}∞n=1 ⊆ Γ(X, Y ) be
a sequence such that {Ifn}∞n=1 is dense in W. Then null(W) = supp(W⊥) =
∩∞n=1f

−1
n (0).

In particular, W is norm dense in C1(H2,H1) if and only if there exists
a sequence {hn}∞n=1 ⊆ Γ(X,Y ) such that Ihn ∈ W for every n ∈ N and the
set ∩∞n=1h

−1
n (0) is marginally null.

Proof. We start by showing the second statement. Since the Hilbert spaces
H1 and H2 are separable, the space C1(H2,H1) is separable and hence there
exists a sequence {Kn}∞n=1 dense in W. Suppose that Kn = Ihn , where hn ∈
Γ(X,Y ) and let E = ∩nh−1

n (0). If E is not marginally null then, by [28,
Corollary 4.1], Mmin(E) contains a non-zero operator T . By [28, Theorem
4.4], 〈T,Kn〉 = 0 for all n ∈ N, and hence W is not dense.

Conversely, suppose thatW is not dense, let hn ∈ Γ, n ∈ N, be such that
Ihn ∈ W and set E = ∩∞n=1h

−1
n (0). The annihilator M of W in B(H1,H2) is a

non-zero w*-closed bimodule. By [28], the support F of M is not marginally
null, and if an operator Ih belongs to its preannihilator then h vanishes
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marginally almost everywhere on F . It follows that F is marginally contained
in E and hence E is not marginally null.

Now we prove the general statement. It was shown in [28] (see the
proof of [28, Theorem 2.1]) that null(W) = supp(W⊥) where W is the norm
closure of W in C1(H2,H1). Hence, up to marginally null sets, supp(W⊥) ⊆
null(W) ⊆ ∩∞n=1f

−1
n (0) and it suffices to show that ∩∞n=1f

−1
n (0) ⊆ supp(W⊥).

Let κ be a rectangle disjoint from supp(W⊥). By the definition of support,
the restriction to κ of the functions corresponding to operators in W form
a set dense in Γ(κ). By the first part of the proof, the intersection of the
null sets of the restrictions of fn, n ∈ N, to κ is marginally null. Hence κ is
marginally disjoint from ∩∞n=1f

−1
n (0). Since the complement of supp(W⊥) is

ω-closed, this implies the last remaining inclusion. �

2.3. Schur multipliers and Peller’s Theorem

For a function ϕ ∈ B(X × Y ), set

D(ϕ) = {k ∈ L2(X × Y ) : ϕk ∈ L2(X × Y )}.

We let Sϕ : D(ϕ) → L2(X × Y ) be the mapping given by Sϕk = ϕk. We
identify Sϕ with a (densely defined linear) map on K(H1,H2) acting by the
rule Sϕ(Ik) = Iϕk.

Note that Sϕ depends only on the equivalence class of ϕ. Taking this
into account, we will sometimes say that a function ϕ belongs to a certain
class of functions, if it is equivalent to a function from this class. When we
need to make the distinction, we will write h ∈σ F , if h is equivalent to a
function from the class F with respect to the measure σ.

Recall that a function ϕ ∈ L∞(X×Y ) is called a Schur multiplier if the
map Sϕ is bounded in the operator norm, that is, if there exists a constant
C > 0 such that ‖Sϕ(Ik)‖op ≤ C‖Ik‖op, for all k ∈ L2(X×Y ). If ϕ is a Schur
multiplier then the mapping Sϕ has a unique weak* continuous extension to
B(H1,H2) which will still be denoted by Sϕ.

Let S(X,Y ) (or S(X × Y )) be the set of all Schur multipliers; clearly,
S(X,Y ) is a subalgebra of B(X,Y ). The following facts follow easily from
the definition of a Schur multiplier:

Lemma 2.4. (i) If ϕ ∈ S(X × Y ) then ϕ|α×β ∈ S(α× β) for all measurable
subsets α ⊆ X and β ⊆ Y .

(ii) If X × Y = ∪Np=1κp, where all κp are rectangles and ϕ|κp
∈ S(κp)

then ϕ ∈ S(X,Y ).

Schur multipliers were first introduced by Schur in the early 20th century
in case of discrete measures µ and ν. A characterisation of this particular class
of Schur multipliers was obtained by Grothendieck in [16]. The following
generalisation for the class defined above is due to Peller [26].

Theorem 2.5. Let ϕ ∈ L∞(X × Y ). The following conditions are equivalent:
(i) ϕ is a Schur multiplier;
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(ii) there exist measurable functions a : X → l2 and b : Y → l2 such
that

ϕ(x, y) = (a(x), b(y))l2 , a.e. on X × Y and sup
x∈X

‖a(x)‖2 sup
y∈Y

‖b(y)‖2 <∞.

(iii) ϕ(x, y)k(x, y) ∈µ×ν Γ(X,Y ) whenever k(x, y) ∈ Γ(X,Y ).

It follows from Peller’s Theorem (and can easily be seen directly) that
if the measures µ and ν are finite then S(X,Y ) ⊆ Γ(X,Y ).

Using modern terminology, one can say that Theorem 2.5 identifies the
algebra S(X,Y ) with the weak* Haagerup tensor product L∞(X,µ) ⊗w∗h

L∞(Y, ν) (see [6] where this tensor product was introduced).

2.4. General facts on closable operators

Let X be a Banach space. We denote by X ∗ the dual of X . If S ⊆ X (resp.
T ⊆ X ∗), we write S⊥ ⊆ X ∗ (resp. T⊥ ⊆ X ) for the annihilator (resp.
preannihilator) of S (resp. T ).

Let Y be another Banach space. By an operator from X into Y we mean
a linear transformation T : D(T ) → Y, where D(T ) is a (not necessarily
closed) linear subspace of X called the domain of T . The operator T is called
densely defined if D(T ) is norm dense in X . We let

GrT = {(x, Tx) : x ∈ D(T )} ⊆ X ⊕ Y

be the graph of T . For a subset S ⊆ Y ⊕ X we set S ′ = {(x, y) : (y, x) ∈ S}
and let Gr′ T = (GrT )′.

We recall the definition of the adjoint T ∗ of an operator T : D(T ) → Y.
The domain of T ∗ is the subspace

D(T ∗) = {g ∈ Y∗ : ∃ f ∈ X ∗ such that g(Tx) = f(x), ∀x ∈ D(T )}.

For g ∈ D(T ∗), one lets T ∗g equal to f where f ∈ X ∗ is the functional
appearing in the definition of D(T ∗). Note that g ∈ D(T ∗) if and only if the
linear map x → g(Tx) from D(T ) into C is continuous. By the definition of
the operator T ∗, we have that Gr ′(−T ∗) = (GrT )⊥.

Recall that an operator T is called closable if the norm closed hull GrT
of its graph is the graph of an operator. Clearly, T is closable if and only if
the conditions (xn)∞n=1 ⊆ X , y ∈ Y, ‖xn‖ → 0 and ‖Txn−y‖ → 0 imply that
y = 0. We call T w*-closable if the w*-closed hull GrT

w∗ ⊆ X ∗∗ ⊕ Y∗∗ of
its graph is the graph of an operator from X ∗∗ into Y∗∗. Here, we identify X
and Y with their canonical images in their second duals. We have that T is
w*-closable if and only if the conditions (xα)α ⊆ X , G ∈ Y∗∗, w-limα xα = 0
and w*-limTxα = G imply that G = 0. The weak* limit is taken with respect
to the weak* topology of Y∗∗.

In the following proposition the equivalence (iii)⇔(iv) is well-known
(see, for example, [19, Chapter III, Section 5]); the other implications can be
proved in a similar way.



Closable multipliers 9

Proposition 2.6. Let T : D(T ) → Y be a densely defined linear operator and
set D = D(T ∗). Consider the following conditions:

(i) T is w*-closable;
(ii) D‖·‖ = Y∗;
(iii) Dw

∗

= Y∗;
(iv) T is closable.

Then (i)⇐⇒(ii)=⇒(iii)⇐⇒(iv).

3. Local Schur multipliers

We start this section by introducing a class of functions that will play a
central role in the paper. For brevity, let us say that a countable family
of rectangles covers X × Y , or that it is a covering family, if its union is
marginally equivalent to X × Y .

Definition 3.1. A function ϕ ∈ B(X×Y ) will be called a local Schur multiplier
if there exists a covering family {κm}∞m=1 of rectangles in X × Y such that
ϕ|κm ∈ S(κm), for each m ∈ N.

The set of all local Schur multipliers on X × Y will be denoted by
Sloc(X,Y ).

Proposition 3.2. The set Sloc(X,Y ) is a subalgebra of the algebra Cω(X,Y )
of all ω-continuous functions.

Proof. Let ϕ ∈ Sloc(X,Y ). By the σ-finiteness of the measure spaces (X,µ)
and (Y, ν), there exists a covering family {κm}∞m=1 such that ϕ|κm ∈ S(κm),
and (µ× ν)(κm) <∞ for each m ∈ N. It follows that ϕ|κm ∈ Γ(κm). By [10,
Theorem 6.5], ϕ|κm is ω-continuous on κm, m ∈ N. Now for an open subset
G ⊆ C, we have that ϕ−1(G) = ∪∞m=1(κm ∩ ϕ−1(G)) is ω-open, and hence ϕ
is ω-continuous.

It is easy to see that for two functions ϕ,ψ in Sloc(X,Y ), one can find
a common covering family {κm}∞m=1 of rectangles on which both ϕ and ψ
are Schur multipliers. Since S(κm) is an algebra, ϕ + ψ and ϕψ belong to
Sloc(X,Y ). �

Let V(X,Y ) be the space of all functions ϕ ∈ B(X×Y ) for which there
exist families {ai}∞i=1 ⊆ B(X) and {bi}∞i=1 ⊆ B(Y ) with the properties

∞∑
i=1

|ai(x)|2 <∞,

∞∑
i=1

|bi(y)|2 <∞

for almost all x ∈ X and y ∈ Y , and

ϕ(x, y) =
∞∑
i=1

ai(x)bi(y), almost everywhere on X × Y.

Using a coordinate free language we may say that ϕ ∈ V(X,Y ) if and only if
there exists a separable Hilbert space H and measurable functions a : X → H
and b : Y → H such that ϕ(x, y) = (a(x), b(y)) for almost all (x, y) ∈ X ×Y .
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We note that Γ(X,Y ) ⊆ V(X,Y ) and S(X,Y ) ⊆ V(X,Y ). Indeed, these
function spaces correspond to the cases where the functions ‖a(·)‖, ‖b(·)‖ are,
respectively, square integrable and essentially bounded.

Lemma 3.3. If ϕ ∈ V(X,Y ) then there exist families {Xi}∞i=1 and {Yj}∞j=1

of pairwise disjoint subsets of X and Y , respectively, such that ϕ|Xi×Yj ∈
S(Xi, Yj), for all i, j ∈ N. We may moreover assume that µ(Xi) < ∞ and
ν(Yj) <∞, for all i, j ∈ N.

Proof. Let a : X → `2 and b : Y → `2 be measurable functions such that
ϕ(x, y) = (a(x), b(y)), for almost all (x, y). For i, j ∈ N, set Xi = {x ∈ X :
i − 1 ≤ ‖a(x)‖2 < i} and Yj = {y ∈ Y : j − 1 ≤ ‖b(y)‖2 < j}. Then
ϕ|Xi×Yj ∈ S(Xi, Yj) by Theorem 2.5. Partitioning Xi and Yj into subsets of
finite measure, we obtain the required decompositions. �

Lemma 3.3 shows, in particular, that V(X,Y ) ⊆ Sloc(X,Y ). Our aim
in this section is to show that, in fact, V(X,Y ) = Sloc(X,Y ).

Lemma 3.4. Let {κm}∞m=1 be a covering sequence of ω-open sets. Then there
exist families {Xi}∞i=1 and {Yj}∞j=1 of pairwise disjoint measurable subsets of
X and Y , respectively, such that

(i) ∪∞i=1Xi and ∪∞j=1Yj have full measure, and
(ii) each rectangle Xi × Yj is contained in a finite union of sets from

{κm}∞m=1.

Proof. Let us say that a subset E ⊆ X × Y is mild if it is contained in a
finite union of sets from the family {κm}∞m=1. It suffices to show that there
are increasing sequences {An}∞n=1 and {Bn}∞n=1 of measurable subsets of X
and Y , respectively, such that ∪∞n=1An and ∪∞n=1Bn have full measure and all
rectangles of the form An × Bn are mild. Indeed, the statement would then
follow by setting Xi = Ai \Ai−1, Yj = Bj \Bj−1.

Since the measure spaces (X,µ), (Y, ν) are standard we may assume that
X and Y are equipped with σ-compact topologies with respect to which µ and
ν are regular Borel measures. By considering increasing sequences {Un}∞n=1

and {Vn}∞n=1 of compact subsets of X and Y , respectively, we reduce the
problem to the case where X and Y are compact and µ and ν are finite.

We may clearly assume that each κm is a rectangle. By [10, Lemma 3.4],
for any ε > 0 there exists Xε ⊆ X, Yε ⊆ Y such that µ(X \ Xε) < ε,
ν(Y \Yε) < ε and Xε×Yε is contained in a finite union of rectangles κm. Let
εn = 2−n, Ln = ∩∞k=nXεk and Mn = ∩∞k=nYεk . Then each Ln ×Mn is mild
since it is contained in Xεn × Yεn . Furthermore, Ln ⊆ Ln+1, Mn ⊆Mn+1,

µ(X\Ln) ≤
∞∑
k=n

µ(X\Xεk) < ε22−n and ν(Y \Mn) ≤
∞∑
k=n

µ(Y \Yεk) < ε22−n.

Thus, µ(X \ (∪∞n=1Ln)) = 0 and ν(Y \ (∪∞n=1Mn)) = 0 and the proof is
complete. �

The following result may be viewed as an analogue of Lemma 2.4 for
local multipliers.
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Lemma 3.5. Let {Xi}∞i=1 and {Yj}∞j=1 be families of pairwise disjoint subsets
of X and Y , respectively, such that X = ∪∞i=1Xi and Y = ∪∞j=1Yj. Assume
that ϕ ∈ B(X × Y ) is such that ϕ|Xi×Yj ∈ S(Xi, Yj) for all i, j ∈ N. Then
ϕ ∈ V(X,Y ).

Proof. Let ϕi,j(x, y) = ϕ|Xi×Yj . By our assumption, ϕi,j ∈ S(Xi, Yj) and
hence, by Theorem 2.5, there exist measurable functions ai,j : X → `2 and
bi,j : Y → `2 such that ϕ(x, y) = (ai,j(x), bi,j(y)) for almost all (x, y) ∈
Xi × Yj and

αi,j
def
= sup

x∈Xi

‖aij(x)‖2 sup
y∈Yj

‖bij(y)‖2 <∞.

We may clearly assume that supx∈Xi
‖aij(x)‖2 = supy∈Yj

‖bij(y)‖2. Let H =
⊕i,jHi,j , where Hi,j = `2 for all i, j ∈ N. Considering ai,j(x) as a vector in
Hi,j , we define a function a : X → H in the following way: if x ∈ Xk then set
a(x) = ⊕i,jξi,j(x), where ξk,j(x) = ak,j(x)/j

√
αk,j and ξi,j(x) = 0 for i 6= k.

Similarly, we define b : Y → H by letting, for y ∈ Yl, b(y) = ⊕i,jηi,j(y),
where ηi,l(y) = bi,l(y)/i

√
αi,l and ηi,j(y) = 0 if j 6= l. Then for each i and

x ∈ Xi we have

‖a(x)‖2H =
∞∑
j=1

‖ai,j(x)‖22
j2αi,j

≤ C,

where C =
∑∞
j=1

1
j2 . Similarly, we see that ‖b(y)‖2H ≤ C. Moreover, for

x ∈ Xi and y ∈ Yj , we have that

(a(x), b(y))H =
(ai,j(x), bi,j(y))Hi,j

ijαi,j

and therefore

ϕ(x, y)χXi×Yj
= ijαi,j(a(x), b(y))H , for almost all (x, y) ∈ Xi × Yj .

The next step is to see that there exist families {pi}∞i=1 and {qj}∞j=1 of
vectors in `2 such that αi,j = (pi, qj)`2 , i, j ∈ N. We note first that |αi,j | ≤
cicj , where ci = max{1, |αk,l| : k, l ≤ i} and

αi,j
jcicj

= (si, rj)`2 , where rj = ej ,

si =
∑
j

αi,j
jcicj

ej and {ej}∞j=1 is the standard basis of `2. Observe that since

∑
j

|αi,j |2

j2c2i c
2
j

≤
∑
j

1
j2

< ∞, we have that si ∈ `2. Setting pi = cisi and

qj = jcjrj , we obtain αi,j = (pi, qj)`2 . Now let p(x) = ipi if x ∈ Xi and
q(y) = jqj if y ∈ Yj . Then

ϕ(x, y) = (p(x), q(y))`2(a(x), b(y))H = (p(x)⊗ a(x), q(y)⊗ b(y))`2⊗H

for almost all (x, y) ∈ X × Y . �

The following theorem is the main result of the present section.
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Theorem 3.6. Let ϕ ∈ B(X × Y ). The following are equivalent:
(i) ϕ is a local Schur multiplier;
(ii) ϕ ∈ V(X,Y ).

Proof. (i)⇒(ii) Let {κm}∞m=1 be a covering family of rectangles from the defi-
nition of a local Schur multiplier. By Lemma 3.4, there exist families {Xi}∞i=1

and {Yj}∞j=1 of pairwise disjoint measurable sets of X and Y , respectively,
whose unions have full measure and each rectangle Xi × Yj is contained in a
finite union of sets of the form κm.

Since ϕ|κm ∈ S(κm) for all m ∈ N, it follows from Lemma 2.4 that
ϕ|Xi×Yj ∈ S(Xi × Yj). An application of Lemma 3.5 implies (ii).

(ii)⇒(i) follows from Lemma 3.3. �

Let E be the class of all rectangles α × β such that ϕ|α×β is a Schur
multiplier. Let κϕ be the complement of the ω-union of E . Then κϕ is the
smallest ω-closed set with the property that ϕ is a local Schur multiplier on
each rectangle disjoint from it. We call κϕ the set of LM-singularity of ϕ
(LM is for ”local multiplier”). It may be considered as a measure of how far
ϕ is from being a Schur multiplier. In particular, we say that ϕ is extremely
non-Schur multiplier if κϕ = X × Y . In Section 7 we will give an example of
an ω-continuous function which is extremely non-Schur multiplier.

4. w*-closable multipliers

We now introduce two classes of functions which, along with local Schur
multipliers introduced in the previous section, are the main objects of study
in the paper. We recall that (X,µ) and (Y, ν) are fixed standard measure
spaces, H1 = L2(X,µ) and H2 = L2(Y, ν).

Definition 4.1. A function ϕ ∈ B(X × Y ) is called a w*-closable (resp. clos-
able) multiplier if the map Sϕ is w*-closable (resp. closable), when viewed as
a densely defined linear operator on K(H1,H2).

For the sake of brevity, we will sometimes call a function w*-closable
(resp. closable) if it is a w*-closable (resp. closable) multiplier. We recall that
we denote by Sw∗(X,Y ) (resp. Scl(X,Y )) the set of all w*-closable (resp.
closable) multipliers.

The operator S∗ϕ acting on C1(H2,H1) can be easily described. Recall
that the map k → Ik establishes an identification of Γ(X,Y ) with C1(H2,H1)
and that for f ∈ B(X×Y ), we write f ∈µ×ν Γ(X,Y ) if f is µ× ν-equivalent
to a function in Γ(X,Y ).

Lemma 4.2. (i) We have that

D(S∗ϕ) = {Ih : h ∈ Γ(X,Y ) and ϕh ∈µ×ν Γ(X,Y )}.

In particular, D(S∗ϕ) is a bimodule.
(ii) For every Ih ∈ D(S∗ϕ), we have S∗ϕ(Ih) = Iϕh.
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Proof. (i) For every k ∈ L2(X × Y ) and h ∈ Γ(X,Y ), we have 〈Ik, Ih〉 =∫
khd(µ × ν). It follows that a function h ∈ B(X × Y ) is equivalent to a

function in Γ(X,Y ) if and only if there exists C > 0 such that∣∣∣∣∫ khd(µ× ν)
∣∣∣∣ ≤ C‖Ik‖op, for all k ∈ L2(X × Y ).

We now have

Ih ∈ D(S∗ϕ) ⇔ |〈Sϕ(Ik), Ih〉| ≤ C‖Ik‖op for all k ∈ D(Sϕ)

⇔
∣∣∣∣∫ ϕkhd(µ× ν)

∣∣∣∣ ≤ C‖Ik‖op for all k ∈ D(Sϕ)

⇔ ϕh ∈µ×ν Γ(X,Y ),

since D(Sϕ) is dense in L2(X × Y ).
(ii) is immediate from (i). �

Lemma 4.3. Let ϕ ∈ B(X × Y ). The following are equivalent:
(i) ϕ is a w*-closable multiplier;
(ii) there exists a covering family {κm}m∈N of rectangles and functions

sm, tm ∈ Γ(X,Y ) such that sm(x, y) 6= 0 m.a.e. on κm and

ϕ(x, y) =
tm(x, y)
sm(x, y)

, a.e. on κm, m ∈ N.

Proof. (i)⇒(ii) If ϕ is a w*-closable multiplier then, by Proposition 2.6, the
subspace U = D(S∗ϕ) is norm dense in C1(H2,H1). By Lemma 2.3, there is a
sequence {hn}∞n=1 ⊆ Γ(X,Y ) with {Ihn

}∞n=1 ⊆ U such that ∩∞n=1h
−1
n (0) ' ∅.

Hence, ∪∞n=1h
−1
n (C \ {0}) ' X × Y . Since all hn are ω-continuous, the sets

h−1
n (C \ {0}) are ω-open whence we may assume that they are countable

unions of rectangles. We conclude that X × Y is marginally equivalent to a
countable union of rectangles κm, m ∈ N, such that for every m ∈ N there
exists a function sm ∈ U with sm(x, y) 6= 0 on κm.

By Lemma 4.2, there exists a function tm ∈ Γ(κm) such that tm ∼ ϕsm.
Hence ϕ(x, y) = tm(x,y)

sm(x,y) almost everywhere on κm.
(ii)⇒(i) Since ϕsm ∼ tm and tm ∈ Γ(X,Y ), Lemma 4.2 implies that

Ism ∈ D(S∗ϕ). Since ∩∞m=1s
−1
m (0) ' ∅, the space D(S∗ϕ) is norm dense in

C1(H2,H1) by Lemma 2.3. By Proposition 2.6, Sϕ is w*-closable. �

The following characterisation of w*-closable multipliers is the main
result of this section.

Theorem 4.4. A function ϕ ∈ B(X × Y ) is a w*-closable multiplier if and
only if there exist functions t, s ∈ V(X,Y ) such that s(x, y) 6= 0 marginally
almost everywhere on X × Y and ϕ(x, y) = t(x,y)

s(x,y) , almost everywhere on
X × Y .
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Proof. Let ϕ ∈ B(X × Y ) be a w*-closable multiplier. By Lemma 4.3, there
exists a covering family {κm}m∈N of rectangles such that

ϕ(x, y) =
tm(x, y)
sm(x, y)

, a.e. on κm,

for some sm, tm ∈ Γ(X,Y ) with sn(x, y) 6= 0 m.a.e. on κm.
Using Lemma 3.3 and the inclusion Γ(X,Y ) ⊆ V(X,Y ) we may, if

necessary, partition the sets κm into smaller rectangles and assume that the
functions tm and sm belong to S(κm).

By Lemma 3.4, there exist families {Xk}∞k=1 and {Yl}∞l=1 of pairwise
disjoint measurable subsets of X and Y , respectively, such that X = ∪∞k=1Xk,
Y = ∪∞l=1Yl and each Xk × Yl is contained in a finite union of rectangles of
the form κm. We show that on each rectangle Xk × Yl the function ϕ can
be written in the form ϕ(x, y) = tk,l(x,y)

sk,l(x,y)
where tk,l, sk,l ∈ Γ(Xk, Yl) and

sk,l(x, y) 6= 0 marginally almost everywhere on Xk × Yl.
Indeed, Xk × Yl is the union of a finite number of pairwise disjoint

rectangles Z ×W each of which is the intersections of some rectangles of the
form κm and Xk × Yl. Fix (x, y) ∈ Z ×W . On Z ×W the function ϕ can
be written in the form t0

s0
, where t0, s0 ∈ Γ(X,Y ). We set tk,l(x, y) = t0(x, y)

and sk,l(x, y) = s0(x, y).
Now let us define functions s and t onX×Y by setting t(x, y) = tk,l(x, y)

and s(x, y) = sk,l(x, y) if (x, y) ∈ Xk × Yl. By their definition and Theorem
3.6, s and t belong to V(X,Y ).

Conversely, suppose that ϕ ∼ t/s for some functions t, s ∈ V(X,Y )
with s(x, y) 6= 0 for every (x, y) ∈ X × Y . By Lemma 3.3, X × Y can be
decomposed into a countable union of rectangles on each of which t is a
Schur multiplier. Applying the same lemma to each of these rectangles, we
decompose X×Y into the union of rectangles κm on each of which both t and
s are Schur multipliers. By the σ-finiteness of the measure spaces, we may
moreover assume that (µ× ν)(κm) <∞ for each m ∈ N. It follows that s|κm

and t|κm are equivalent to functions from Γ(κm). An application of Lemma
4.3 now implies that ϕ is a w*-closable multiplier. �

Corollary 4.5. The set Sw∗(X,Y ) of all w*-closable multipliers is a subal-
gebra of B(X × Y ) which contains Sloc(X,Y ). Moreover, every w*-closable
multiplier ϕ is equivalent to an ω-continuous function.

Proof. The fact that the collection of all w*-closable multipliers is an algebra
follows from Theorem 4.4 and Proposition 3.2. Theorems 3.6 and 4.4 imply
that every local multiplier is w*-closable.

Let ϕ ∈ B(X × Y ) be a w*-closable multiplier. By Theorem 4.3, ϕ = t
s

almost everywhere on X × Y , where s, t ∈ V(X,Y ). By Theorem 3.6, t and
s are local multipliers hence they are ω-continuous by Proposition 3.2.

It is easy to see that if f is an ω-continuous function and g : C → C is
continuous on an open set containing f(X × Y ) then g ◦ f is ω-continuous.
Hence 1

s is ω-continuous, and since ω-continuous functions form an algebra,
t
s is ω-continuous. �
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Let κw
∗

ϕ ⊆ X ×Y be the complement of the ω-union of the family of all
rectangles α× β such that ϕ|α×β ∈ Sw∗(α, β). The next proposition will be
useful for us in the subsequent sections.

Proposition 4.6. Let ϕ ∈ B(X × Y ). Then κw
∗

ϕ = nullD(S∗ϕ).

Proof. It follows from Lemma 2.3 that ϕ is a w*-closable multiplier if and
only if nullD(S∗ϕ) = ∅. Applying this to an arbitrary rectangle α×β ⊆ X×Y
together with the observation that nullD(S∗ϕ|α×β

) = (α×β)∩nullD(S∗ϕ), we
obtain that α × β has a marginally null intersection with nullD(S∗ϕ) if and
only if ϕ|α×β is a w*-closable multiplier. This implies our statement. �

It follows from Corollary 4.5 that κw
∗

ϕ ⊆ κϕ. It is natural to call the
functions ϕ ∈ B(X × Y ) for which κw

∗

ϕ ' X × Y extremely non-w∗-closable
multipliers. We have that every extremely non-w*-closable multiplier is an
extremely non-Schur multiplier.

5. Closable multipliers

In this section we study the class Scl(X,Y ) of closable multipliers. Let ϕ ∈
B(X×Y ). Recall that the transformation Sϕ is defined on the linear manifold
D(ϕ) = {h ∈ L2(X × Y ) : ϕh ∈ L2(X × Y )} by letting Sϕh = ϕh and, after
identifying L2(X × Y ) with C2(H1,H2), is considered as a densely defined
operator on the space K(H1,H2) of compact operators from H1 into H2.
The dual space of K(H1,H2) is the space C1(H2,H1) of nuclear operators;
we identify it with Γ(X,Y ), and, by Lemma 4.2, the domain of the adjoint

operator is D∗(ϕ)
def
= D(S∗ϕ) = {h ∈ Γ(X,Y ) : ϕh ∈µ×ν Γ(X,Y )}. It follows

from Proposition 2.6 that ϕ ∈ Scl(X,Y ) if and only if D∗(ϕ) is weak* dense
in Γ(X,Y ). Equivalently, ϕ ∈ Scl(X,Y ) if and only if D∗(ϕ)⊥ = 0, where
D∗(ϕ)⊥ is the set of all compact operators K such that 〈K,h〉 = 0 for all
h ∈ D∗(ϕ). Note that D∗(ϕ) is a sub-bimodule of the bimodule Γ(X,Y ) over
the algebras L∞(X,µ) and L∞(Y, ν).

Let D ⊆ Γ(X,Y ) be any bimodule. Then, for all measurable sets α ⊆ X,
β ⊆ Y and all h ∈ D, the function χα(x)χβ(y)h(x, y) belongs to D. One
can choose the sets α and β in such a way that this function is a Schur
multiplier. Indeed, if h(x, y) = (a(x), b(y)) for some square integrable Hilbert
space valued functions a and b, then it suffices to set α = {x : ‖a(x)‖ ≤ N}
and β = {y : ‖b(y)‖ ≤ N}, for some N > 0. Letting N tend to infinity, we
moreover see that D ∩S(X,Y ) is norm dense in D.

We will need the following proposition.

Proposition 5.1. Let D1, D2 ⊆ Γ(X,Y ) be weak* dense bimodules, invariant
under S(X,Y ). Then D1 ∩D2 is weak* dense.

Proof. We identify the predual of Γ(X,Y ) with K(H1,H2). Let K ∈ (D1 ∩
D2)⊥ and θi ∈ Di ∩S(X,Y ), i = 1, 2. By the invariance of D1 and D2 under
S(X,Y ), we have that θ1θ2 ∈ D1 ∩ D2. Thus, 〈K, θ1θ2〉 = 0 and therefore
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〈Sθ1(K), θ2〉 = 0 for all θ2 ∈ D2 ∩ S(X,Y ). Since D2 ∩ S(X,Y ) is dense
in D2 and Sθ1(K) is a compact operator, we have that Sθ1(K) = 0. Thus,
〈K, θ1〉 = 0 for all θ1 ∈ D1 ∩S(X,Y ) and hence K = 0. �

Theorem 5.2. Scl(X,Y ) is a subalgebra of B(X × Y ).

Proof. Let ϕ1 and ϕ2 be closable multipliers. By Theorem 2.5 and Lemma 4.2
(i), the bimodulesD∗(ϕ1) andD∗(ϕ2) are invariant under S(X,Y ); moreover,
D∗(ϕ1)∩D∗(ϕ2) ⊆ D∗(ϕ1 +ϕ2). Propositions 5.1 and 2.6 imply that ϕ1 +ϕ2

is closable.
To verify that Scl(X,Y ) is closed under products, it suffices now to

show that if ϕ is closable then ϕ2 is closable. Let D = D∗(ϕ) = {h ∈
Γ(X,Y ) : ϕh ∈µ×ν Γ(X,Y )} and D0 = {h ∈ S(X,Y ) ∩ Γ(X,Y ) : ϕh ∈µ×ν
S(X,Y ) ∩ Γ(X,Y )}. Then D0 is dense in D and hence in Γ(X,Y ).

The product of a Schur multiplier and a closable multiplier is closable
(indeed, if w ∈ S(X,Y ), then D∗(ϕ) ⊆ D∗(wϕ) whence D∗(wϕ) is dense). It

follows that if h ∈ D0 then ψ
def
= ϕ2h = ϕ(ϕh) is closable.

Fix h ∈ D0 and let k ∈ D∗(ψ). Then hk ∈ D∗(ϕ2). Hence, if K⊥D∗(ϕ2)
then 0 = (K,hk) = 〈Sh(K), k〉. Since D∗(ψ) is dense, we have that 〈K,h〉 =
Sh(K) = 0. Since D0 is dense, K = 0. Thus D∗(ϕ2) is dense and ϕ2 is
closable. �

Following the analogy with harmonic analysis initiated in [1] and later
pursued in [12], let us call an ω-closed set E ⊆ X × Y an operator M -set
(respectively, operator M1-set) if E supports a non-zero compact operator
(resp. Mmin(E) contains a non-zero compact operator). Clearly, every op-
erator M1-set is an operator M -set. We shall show in Section 7 that there
exist operator M -sets which are not operator M1-sets. We will shortly see
that the property of being or not being an operator M - (resp. M1-) set is
important for deciding whether a given function is a closable multiplier. We
hence include a consequence of Proposition 5.1 concerning sets which are not
operator M - or M1-sets.

Proposition 5.3. Let E1, E2 ⊆ X × Y be ω-closed sets. Suppose that E1 and
E2 are not operator M -sets (resp. not operator M1-sets). Then E1 ∪ E2 is
not an operator M -set (resp. not an operator M1-set).

Proof. Suppose that E1 and E2 are not operator M1-sets. Setting Di =
Mmin(Ei)⊥, we have that Di is a weak* dense sub-bimodule of Γ(X,Y ),
i = 1, 2. Note that, by [28], Di = {ψ ∈ Γ(X,Y ) : ψχEi = 0 m.a.e.}, i = 1, 2.
It follows that Di is invariant under S(X,Y ), i = 1, 2, and that

D1 ∩D2 = {ψ ∈ Γ(X,Y ) : ψχE1∪E2 = 0 m.a.e.}.

By [28] again, (D1∩D2)⊥ = Mmin(E1∪E2). By Proposition 5.1, (D1∩D2)⊥∩
K(H1,H2) = {0} and hence E1 ∪ E2 is not an operator M1-set.

Now suppose that E1 and E2 are not operator M -sets. Let

Di = {ψ ∈ Γ(X,Y ) : ψ vanishes on an ω-open neighbourhood of Ei},



Closable multipliers 17

i = 1, 2. By [28], D⊥
i = Mmax(Ei), i = 1, 2. It is clear that D1 and D2 are

invariant under S(X,Y ) and, since E1 and E2 are not operator M -sets, D1

and D2 are weak* dense in Γ(X,Y ). By Proposition 5.1, D1 ∩ D2 is weak*
dense in Γ(X,Y ). However, D1 ∩D2 equals

{ψ ∈ Γ(X,Y ) : ψ vanishes on an ω-open neighbourhood of E1 ∪ E2}

and hence (D1 ∩D2)⊥ = Mmax(E1 ∪ E2). Thus, E1 ∪ E2 is not an operator
M -set. �

In the next theorem, we relate the notions of operator M - and operator
M1-sets to closability of multipliers.

Theorem 5.4. Let ϕ ∈ B(X × Y ).
(i) If κw

∗

ϕ is not an operator M -set then ϕ is a closable multiplier.
(ii) If κw

∗

ϕ is an operator M1-set then ϕ is not a closable multiplier.

Proof. It follows from Proposition 2.6 that ϕ is closable if and only if D(S∗ϕ)⊥

∩ K(H1,H2) = {0}. By [28] and Proposition 4.6 we have

Mmin(κw
∗

ϕ ) ⊆ D(S∗ϕ)⊥ ⊆ Mmax(κw
∗

ϕ )

which clearly implies the statement. �

Corollary 5.5. (i) If E is not an operator M -set and if, for every marginally
disjoint from E rectangle α × β, the restriction ϕ|α×β is a w*-closable mul-
tiplier, then ϕ is a closable multiplier.

(ii) If (µ× ν)(κw
∗

ϕ ) 6= 0 then ϕ is not a closable multiplier.

Proof. (i) By the definition of κw
∗

ϕ , we have that κw
∗

ϕ ⊆ E, whence κw
∗

ϕ is not
an operator M -set. The claim now follows from Theorem 5.4 (i).

(ii) Note that any set E of non-zero measure is an operator M1-set,
because it supports a non-trivial Hilbert-Schmidt operator, and all such op-
erators belong to Mmin(E) [1]. So it suffices to apply Theorem 5.4 (ii). �

Remark 5.6. (i) If the set κw
∗

ϕ is synthetic then ϕ is a closable multiplier if
and only if Mmax(κw

∗

ϕ ) does not contain a non-zero compact operator.

(ii) Since κw
∗

ϕ ⊆ κϕ, we obtain that for the closability of ϕ it suffices to show
that κϕ does not support non-zero compact operators.

(iii) In Section 7 we shall construct a non-closable multiplier ϕ such that κw
∗

ϕ

is an operator M -set but not an operator M1-set.

Example 5.7. Let E ⊆ X×Y be ω-closed and let ∂E be its ω-boundary (that
is, ∂E = E \E0, where E0 is the largest, up to marginal equivalence, ω-open
set contained in E [10]). If ϕ = χE then for each rectangle α× β marginally
contained either in E or in Ec, we have that ϕ|α×β is a Schur multiplier and
hence κw

∗

ϕ is marginally contained in ∂E. If ∂E is not an operator M -set
then, by Theorem 5.4, χE is a closable multiplier.
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We now present our first example of a non-closable multiplier, using a
result on spectral (non)-synthesis.

Example 5.8. Let U be the bilateral shift acting on the space `2(Z), that is,
the operator given by Uen = en+1, n ∈ N, where {en}n∈Z is the standard
basis of `2(Z). Fix p > 2. By [29, Proposition 9.9], there exist sequences
{an}n∈Z, {bn}n∈Z ∈ `2(Z) with |an| = |bn|, and an operator X ∈ Cp(`2(Z))
such that∑

n∈Z
(anUn)X(bnU−n) = 0 and

∑
n∈Z

(anUn)∗X(bnU−n)∗ 6= 0.

Let W : `2(Z) → L2(T) be the inverse Fourier transform. Then WUW ∗ is the
operator of multiplication by eit and T = WXW ∗ is an operator in Cp(L2(T))
satisfying ∑

n∈Z
MfnTMgn = 0 and

∑
n∈Z

Mfn
TMgn

6= 0,

where Mfn and Mgn are the multiplication operators by the functions fn and
gn given by fn(t) = ane

int and gn(t) = bne
−int, respectively. Set dn = anbn

and note that {dn} ∈ `1(Z). Let ψ(t, s) =
∑
n∈Z fn(t)gn(s) =

∑
n∈Z dne

in(t−s).
As

∑
n∈Z |fn(t)|2 =

∑
n∈Z |gn(s)|2 =

∑
n∈Z |dn| < ∞ for all s, t ∈ T, Theo-

rem 2.5 shows that the function ψ is a Schur multiplier on T× T (equipped
with the product Lebesgue measure). Let

ϕ(t, s) =

{
ψ(t,s)
ψ(t,s) if ψ(t, s) 6= 0

0 otherwise.

We claim that ϕ is not closable. To see this, assume that {Tn}∞n=1 ⊆ C2(L2(T))
is a sequence with Tn → T in the operator norm. Then

Sψ(Tn) → Sψ(T ) =
∑
n∈Z

MfnTMgn = 0.

However,

Sϕ(Sψ(Tn)) = Sψ(Tn) → Sψ(T ) =
∑
n∈Z

Mfn
TMgn

6= 0.

Example 5.8 will be considerably strengthened later: in Proposition 7.12,
we will construct an ω-continuous function which is a non-closable multiplier.
On the other hand, the above example has the advantage that it exhibits a
multiplier which is not closable in Cp, for each p > 2.

Let [0, 1] be the unit interval equipped with the Lebesgue measure,
let ∆ = {(x, y) ∈ [0, 1] × [0, 1] : x < y} and ϕ = χ∆ be the characteristic
function of ∆. The multiplier Sϕ is usually called the transformer of triangular
truncation (see for example [14]). The following result extends the well-known
fact that Sϕ is not a Schur multiplier.

Proposition 5.9. The transformer of triangular truncation is closable but not
w*-closable.
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Proof. We first show that ϕ is closable. Let Λ = {(x, x) : x ∈ [0, 1]} be the
diagonal of the unit square. The set Λ only supports operators of multipli-
cation by functions in L∞(0, 1); in particular, it is not an operator M -set.
Since the function ϕ is constant on each rectangle marginally disjoint from
Λ, the claim follows from Corollary 5.5 (i).

To show that ϕ is not w*-closable, it suffices, by Corollary 4.5, to show
that ϕ is not equivalent to an ω-continuous function. Assume, towards a
contradiction, that there exists an ω-continuous function f such that f = ϕ
almost everywhere. By Lemma 2.2, f = 0 m.a.e. on ∆′ and f = 1 m.a.e. on
∆.

Note that if a rectangle is marginally disjoint from ∆ or ∆′ then it is
marginally disjoint from Λ. It follows that the same is true for any ω-open
set. Since f−1(C \ {1}) is marginally disjoint from ∆, we obtain that f = 1
m.a.e on Λ. Similarly f = 0 m.a.e. on Λ. This is a contradiction because Λ is
not marginally null. �

Remark The proof of Proposition 5.9 implies the following more general
statement: Let ∆1 and ∆2 be disjoint ω-open sets and Λ = (∆1 ∪ ∆2)c be
such that (a) Λ does not support a non-zero compact operator, and (b) for
every rectangle κ, κ ∩ Λ 6' ∅ implies that κ ∩∆i 6' ∅, i = 1, 2. Then χ∆1 is
closable but not w*-closable.

Example 5.10. Let E ⊆ X×Y be an ω-closed set such that E\∂E 6' ∅, where
∂E is the ω-boundary of E, and let ϕ = χE . Then kw

∗

ϕ = nullD(S∗ϕ) = ∂E.
In fact, if a rectangle κ is such that κ ∩ ∂E 6' ∅ then, by the proof of

Proposition 5.9, ϕ|κ is not ω-continuous and hence not a w*-closable multi-
plier, giving that κ is not marginally disjoint from κw

∗

ϕ . As ∂E marginally
contains κw

∗

ϕ (see Example 5.7), we obtain κw
∗

ϕ ' ∂E.

Proposition 5.9 shows that there exist closable multipliers which are
not ω-continuous. But they are continuous in the stronger pseudo-topology,
τ , introduced in Section 2.1.

Proposition 5.11. Any closable multiplier is τ -continuous.

Proof. Let ϕ ∈ Scl(X,Y ). If U ⊆ C is an open set then

f−1(U) = (f−1(U) ∩ κw
∗

ϕ ) ∪ ((f−1(U) ∩ (κw
∗

ϕ )c).

Since κw
∗

ϕ is ω-closed, (κw
∗

ϕ )c is marginally equivalent to a countable
union ∪∞i=1αi × βi of rectangles. Moreover, for each i, f |αi×βi is w*-closable
and hence ω-continuous. This implies that f−1(U) ∩ (αi × βi) is marginally
equivalent to a countable union of rectangles and hence the same is true for
f−1(U)∩(κw

∗

ϕ )c. It remains to note that (µ×ν)((f−1(U)∩κw∗ϕ ) = 0 because,
by Corollary 5.5, (µ× ν)(κw

∗

ϕ ) = 0. �

Remark 5.12. We note that the class of τ -continuous functions is strictly
larger than that of closable multipliers; see Proposition 7.12.
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6. Divided differences

Let f be a continuous function on a finite or infinite open subinterval J ⊆ R.
The divided difference of f is the function

f̌(x, y) =
f(x)− f(y)

x− y

defined on J × J \Λ, where Λ = {(x, x) : x ∈ R}. Let µ be a regular measure
on R whose support contains J . In what follows we will assume that µ is
non-atomic and hence f is defined almost everywhere on J × J .

The property of f̌ being a Schur multiplier is closely related to a kind of
“operator smoothness” of f . Recall that f is called operator Lipschitz (OL)
on a compact subset K ⊆ J if there exists a constant D > 0 such that

‖f(A)− f(B)‖ ≤ D‖A−B‖

for all selfadjoint operators A, B with spectra in K. The smallest constant
D with this property will be denoted by |f |OL.

Let O(f) be the union of all open subintervals I ⊆ J on which f is OL.
It is an open subset of J . Its complement will be denoted by E(f).

Lemma 6.1. Let I be a compact subset of J . A function f̌ is a Schur multiplier
on I × I if and only if f is OL on I.

Proof. If f̌ is a Schur multiplier then, for h1(x, y) = (x− y)h(x, y), we have

‖If̌h1
‖ ≤ C‖Ih1‖ (1)

and hence
‖f(A)X −Xf(A)‖ ≤ C‖AX −XA‖, (2)

where A is the operator of multiplication by x on L2(I, µ) and X = Ih. By
[22, Remark 2.1, Corollary 3.6] and [23, Theorem 3.4], f is OL.

Conversely, if f is OL, then (2) holds for each X ∈ B(L2(I, µ)) by
[22, Corollary 3.6]. This implies (1) for L2-functions of the form h1(x, y) =
(x − y)h(x, y), where h ∈ L2(I × I, µ × µ). Since functions of this form are
dense in L2(I×I, µ×µ), and since the L2-norm majorizes the operator norm,
inequality (1) holds for all h1 ∈ L2(I×I, µ×µ). This means that f̌ is a Schur
multiplier. �

Lemma 6.2. If I1, I2 are compact intervals and I1 ∩ I2 = ∅ then f̌ |I1×I2 ∈
S(I1, I2).

Proof. Since f(x) − f(y) ∈ S(I1, I2), it suffices to show that 1
x−y |I1×I2 ∈

S(I1, I2). Without loss of generality we may assume that I1 = [0, a], I2 = [b, c]
with b > a. We have

1
x− y

= −
∞∑
n=0

xn

yn+1
, (x, y) ∈ I1 × I2.

Since
∥∥∥ xn

yn+1

∥∥∥
S(I1,I2)

≤ an

bn+1 , the series converges in S(I1, I2) in norm. �
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The following theorem gives a precise description of the set of LM-
singularity for a divided difference.

Theorem 6.3. For every continuous function f , we have

κf̌ ' {(x, x) : x ∈ E(f)}.

Proof. Write O(f) as the union of a sequence of disjoint open intervals:
O(f) = ∪∞n=1Jn. For each n, Jn×Jn is the union of rectangles Ik× Ik, where
Ik are compact subintervals of Jn. Since, by Lemma 6.1, f̌ |Ik×Ik

∈ S(Ik, Ik),
it follows that f̌ |Jn×Jn ∈ Sloc(Jn, Jn). Thus (Jn×Jn)∩κf̌ ' ∅. Furthermore,
κf̌ ⊆ Λ by Lemma 6.2. It follows that, up to a marginally null set, we have

κf̌ ⊆ Λ \ (∪∞n=1Jn × Jn) = {(x, x) : x ∈ E(f)}.
To prove the converse inclusion, it suffices to show by the regularity of

µ that if I1 and I2 are compact subsets of J such that f̌ |I1×I2 ∈ S(I1, I2)
then E(f) ∩ I1 ∩ I2 = ∅; indeed, we would then have (I1 × I2) ∩ {(x, x) : x ∈
E(f)} = {(x, x) : x ∈ E(f) ∩ I1 ∩ I2} ' ∅.

Let I = I1 ∩ I2. By Lemma 2.4 (i), f̌ |I×I ∈ S(I, I), and Lemma 6.1
implies that f is OL on I; therefore I ⊆ O(f) and hence I ∩ E(f) = ∅. �

Corollary 6.4. f̌ is a local Schur multiplier if and only if µ(E(f)) = 0.

It is known [21] that the class of all continuous Schur multipliers on
X × Y , where X,Y are compact Hausdorff spaces, very weakly depends on
the choice of Borel measures on X and Y : it depends only on the support of a
measure. The above corollary shows that the class of continuous local Schur
multipliers essentially depends on the choice of a measure. Indeed, a change
of the measure does not change the set E(f) while the condition µ(E(f)) = 0
need not be preserved.

Corollary 6.5. For each f , the function f̌ is a closable Schur multiplier.

Proof. By Theorem 6.3, κf̌ ⊆ {(x, x) : x ∈ J}. Since the diagonal {(x, x) :
x ∈ J} does not support a compact operator, it follows from Theorem 5.4
that f̌ is not closable. �

Proposition 6.6. There exists a function f : [0, 1] → C such that f̌ is a Schur
multiplier, f̌ 6= 0 almost everywhere and 1/f̌ is not a local Schur multiplier.

Proof. Let M be a Cantor-like set of non-zero Lebesgue measure (see [18])
and let g be a continuously differentiable function which is equal to zero on
M and positive otherwise. Let f be its primitive function: f ′ = g. Then
f ∈ C2([0, 1]) and hence it is operator Lipschitz [9]; by Lemma 6.1, f̌ is a
Schur multiplier. Since f is strictly monotone, f̌ 6= 0 almost everywhere.

The function 1/f̌ which, since f is strictly monotone, is defined almost
everywhere, is not a local Schur multiplier. In fact, assuming the converse,
given ε > 0, we can find subsets Xε, Yε of [0, 1] such that m([0, 1] \Xε) < ε,
m([0, 1] \ Yε) < ε and (f̌)−1|Xε×Yε is a Schur multiplier. Hence (f̌)−1 is
equivalent to an essentially bounded function. But this is impossible since by
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construction (f̌)−1(x, y) is arbitrary large for (x, y) close to (x, x), x ∈M and
since m(M) > 0, the set {(x, y) ∈ Xε × Yε : |(f̌(x, y))−1| > C} has positive
measure for all C > 0 and sufficiently small ε > 0. �

The divided difference f̌ can be extended to a continuous function on
J × J if and only if f is continuously differentiable. Our next aim is to
construct a continuously differentiable function f such that f̌ is not a Schur
multiplier on each rectangle with non marginally null intersection with Λ.
For this we need an extension of the well-known result of Farforovskaya [11]
(see also Peller [26]) which states that a continuously differentiable function
on a compact interval need not be OL.

Theorem 6.7. There is a function in C1([0, 1]) which is not OL on each
subinterval of [0, 1].

Proof. By [11], there exists f ∈ C1([0, 1]) which is not operator Lipschitz on
[0, 1]. Such function f can be chosen so that

f(0) = f ′(0) = f(1) = f ′(1) = 0. (3)

To see this it suffices to choose a continuously differentiable non OL function
g on a subinterval I ⊆ (0, 1) and extend it to a continuously differentiable
function f on [0, 1] satisfying (3).

Let us denote by C1
0 the set of all f ∈ C1([0, 1]) satisfying (3). Let

Cs = C∞([0, 1]) ∩ C1
0 . It is well-known that all functions in C∞ are OL (in

fact, it suffices for f to have a continuous second derivative). We claim that
for each C > 0, there exists g ∈ Cs, such that ‖g‖C1 = 1 and |g|OL > C.

Indeed suppose that this is not true. Since Cs is dense in C1
0 , each func-

tion f ∈ C1
0 is the sum of a series

∑∞
n=1 gn, where gn ∈ Cs and

∑∞
n=1 ‖gn‖C1 <

∞. Our assumption gives
∑∞
n=1 |gn|OL <∞ which easily implies that |f |OL <

∞, and so f ∈ OL. This is a contradiction because, as we know from [11],
C1

0 is not contained in the set of all Operator Lipschitz functions.
Now, by [22], we may state that there exist operators A = A∗ and X

such that
‖g(A)X −Xg(A)‖ ≥ C/2‖AX −XA‖.

Moreover, by [22], A and X can be chosen to have finite rank. Clearly, the
interval [0, 1] can be replaced by an arbitrary closed interval.

Let {In} be a sequence of subintervals of [0, 1] such that each subinterval
J ⊆ [0, 1] contains at least one (and hence infinitely many) In.

We claim that given operators of finite rankX1, . . . , Xn−1,A1, . . . , An−1,
where A∗i = Ai, i = 1, . . . , n− 1, and a number C > 0, there exist finite rank
operators A = A∗ and X, and a smooth function g such that supp g ⊆ In,
‖g‖C1([0,1]) ≤ 1, g(Aj) = 0, j = 1, . . . , n− 1, and ‖[g(A), X]‖ ≥ C‖[A,X]‖.

Indeed, since the spectra of all Aj are finite, one can find a subinter-
val J of In having empty intersection with ∪n−1

j=1 σ(Aj). Now by the second
paragraph, there exists a smooth function g with support in J , such that
‖g‖OL > C and ‖g‖C1 = 1. By the previous arguments this will imply the
existence of operators A and X with the required properties.
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This allows us to construct sequences of operators {Xn}, {An}, of
smooth functions {gn} and of positive constants {Cn} such that

1. ‖gn‖C1 ≤ 1;
2. supp gn ⊆ In;
3. each Xn, An are of finite rank and An = A∗n;
4. gn(Aj) = 0 for j < n;
5. ‖[gn(An), Xn]‖ ≥ Cn‖[An, Xn]‖;
6. Cn ≥ 2n(n+

∑n−1
j=1 2−j |gj |OL).

Let f(t) =
∑∞
j=1 2−jgj(t) so f ∈ C1([0, 1]). Let us prove that f is not OL on

any subinterval J ⊆ [0, 1]. Assume the converse; then there exists J ⊂ [0, 1]
and C > 0 such that ‖[f(A), X]‖ ≤ C‖[A,X]‖ for any X and A = A∗ with
σ(A) ⊆ J . By the choice of In, given m > 0 there exists n > m such that
In ⊆ J . Therefore

f(An) =
∞∑
j=1

2−jgj(An) =
n∑
j=1

2−jgj(An).

Since ‖[f(An), Xn]‖ ≤ C‖[An, Xn]‖, we have

‖2−n[gn(An), Xn]‖ ≤ C‖[An, Xn]‖+
n−1∑
j=1

2−j‖[gj(An), Xn]‖

≤ (C +
n−1∑
j=1

2−j |gj |OL)‖[An, Xn]‖.

On the other hand,

‖[gn(An), Xn]‖ ≥ Cn‖[An, Xn]‖.
Hence

Cn ≤ 2n(C +
n−1∑
j=1

2−j |gj |OL).

From condition (6) on the constant Cn we get 2n(n +
∑n−1
j=1 2−j‖gj‖OL) ≤

2n(C +
∑n−1
j=1 2−j‖gj‖OL) and hence n ≤ C for every n ∈ N, a contradiction.

�

Corollary 6.8. There exists f ∈ C1([0, 1]) such that kf̌ = {(x, x) : x ∈ [0, 1]}.

Proof. Let f be the function constructed in Theorem 6.7. Then O(f) = ∅
and E(f) = [0, 1]. The statement now follows from Theorem 6.3. �

7. Multipliers of Toeplitz type

Let G be a locally compact second countable abelian group and therefore
metrisable by [17, 8.3]. Let µ = ds be the left invariant Haar measure on G.
We write Lp(G) for Lp(G,µ), p = 1, 2, and denote by Cc(G) the space of all
continuous functions on G with compact support. Let Ĝ be the dual group of
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G and A(G) (resp. B(G)) be the Fourier (resp. the Fourier-Stieltjes) algebra
of G. We recall that A(G) is the image of L1(Ĝ) under Fourier transform. It
is well-known that A(G) coincides with the family of functions t 7→

∫
G
f(s−

t)g(s)ds = (λ(t)f, ḡ), f , g ∈ L2(G), where λ(t)f(s) = f(s − t). The algebra
B(G) is the image under Fourier transform of the convolution algebra M(G)
of all bounded Radon measures on G. One has A(G) ⊆ B(G); equality holds
if and only if G is compact. It is moreover known that B(G) coincides with
the space of all multipliers A(G) (see [31]).

For a subset J ⊆ A(G), its null set is defined by

null J = {s ∈ G : f(s) = 0 for all f ∈ J}.
Conversely, for a closed subset E of G we denote by I(E) (resp. J(E)) the
space of all f ∈ A(G) vanishing on E (resp. the closed hull of the space of
all f ∈ A(G) vanishing on a neighborhood of E); we have that I(E) is the
largest (resp. the smallest) closed ideal of A(G) whose null set is equal to E
(see [31]).

Let N be the map sending a measurable function f : G → C to the
function Nf : G×G→ C given by Nf(s, t) = f(s− t). The functions of the
form Nf will be called functions of Toeplitz type. It is well-known (see, for
example, [7]) that if f ∈ L∞(G) then Nf is a Schur multiplier with respect
to Haar measure if and only if f ∈µ B(G). In this section we show that the
algebra of w*-closable multipliers of Toeplitz type coincides with that of local
Schur multipliers of Toeplitz type; if G is compact then both spaces coincide
with the algebra of Schur multipliers of Toeplitz type, that is, with NA(G).

We shall start with a result relating the continuity of a function f on G
to the ω-continuity of Nf .

The following lemma is certainly known but, since we were not able
to find a precise reference, we include its proof for completeness. Let O(X)
denote the set of all open subset of a topological space X.

Lemma 7.1. Let X be a topological space and ξ : O(C) → O(X) be a union
preserving map such that ξ(∅) = ∅, ξ(C) = X and ξ(U ∩ V ) = ∅ whenever
U, V ∈ O(C) and U ∩ V = ∅. Then there exists a continuous function g :
X → C such that ξ(U) = g−1(U) for all U ∈ O(C).

Proof. For t ∈ X, let O(t) denote the union of all U ∈ O(C) with t /∈ ξ(U).
Since ξ(C) = X, we have that C \ O(t) is non-empty. If it contains at least
two points, say λ1 and λ2, then taking disjoint open sets Ui with λi ∈ Ui,
i = 1, 2, we obtain that t ∈ ξ(U1) ∩ ξ(U2). This contradicts the fact that
ξ(U1) ∩ ξ(U2) is empty.

We proved that C \ O(t) = {λ}, for some λ ∈ C. Setting g(t) = λ, we
obtain a function g : X → C. It follows from its definition that g−1(U) =
ξ(U), for every U ∈ O(C). Hence, g is continuous. �

For t ∈ G, we denote by Λt the t-shifted diagonal:

Λt = {(x, x− t) : x ∈ G}.
We say that a subset E of Λt is non-null in Λt, if m({x : (x, x− t) ∈ E}) > 0.
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For W ⊆ C ×G set

π(W ) = {t ∈ G : W ∩ Λt is non-null in Λt}.
Clearly π(G×G) = G, π(∅) = ∅ and π(W1 ∪W2) = π(W1) ∪ π(W2).

Lemma 7.2. If W is ω-open, then π(W ) is open.

Proof. Let s ∈ π(W ). It follows that there exists a rectangle α×β ⊆W with
non-null (in Λs) intersection with Λs. By the σ-finiteness of the measure
spaces, we may moreover assume that α and β have finite measure. We now
have m(α∩ (β+s)) > 0. Since the function x→ m(α∩ (β+x)) is continuous
(being the convolution of the L2-functions χα and χβ), m(α ∩ (β + x)) > 0
for all x in a neighborhood V of s. Hence V ⊆ π(W ). �

Proposition 7.3. Let f : G → C and ϕ = Nf . The function ϕ is equivalent
to an ω-continuous function if and only if f is equivalent to a continuous
function. Moreover, ϕ is ω-continuous if and only if f is continuous.

Proof. If f is continuous then Nf is continuous and hence ω-continuous. It
follows easily that if f is equivalent to a continuous function then Nf is
equivalent to a continuous function. We hence show the converse assertions.

Let ψ : G×G→ C be an ω-continuous function equivalent to Nf . Thus,
Z
def
= {(x, y) ∈ G×G : Nf(x, y) 6= ψ(x, y)} is a null set. Then M

def
= π(Z) is

a null subset of G. Let us say that a point t ∈ G is good if t /∈M .
For U ∈ O(C), set ξ(U) = π(ψ−1(U)). It follows from Lemma 7.2 that

ξ maps O(C) to O(G). The conditions ξ(C) = G, ξ(∅) = ∅ and ξ(U1 ∪U2) =
ξ(U1)∪ξ(U2) follow from the corresponding properties of π. We have to show
that ξ sends disjoint sets to disjoint sets.

Note that if t is good and t ∈ ξ(U) then f(t) ∈ U . Indeed, ψ(x, x−t) ∈ U
for all x belonging to a certain non-null set, by the definition of ξ(U). Since
t is good, for almost all x ∈ G, the pair (x, x− t) does not belong to Z hence
there exists x ∈ G such that ψ(x, x− t) = Nf(x, x− t) = f(t).

Now if U1 ∩ U2 = ∅ and ξ(U1) ∩ ξ(U2) 6= ∅ then ξ(U1) ∩ ξ(U2) is an
open set must contain a good point t ∈ G. But then f(t) ∈ Ui, 1 = 1, 2, a
contradiction.

Applying Lemma 7.1 we obtain a continuous function g : G → C with
ξ(U) = g−1(U), for all U ∈ O(C). By the above argument, g(t) = f(t) for all
good t (indeed for each U containing g(t) we have that t ∈ g−1(U) = ξ(U)
whence f(t) ∈ U). Thus f coincides almost everywhere with the continuous
function g.

If Nf is ω-continuous then all points are good and f(t) = g(t), for all
t ∈ G. �

Let us say that a measurable function f : G→ C belongs (resp. almost
belongs) to A(G) at a point t ∈ G if there exist a neighborhood U of t
and a function g ∈ A(G) such that f(s) = g(s) everywhere (resp. almost
everywhere with respect to Haar measure µ) on U . If f belongs to A(G) at
each t ∈ G then we say that f locally belongs to A(G) and write f ∈ A(G)loc.
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It is obvious that A(G)loc ⊆ C(G) and, using the regularity of A(G), it is
easy to show that if G is compact then A(G)loc = A(G). In general we have
the inclusions A(G) ⊆ B(G) ⊆ A(G)loc.

If f almost belongs to A(G) at each point t ∈ G, it is not difficult to
see that f is equivalent to a function in A(G)loc. We recall that in this case
we write f ∈µ A(G)loc.

For a measurable function f : G→ C, let

Jf = {h ∈ A(G) : fh ∈µ A(G)}

and Ef = nullJf . Clearly, Jf is an ideal of A(G) whence

J(Ef ) ⊆ Jf ⊆ I(Ef ).

Lemma 7.4. Let f : G→ C be measurable. Then

Ef = {t ∈ G : f does not almost belong to A(G) at t}. (4)

Proof. Let E be the set in the right hand side of (4). If t ∈ Ec, then f
almost belong to A(G) at t and therefore there exists a neighborhood V of
t such that fg is equivalent to a function in A(G) for any g ∈ A(G) with
V c ⊆ null {g}. Now if g ∈ A(G) takes the value 1 at t and 0 on V c then
g ∈ Jf and t /∈ null g. Thus, t 6∈ Ef and hence Ef ⊆ E.

To see the reverse inclusion, let t ∈ E and assume that there exists
g ∈ A(G) such that fg ∼ h, h ∈ A(G) and g(t) 6= 0. Then there exists a
neighborhood U of t such that |g(s)| > δ > 0 for all s ∈ U . By the regularity
of A(G), we can find q ∈ A(G) such that q(s)g(s) = 1 for all s ∈ U ; therefore
f(s) = f(s)q(s)g(s) for all s ∈ U . Since fgq ∼ hq on U and hq ∈ A(G), the
function f almost belongs to A(G) at t. We obtain a contradiction giving
E ⊆ Ef . �

For notational simplicity we let Γ(G) = Γ(G,G). We shall frequently
use the map P : Γ(G) → A(G) given by P (f ⊗ g)(t) = (λ(t)g, f̄). Clearly, P
is a surjective contraction.

For a subset E ⊆ G, let E∗ = {(x, y) ∈ G×G : x− y ∈ E}.

Theorem 7.5. Assume that G is a subgroup of Rn or Tn, n ∈ N. Let f : G→ C
be a measurable function, ϕ = Nf and U, V ⊆ G be measurable sets. The
following are equivalent:

(i) (U × V ) ∩ E∗f ' ∅;
(ii) ϕ|U×V ∈ Sloc(U, V );
(iii) ϕ|U×V ∈ Sw∗(U, V ).

Proof. Set E = Ef and note that (U×V )∩E∗ ' ∅ if and only if (U ′−V ′)∩E =
∅ for some U ′ ⊆ U and V ′ ⊆ V with µ(U \ U ′) = µ(V \ V ′) = 0. We claim
that fψ ∈µ A(G) for every ψ ∈ A(G) ∩ Cc(G) with suppψ ⊆ Ec. Indeed, by
Lemma 7.4, for each t ∈ Ec there exists a neighborhood Vt of t and a function
gt ∈ A(G) such that f ∼ gt on Vt. Since suppψ is compact there exists a finite
set F ⊆ G such that suppψ ⊂ ∪t∈FVt. It follows from the regularity of A(G)
that there exist ht ∈ A(G), t ∈ F , such that

∑
t∈F ht(x) = 1 if x ∈ suppψ
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and hs(x) = 0 if x /∈ Vs for each s ∈ F (see the proof of [17, Theorem 39.21]).
Then for every x ∈ G we have

f(x)ψ(x) =
∑
t∈F

f(x)ψ(x)ht(x)

and hence fψ ∼
∑
t∈F gtψht, giving fψ ∈µ A(G).

(i)⇒(ii) Suppose (U × V ) ∩ E∗ ' ∅ and let U ′ ⊆ U and V ′ ⊆ V be
measurable subsets such thatm(U\U ′) = m(V \V ′) = 0 and (U ′−V ′)∩E = ∅.
Since G is second countable and U ′ − V ′ ⊆ Ec, m(U \ U ′) = m(V \ V ′) = 0,
we may choose increasing sequences {Kn}∞n=1 and {Ln}∞n=1 of compact sets
such that, up to a null set, ∪∞n=1Kn = U and ∪∞n=1Ln = V , and a compact set
Mn such that Kn−Ln ⊆Mn ⊆ Ec. Choose, for each n ∈ N, a function ψn ∈
A(G) ∩ Cc(G) supported in Ec and taking value 1 on Mn. By the previous
paragraph, fψn ∈µ A(G) and therefore N(fψn) is a Schur multiplier. Thus,
for each ξ ∈ Γ(G), we have

ϕχKn×Ln
ξ = N(fψn)χKn×Ln

ξ ∈µ×µ Γ(G).

It follows that ϕ|Kn×Ln is a Schur multiplier and hence ϕ ∈ Sloc(U, V ).
(ii)⇒(iii) follows from Corollary 4.5.
(iii)⇒(i) We will identify Γ(U, V ) with a subset of Γ(G) in a natural way.

Let ψ = ϕ|U×V . By Proposition 2.6, D(S∗ψ) is norm dense in Γ(U, V ). Thus,
P (D(S∗ψ)) is norm dense in P (Γ(U, V )). By Lemma 4.2 (i), D(S∗ψ) = {h ∈
Γ(U × V ) : ψh ∈µ×µ Γ(U, V )}. Since fP (h) = P (ϕh) ∈ P (Γ(G)) ∈µ A(G)
for every h ∈ D(S∗ψ), the set {P (h) : h ∈ Γ(U, V ), fP (h) ∈µ A(G)} is dense
in P (Γ(U, V )), and hence

P (Γ(U, V )) ⊆ Jf .

This implies that
E = nullJf ⊆ nullP (Γ(U, V )).

It suffices to show that there exist subsets U ′ ⊆ U , V ′ ⊆ V such that
µ(U \U ′) = µ(V \V ′) = 0 and (U ′−V ′)∩nullP (Γ(U, V )) = ∅ since this will
imply

U ′ − V ′ ⊆ nullP (Γ(U, V ))c ⊆ Ec

and hence (U × V ) ∩ E∗ ' ∅.
Let U ′, V ′ be the sets of density points of U and V , respectively. Then,

by the Lebesgue density theorem (see [25]), µ(U \ U ′) = µ(V \ V ′) = 0. To
prove the statement, it suffices to show that P (χU ⊗ χV )(s) = µ(U ∩ (V +
s)) > 0 if s ∈ U ′ − V ′. Let s = u − v, u ∈ U ′, v ∈ V ′ and assume that
µ(U ∩ (V + s)) = µ((U − u) ∩ (V − v)) = 0. If Bε(0) is the closed ball with
centre 0 and radius ε, we then have

µ((U − u) ∩Bε(0)) + µ((V − v) ∩Bε(0)) ≤ µ(Bε(0)),

for each ε > 0. Applying the Lebesgue density theorem we obtain

2 = 1 + 1 = lim
ε→0

µ((U − u) ∩Bε(0))
µ(Bε(0))

+ lim
ε→0

µ((V − v) ∩Bε(0))
µ(Bε(0))

≤ 1,

a contradiction.
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�

Remark 7.6. (i) The condition that G be a subgroup of Rn or Tn is only used
to prove the implication (iii)⇒(i), where we appeal to the Lebesgue density
theorem. The statement remains true for more general groups (in particular,
for Lie groups), for which there is an analog of the Lebesgue theorem (see
[8, 24]).

(ii) Taking U = V = G, we see that ϕ ∈ Sw∗(G,G) implies Ef = ∅ for any
group G, since in this case the arguments in the proof of Theorem 7.5 give
Jf = P (Γ(G)) = A(G).

We note some consequences of Theorem 7.5. In the next corollary, which
gives a precise description of the sets κϕ and κw

∗

ϕ , we assume that G satisfies
the conditions of Theorem 7.5 (see also Remark 7.6 (i)).

Corollary 7.7. Let f : G → C be a measurable function and ϕ = Nf . Then
κϕ ' κw

∗

ϕ ' (Ef )∗.

The following theorem shows that the set of local Schur multipliers and
that of w*-closable multipliers coincide in the class of Toeplitz functions.

Theorem 7.8. Let G be an arbitrary second countable locally compact abelian
group. Let f : G → C be a measurable function and ϕ = Nf . The following
are equivalent:

(i) f ∈µ A(G)loc;
(ii) ϕ is a local Schur multiplier;
(iii) ϕ is a w*-closable multiplier.

If G is compact then the above statements are equivalent to
(iv) ϕ is a Schur multiplier.

Proof. We note that f ∈µ A(G)loc if and only if Ef = ∅. The equivalence
(i)⇔(ii)⇔(iii) follows from Theorem 7.5 and Remark 7.6(ii).

Assume that G is compact. Then (i)⇔(iv) follows from the equality
A(G) = A(G)loc and the fact that Nf is a Schur multiplier if and only if
f ∈m A(G). �

Our next result shows that the class of ω-continuous functions is strictly
larger than the class of w*-closable multipliers.

Corollary 7.9. Let G be a compact abelian group, f ∈ C(G) \ A(G) and
ϕ = Nf . Then ϕ is ω-continuous but not w*-closable.

Proof. Since ϕ is the composition of the continuous function g, given by
g(s, t) = s − t, and the continuous function f , it is ω-continuous. By Theo-
rem 7.8, ϕ is not a w*-closable multiplier. �

Example 7.10. Let ∆ = {(x, y) ∈ R : x ≤ y}. Then χ∆(x, y) = χ(−∞,0](x−y)
is not a w*-closable multiplier, since χ(−∞,0] does not almost belong to A(R)
at x = 0.
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Remark 7.11. It is known that there exists a function f ∈ B(R) such that
f > 0 on R, but 1/f /∈ B(R) ([13, §32]). Since a function of Toeplitz type
w(s, t) = f(s− t), s, t ∈ R, f ∈ C(R), is a Schur multiplier if and only if f ∈
B(R), we obtain a positive Schur multiplier w such that 1/w is not a Schur
multiplier. However, 1/w is a local Schur multiplier, since 1/f ∈ A(R)loc. To
see this, we note that f belongs locally to A(R) and hence for each s ∈ R
there exists a neighbourhood Vs and g ∈ A(R) such that f = g on Vs. Since
g(s) 6= 0 on Vs, using the regularity of A(R) one can find h ∈ A(R) such that
hg = 1 on Vs. As h = 1/f on Vs and s is arbitrary, we have 1/f ∈ A(G)loc.

Note that, by Proposition 6.6, there exists a Schur multiplier w such
that w(s, t) 6= 0 almost everywhere and 1/w is not a local Schur multiplier.

Proposition 7.12. There exists an ω-continuous non-closable extremely-non-
Schur multiplier.

Proof. Since each continuous function on G×G is ω-continuous with respect
to the Haar measure, it suffices to exhibit a continuous function f such that
Nf is non-closable and κf = G × G. Let G = T. By [20, Chapter II, Theo-
rem 3.4], for any set S ⊆ T of Lebesgue measure zero there exists a function
h ∈ C(T) whose Fourier series diverges at every point of S. We can choose S
so that its closure is T and take the corresponding f ∈ C(T). Let ϕ = Nf .
By the Riemann Localisation Lemma, any function which belongs to A(T) at
x ∈ T has a convergent Fourier series at x. Thus, T ⊆ Ef and hence Ef = T.

By Corollary 7.7, we have κϕ ' κw
∗

ϕ ' T2 and therefore ϕ is extremelly-
non-Schur multiplier. Moreover, applying now Proposition 4.6, we obtain
nullD(S∗ϕ) = T2 and hence D(S∗ϕ) = {0}, showing that ϕ is non-closable. �

Now assumeG is compact, so that Ĝ is discrete. ThenA(G) = {
∑
χ∈Γ cχχ :∑

χ∈Γ |cχ| <∞}. The space of pseudomeasures PM(G) = A(G)∗ can be iden-
tified with `∞(Ĝ) via Fourier transform: F → {F̂ (χ)}χ∈Γ. A pseudomeasure
F ∈ PM(G) is called a pseudofunction if F̂ vanishes at infinity. We recall that
PM(G) is an A(G)-module with respect to the operation fF (g) = F (fg), for
F ∈ PM(G), f, g ∈ A(G), and that the support supp F of a pseudomeasure
F is the set {x ∈ G : fF 6= 0 whenever f(x) 6= 0, f ∈ A(G)}.

If E is a closed subset of G we let PM(E) (resp. N(E)) denote the space
of all pesudomeasures supported in E (resp. the weak* closed hull of the space
of all measures µ ∈M(G) supported in E). Here, by the weak* topology we
mean the σ(PM(G), A(G))-topology. Clearly, N(E) ⊆ PM(E). Moreover,
PM(E) (resp. N(E)) is the largest (resp. smallest) weak* closed subspace
the support of whose every element is in E. Moreover, N(E) = I(E)⊥ and
PM(E) = J(E)⊥.

Recall that a closed set E ⊆ G is called an M -set (resp. an M1-set) if
PM(E) (resp. N(E)) contains a non-zero pseudofunction. It is known that
there exists an M -set which is not an M1-set, see [15, Section 4.6]. In what
follows we shall give some sufficient conditions for a function of Toeplitz type
to be a closable or a non-closable multiplier, based on the above notions.
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In [12], Froelich studied the question of when a given closed set sup-
ports a non-zero compact operator and a non-zero pseudo-integral compact
operators. The next result uses ideas from [12]. We will use the fact that the
restriction of the map N (given by Nf(x, y) = f(x−y)) to A(G) takes values

in the Varopoulos algebra V (G)
def
= C(G)⊗̂C(G) ⊆ Γ(G).

We will need a modification of the module action of L1(G) on V (G)
described on p. 365 of [30]. For ψ ∈ Γ(G) and r ∈ G, write r · ψ for the
function given by r · ψ(s, t) = ψ(s+ r, t+ r). If f ∈ C(G), let f · ψ =

∫
G

(r ·
ψ)f(r)dr, where the integral is understood in the Bochner sense. Following
the arguments in [30], one can show that the action on C(G) on Γ(G) extends
to an action of L1(G) on Γ(G) and that if {fα}α is a bounded approximate
identity for L1(G) then fα · ψ → ψ for every ψ ∈ Γ(G).

The following lemma establishes that E is an M1-set if and only if E∗

is an operator M1-set. This justifies the terminology introduced in Section 5.

Lemma 7.13. Let E ⊆ G be a closed set. The space Mmin(E∗) contains a
non-zero compact operator if and only if E is an M1-set.

Proof. Let K be a non-zero compact operator supported on E∗. Then there
exist γ, δ ∈ Ĝ such that cδ,γ

def
= (Kγ, δ) 6= 0. Let F be the pseudomeasure

given by
F̂ (χ) = cγ−δ+χ,χ, χ ∈ Ĝ.

Since K is compact, F̂ is a pseudo-function. For each v =
∑
χ∈Ĝ aχχ ∈ I(E)

(the sum being absolutely convergent), we have

F (v) =
∑
χ∈Ĝ

aχF̂ (χ) =
∑
χ

aχ(Kχ, γ − δ + χ)

= 〈K,
∑
χ∈Ĝ

aχχχ(γ − δ)〉 = 〈K, ṽ〉,

where 〈·, ·〉 is the duality between B(L2(G)) and Γ(G) and ṽ is the function
given by ṽ(s, t) = Nv(s, t)(γ − δ)(t). Since Nv vanishes on E∗ and K ∈
Mmin(E∗), we have that F (v) = 0, showing that F is a pseudofunction in
N(E). Thus E is an M1-set.

Conversely, assume that E is an M1-set and let F be a non-zero pseudo-
function inN(E). We letK be the operator on L2(G) defined byKχ = F̂ (χ)χ
on the orthonormal basis Ĝ of L2(G). Then for v ∈ I(E), we have

〈K,Nv〉 = F (v) = 0.

Suppose that ψ ∈ Γ(G) vanishes marginally almost everywhere on E∗.
For χ ∈ Ĝ, define the functions ψχ and ψ̃χ by

ψχ(s, t) = χ · ψ(s, t) and ψ̃χ(s, t) = χ(s)ψχ(s, t).

We have that ψχ, ψ̃χ ∈ Γ(G), and ψ̃χ(s+r, t+r) = ψ̃χ(s, t) marginally almost
everywhere, for each r ∈ G (see [30, Theorems 3.1 and 4.6]). Therefore, by
[30, Proposition 4.5], ψ̃χ ∈ NA(G). Since ψ̃χ vanishes on E∗, ψ̃χ = Nv
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for some v vanishing on E. By the previous paragraph, 〈K, ψ̃χ〉 = 0. This
implies that 〈K,ψχ〉 = 0. In fact, if χ ≡ 1, this is trivial; if χ 6≡ 1 we have
ψχ(s, t) = χ(−s)ψ̃χ(t, s) = χ(−s)vχ(s − t) for some vχ ∈ A(G) and then
writing vχ(s) =

∑
τ∈Ĝ aττ(s) and taking into account that (χ̄τ, τ) = 0 for

all τ ∈ Ĝ, we obtain

〈K,ψχ〉 =
∑
τ∈Ĝ

aτ (Kχ̄τ, τ) =
∑
τ∈Ĝ

aτF (χ̄τ)(χ̄τ, τ) = 0.

Finally, we let {uα} be a bounded approximate identity for L1(G) chosen
from span{χ : χ ∈ Ĝ}. For each α, we have that uα · ψ ∈ span{ψχ : χ ∈ Ĝ}
and hence 〈K,uα · ψ〉 = 0 giving 〈K,ψ〉 = 0. Since ψ is an arbitrary element
of Γ(G) vanishing on E∗, we conclude that K ∈ Mmin(E∗). �

Proposition 7.14. Let f : G → C be a measurable function and ϕ = Nf .
Then the following holds:

(i) If Ef is not an M -set then ϕ is closable.
(ii) If Ef is an M1-set then ϕ is not closable.

Proof. (i) By [12, Theorem 1.2.7, Lemma 1.2.10], Mmax(E∗f ) does not contain
a non-zero compact operator. The statement now follows from Theorem 5.4
(i) and Corollary 7.7.

(ii) follows from Theorem 5.4 (ii), Corollary 7.7 and Lemma 7.13. �

Remark 7.15. We note that if Ef satisfies spectral synthesis then ϕ is closable
if and only if Ef is an M -set.

We say that a subset E ⊆ G is τ0-open if E is equivalent, with respect
to the Haar measure, to an open subset of G. A function f : G → C is said
to be τ0-continuous if f−1(U) is τ0-open for any open U ⊆ G.

Proposition 7.16. Let f : G→ C be a measurable function and ϕ = Nf . If ϕ
is closable then f is τ0-continuous.

Proof. Since f almost belongs to A(G) at each point t ∈ Ecf , it is equivalent
to a continuous function h on Ecf . In fact, for each t ∈ Ecf there exists a
neighborhood Ut and ht ∈ A(G) such that f = ht almost everywhere on Ut.
Since G is second countable there exists a countable number of neighborhoods
Uti such that Ecf = ∪∞i=1Uti . Now set h(t) = hti(t) for t ∈ Uti . Clearly, h is
continuous on Ecf and f = h a.e. on Ecf . Thus, given an open subset U ⊆ G,
the set f−1(U) ∩ Ecf is equivalent to an open set in G. Since

f−1(U) = (f−1(U) ∩ Ecf ) ∪ (f−1(U) ∩ Ef ),

it is enough to show that µ(Ef ) = 0.
Assume, by way of contradiction, that µ(Ef ) > 0. Since G is a compact

group, χEf
∈ L1(G), χ̂Ef

vanishes at infinity and hence χEf
is a non-zero

pseudo-function supported in Ef . But since, by Proposition 7.14, Ef is not
an M1-set, we arrive at a contradiction. �
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We will finish this section by constructing an example of a non-closable
multiplier ϕ for which κw

∗

ϕ is an operator M -set but not an operator M1-set.
The existence of a closable multiplier for which κw

∗

ϕ is an operator M -set but
not an operator M1-set remains an open problem.

Example 7.17. Let E ⊆ T be s an M -set which is not an M1-set. Then
∂E = E. We have that Mmin(E∗) does not contain a non-zero compact
operator, while Mmax(E∗) contains such an operator, say K. .

As Mmax(E∗) 6= Mmin(E∗), we can find Ψ ∈ Γ(T) which vanishes on
E∗ such that 〈K,Ψ〉 6= 0.

Let Ψ1 =
∑
n

1
2n
χαn

⊗ χβn
, where {αn × βn} is a disjoint family of

rectangles such that (E∗)c ' ∪nαn × βn. Then Ψ1 is the limit of elements of
Γ(T) which vanish on an ω-open subset of T × T containing E∗, and hence
〈K,Ψ1〉 = 0 [28]. We note that, moreover, nullΨ1 = E∗.

Now let

ϕ(x, y) =

{
Ψ(x,y)
Ψ1(x,y)

(x, y) ∈ (E∗)c,
0, (x, y) ∈ E∗.

As Ψ1 ∈ Γ(T), one can find measurable subsets Kn, n ∈ N, with
Kn ⊆ Kn+1, n ∈ N, such that m(Kc

n) →n→∞ 0 and Ψ1χKn×Kn ,ΨχKn×Kn ∈
S(Kn,Kn), n ∈ N. Then there exists N such that 〈K,ΨχKN×KN

〉 6= 0. On
the other hand, we have SΨ1χKN×KN

(K) = 0. Let Tn ∈ C2(L2(T)), Tn → K,

n→∞. Then Sn
def
= MχKN

TnMχKN
→MχKN

KMχKN
and

SΨ1(Sn) = SΨ1χKN×KN
(Sn) → SΨ1χKN×KN

(K) = 0

but
Sϕ(SΨ1(Sn)) = SΨ(Sn) → SΨ(MχKN

KMχKN
) 6= 0.

Thus ϕ is not closable and hence κw
∗

ϕ is an operatorM -set. As κw
∗

ϕ ⊆ E∗,
we have Mmin(κw

∗

ϕ ) ⊆ Mmin(E∗) and hence κw
∗

ϕ is not an operator M1-set.

8. Open problems

In this section we list some open problems. The most important question
which we have left unanswered is the following:

Problem 1. Is every w*-closable multiplier a local Schur multiplier?

Problem 2. Does Theorem 7.5 hold for all locally compact abelian groups?

Problem 3. For which f ∈ C(R) is the divided difference f̌ a w*-closable
multiplier?

Since all local multipliers are w*-closable, Corollary 6.4 shows that a
sufficient condition for this to happen is µ(E(f)) = 0.

The last two problems are related to Problem 1.
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Problem 4. Let f be an Operator Lipschitz function on [a, b], and let f ′(x) 6= 0
for all x ∈ [a, b]. Is the inverse function f−1 Operator Lipschitz on [f(a), f(b)]?

Problem 5. For which continuous functions f and normal operators A ∈ B(H)
is the map on B(H) given by AX−XA→ f(A)X−Xf(A) closable in weak*
topology?

Remark 8.1. (i) It is natural to pose a question, similar to one in Problem 4, in
Schatten-von Neumann ideals Cp. As was proved by Potapov and Sukochev,
[27], a function f is (scalar) Lipschitz if and only if it is operator Lipschitz
in Cp, 1 < p < ∞. Therefore, the answer to Problem 4 is negative if the
operator Lipschitz condition is just replaced by the operator Lipschitz in Cp,
1 < p < ∞ (one can construct a function f on [a, b] with positive derivative
such that the inverse function f−1 is not Lipschitz). However, the answer
becomes positive if f ′ is assumed to be continuous.
(ii) The map considered in Problem 5 is norm closable. Indeed, if AXn −
XnA→n→∞ 0 and f(A)Xn −Xnf(A) →n→∞ B then

[B,A] = lim
n→∞

[[f(A), Xn], A] = lim
n→∞

[f(A), [Xn, A]] = 0,

that is, B belongs to the commutant {A}′ of A. If E : B(H) → {A}′ is a
conditional expectation, then B = E(B) = limn→∞ E(f(A)Xn −Xnf(A)) =
limn→∞(f(A)E(Xn)− E(Xn)f(A)) = 0.
(iii) For the case f(z) = z the answer to Problem 5 is negative. More precisely
the “Fuglede” map AX − XA → A∗X − XA∗ is not w*-closable, if σ(A)
has non-empty interior and the spectral measure of A is equivalent to the
Lebesgue measure on the interior U of σ(A).

To see this, we assume for simplicity that A is the operator of multi-
plication by z on L2(U, dzdz). Let f be the function on G = R2 given by
f(z) = z

z and let ϕ = Nf be the corresponding Toeplitz multiplier on G×G.
It is not difficult to check that the set Ef of all points s ∈ G at which f does
not belong to A(G) is the singleton {0}; applying Corollary 7.7 we get that
κw

∗

ϕ = Λ = {(z, z) : z ∈ G}. It follows that the multiplier ϕ is not w*-closable
on U × U , so there are Hilbert Schmidt operators Ihn supported in U × U
with Ihn → 0 and Iϕhn → B 6= 0 in the weak* topology. We may assume
that hn(z1, z2) vanish on some neighborhoods of the diagonal Λ. Indeed, let
Vn be a neighborhood of Λ such that the Hilbert-Schmidt norm ‖hnχVn‖2 is
less than 1/n. Then ‖ϕhnχVn‖2 < 1/n whence ‖ϕhnχVn‖ < 1/n and we may
replace hn by hn − hnχVn .

Setting pn(z1, z2) = hn(z1, z2)/(z1 − z2) and Xn = Ipn we get that
[A,Xn] = Ihn → 0 and [A∗, Xn] = Iϕhn → B.
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