The C^* -algebras of the Heisenberg Group and of thread-like Lie groups.

Jean Ludwig and Lyudmila Turowska

Abstract

We describe the C^* -algebras of the Heisenberg group H_n , $n \ge 1$, and the thread-like Lie groups G_N , $N \ge 3$, in terms of C^* -algebras of operator fields.

1 Introduction and notation

Let H_n be the Heisenberg group of dimension 2n + 1. It has been known for a long time that the C^* -algebra, $C^*(H_n)$, of H_n is an extension of an ideal J isomorphic to $C_0(\mathbb{R}^*, \mathcal{K})$ with the quotient algebra isomorphic to $C^*(\mathbb{R}^{2n})$, where \mathcal{K} is the C^* -algebra of compact operators on a separable Hilbert space, $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ and $C_0(\mathbb{R}^*, \mathcal{K})$ is the C^* -algebra of continuous functions vanishing at infinity from \mathbb{R}^* to \mathcal{K} .

We obtain an exact characterization of this extension giving a linear mapping from $C^*(\mathbb{R}^{2n})$ to $C^*(H_n)/J$ which is a cross section of the quotient mapping $i: C^*(H_n) \to C^*(H_n)/J$. More precisely, realizing $C^*(H_n)$ as a C^* -subalgebra of the C^* -algebra \mathcal{F}_n of all operator fields $(F = F(\lambda))_{\lambda \in \mathbb{R}}$ taking values in \mathcal{K} for $\lambda \in \mathbb{R}^*$ and in $C^*(\mathbb{R}^{2n})$ for $\lambda = 0$, norm continuous on \mathbb{R}^* and vanishing as $\lambda \to \infty$, we construct a linear map ν from $C^*(\mathbb{R}^{2n})$ to \mathcal{F}_n , such that the C^* -subalgebra is isomorphic to the C^* -algebra $D_{\nu}(H_n)$ of all $(F = F(\lambda))_{\lambda \in \mathbb{R}} \in \mathcal{F}_n$ such that

$$||F(\lambda) - \nu(F(0))||_{\mathrm{op}} \to 0,$$

where $\|\cdot\|_{op}$ is the operator norm on \mathcal{K} . The constructed mapping ν is an almost homomorphism in the sense that

$$\lim_{\lambda \to 0} \|\nu(f \cdot h)(\lambda) - \nu(f)(\lambda) \circ \nu(h)(\lambda)\|_{\rm op} = 0.$$

Moreover, any such almost homomorphism $\tau : C^*(\mathbb{R}^2) \to \mathcal{F}_n$ defines a C^* -algebra, $D_{\tau}(H_n)$, which is an extension of $C_0(\mathbb{R}^*, \mathcal{K})$ by $C^*(\mathbb{R}^{2n})$. A question we left unanswered : what mappings τ give the C^* -algebras which are isomorphic to $C^*(H_n)$. We note that the condition

$$\lim_{\lambda \to 0} \|\tau(h)(\lambda)\|_{\mathrm{op}} = \|h\|_{C^*(\mathbb{R}^{2n})}, \text{ for all } h \in C^*(\mathbb{R}^{2n}),$$

which is equivalent to the condition that the topologies of $D_{\tau}(H_n)$ and that of $C^*(H_n)$ agree, is not the right condition: there are examples of splitting extensions of type $D_{\tau}(H_n)$ with the same spectrum as $C^*(H_n)$ (see [De] and Example 2.23) while it is known that $C^*(H_n)$ is a non-splitting extension.

We note that another characterisation of $C^*(H_n)$ as a C^* -algebra of operator fields is given without proof in a short paper by Gorbachev [Gor]. The second part of the paper deals with the C^* -algebra of thread-like Lie groups G_N , $N \ge 3$. The group G_3 is the Heisenberg group of dimension 3 treated in the first part of the paper. The groups G_N are nilpotent Lie groups and their unitary representations can be described using the Kirillov orbit method. The topology of the dual space $\widehat{G_N}$ has been investigated in details in [ALS]. In particular, it was shown that like for the Heisenberg group G_3 the topology of $\widehat{G_N}$, $N \ge 3$ is not Hausdorff. It is known that $\widehat{G_3} = \mathbb{R}^* \cup \mathbb{R}^2$ as a set with natural topology on each pieces, the limit set when $\lambda \in \mathbb{R}^*$ goes to 0 is the whole real plane \mathbb{R}^2 . The topology of $\widehat{G_N}$, becomes more complicated with growth of the dimension N. Using a description of the limit sets of converging sequences $(\pi_k) \in \widehat{G_N}$ obtained in [AKLSS] and [ALS] we give a characterisation of the C^* -algebra of G_N in the spirit of one for the Heisenberg group H_n . Namely, parametrising $\widehat{G_N}$ by a set $S_N^{gen} \cup \mathbb{R}^2$, where S_N^{gen} consists of element $\ell \in \mathfrak{g}_N^*$ corresponding to non-characters (here \mathfrak{g}_N is the Lie algebra of G_N), we realize $C^*(G_N)$ as a C^* -algebra of operator fields ($A = A(\ell)$) on $S_N^{gen} \cup \{0\}$, such that $A(\ell) \in \mathcal{K}$, $\ell \in S_N^{gen}$, $A(0) \in C^*(\mathbb{R}^2)$ and ($A = A(\ell)$) satisfy for each converging sequence in the dual space the generic, the character and the infinity conditions (see Definition 3.12).

We shall use the following notation. $L^p(\mathbb{R}^n)$ denote the space of (almost everywhere equivalence classes) *p*-integrable functions for p = 1, 2 with norm $\|\cdot\|_p$. By $\|f\|_{\infty}$ we denote the supremum norm $\sup_{x \in \Omega} |f(x)|$ of a continuous function f vanishing at infinity from a locally compact space Ω to \mathbb{C} . $\mathcal{D}(\mathbb{R}^n)$ is the space of complex-valued C^{∞} functions with compact support and $\mathcal{S}(\mathbb{R}^n)$ is the space of Schwartz functions, i.e. rapidly decreasing complex-valued C^{∞} functions on \mathbb{R}^n . The space of Schwartz functions on the groups H_n and G_N (see [CG]) will be denoted by $\mathcal{S}(H_n)$ and $\mathcal{S}(G_N)$ respectively. We use the usual notation B(H) for the space of all linear bounded operators on a Hilbert space H with the operator norm $\|\cdot\|_{op}$.

Keywords. Heisenberg group, thread-like Lie group, unitary representation, C^* -algebra.

2000 Mathematics Subject Classification: 22D25, 22E27, 46L05.

2 The C^* -algebra of the Heisenberg group H_n

Let H_n be the 2n + 1 dimensional Heisenberg group, which is defined as to be the Lie group whose underlying variety is the vector space $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$ and on which the multiplication is given by

$$(x, y, t)(x', y', t') = (x + x', y + y', t + t' + \frac{1}{2}(x \cdot y' - x' \cdot y)),$$

where $x \cdot y = x_1 y_1 + \cdots + x_n y_n$ denotes the Euclidean scalar product on \mathbb{R}^n . The center of H_n is the subgroup $\mathcal{Z} := \{0_n\} \times \{0_n\} \times \mathbb{R}$ and the commutator subgroup $[H_n, H_n]$ of H_n is given by $[H_n, H_n] = \mathcal{Z}$. The Lie algebra \mathfrak{g} of H_n has the basis

$$\mathcal{B} := \{X_j, Y_j, j = 1 \cdots, n, Z = (0_n, 0_n, 1)\},\$$

where $X_j = (e_j, 0_n, 0), Y_j = (0_n, e_j, 0), j = 1, \dots, n$ and e_j is the j'th canonical basis vector of \mathbb{R}^n , with the non trivial brackets

$$[X_i, Y_j] = \delta_{i,j} Z.$$

2.1 The unitary dual of H_n .

The unitary dual \hat{H}_n of H_n can be described as follows.

2.1.1 The infinite dimensional irreducible representations

For every $\lambda \in \mathbb{R}^*$, there exists a unitary representation π_{λ} of H_n on the Hilbert space $L^2(\mathbb{R}^n)$, which is given by the formula

$$\pi_{\lambda}(x,y,t)\xi(s) := e^{-2\pi i\lambda t - 2\pi i\frac{\lambda}{2}x \cdot y + 2\pi i\lambda s \cdot y}\xi(s-x), \ s \in \mathbb{R}^n, \xi \in L^2(\mathbb{R}^n), (x,y,t) \in H_n.$$

It is easily seen that π_{λ} is in fact irreducible and that π_{λ} is equivalent to π_{ν} if and only if $\lambda = \nu$.

The representation π_{λ} is equivalent to the induced representation $\tau_{\lambda} := \operatorname{ind}_{P}^{H_{n}}\chi_{\lambda}$, where $P = \{0_{n}\} \times \mathbb{R}^{n} \times \mathbb{R}$ is a polarization at the linear functional $\ell_{\lambda}((x, y, t)) := \lambda t, (x, y, t) \in \mathfrak{g}$ and where χ_{λ} is the character of P defined by $\chi_{\lambda}(0_{n}, y, t) = e^{-2\pi i \lambda t}$.

The theorem of Stone-Von Neumann tells us that every infinite dimensional unitary representation of H_n is equivalent to one of the π_{λ} 's. (see [CG]).

2.1.2 The finite dimensional irreducible representations

Since H_n is nilpotent, every irreducible finite dimensional representation of H_n is onedimensional, by Lie's theorem.

Any one-dimensional representation is a unitary character $\chi_{a,b}$, $(a,b) \in \mathbb{R}^n \times \mathbb{R}^n$, of H_n , which is given by

$$\chi_{a,b}(x,y,t) = e^{-2\pi i (a \cdot x + b \cdot y)}, (x,y,t) \in H_n.$$

For $f \in L^1(H_n)$, let

$$\hat{f}(a,b) := \chi_{a,b}(f) = \int_{H_n} f(x,y,t) e^{-2\pi i (x \cdot a + y \cdot b)} dx dy dt, \ a,b \in \mathbb{R}^n,$$

and

$$||f||_{\infty,0} := \sup_{a,b\in\mathbb{R}^n} |\chi_{a,b}(f)| = ||\hat{f}||_{\infty}.$$

2.2 The topology of $\widehat{C^*(H_n)}$

Let $C^*(H_n)$ denote the full C^* -algebra of H_n . We recall that $C^*(H_n)$ is obtained by the completion of $L^1(H_n)$ with respect to the norm

$$||f||_{C^*(H_n)} = \sup ||\int f(x, y, t)\pi(x, y, t)dxdydt||_{\text{op}},$$

where the supremum is taken over all unitary representations π of H_n .

Definition 2.1. Let

$$\rho = \operatorname{ind}_{\mathcal{Z}}^{H_n} 1$$

be the left regular representation of H_n on the Hilbert space $L^2(H_n/\mathcal{Z})$. Then the image $\rho(C^*(H_n))$ is just the C^* -algebra of \mathbb{R}^{2n} considered as an algebra of convolution operators on

 $L^2(\mathbb{R}^{2n})$ and $\rho(C^*(H_n))$ is isomorphic to the algebra $C_0(\mathbb{R}^{2n})$ of continuous functions vanishing at infinity on \mathbb{R}^{2n} via the Fourier transform. For $f \in L^1(H_n)$ we have $\rho(f)(a,b) = \hat{f}(a,b,0)$, $a, b \in \mathbb{R}^n$.

Definition 2.2. Define for $C^*(H_n)$ the Fourier transform F(c) of c by

$$F(c)(\lambda) := \pi_{\lambda}(c) \in B(L^{2}(\mathbb{R}^{n})), \lambda \in \mathbb{R}^{*}$$

and

$$F(c)(0) := \rho(c) \in C^*(\mathbb{R}^{2n}).$$

2.2.1 Behavior on \mathbb{R}^*

As for the topology of the dual space, it is well known that $[\pi_{\lambda}]$ tends to $[\pi_{\nu}]$ in \widehat{H}_n if and only if λ tends to ν in \mathbb{R}^* , where $[\pi]$ denotes the unitary equivalence class of the unitary representation π . Furthermore, if λ tends to 0, then the representations π_{λ} converge in the dual space topology to all the characters $\chi_{a,b}, a, b \in \mathbb{R}^n$.

Let us compute for $f \in L^1(H_n)$ the operator $\pi_{\lambda}(f)$. We have for $\xi \in L^2(\mathbb{R}^n)$ and $s \in \mathbb{R}^n$ that

(2.1)

$$\begin{aligned}
\pi_{\lambda}(f)\xi(s) &= \int_{\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}} f(x, y, t)\pi_{\lambda}(x, y, t)\xi(s)dxdydt \\
&= \int_{\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}} f(x, y, t)e^{-2\pi i\lambda t - \frac{2\pi i\lambda}{2}x \cdot y + 2\pi i\lambda s \cdot y}\xi(s - x)dxdydt \\
&= \int_{\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}} f(s - x, y, t)e^{-2\pi i\lambda t - \frac{2\pi i\lambda}{2}(s - x) \cdot y + 2\pi i\lambda s \cdot y}\xi(x)dxdydt \\
&= \int_{\mathbb{R}^{n}} \hat{f}^{2,3}(s - x, -\frac{\lambda}{2}(s + x), \lambda)\xi(x)dx.
\end{aligned}$$

Here

$$\hat{f}^{2,3}(s,u,\lambda) = \int_{\mathbb{R}^n \times \mathbb{R}} f(s,y,t) e^{-2\pi i (y \cdot u + \lambda t)} dy dt, \ (s,u,\lambda) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n$$

denotes the partial Fourier transform of f in the variables y and t. Hence $\pi_{\lambda}(f)$ is a kernel operator with kernel

(2.2)
$$f_{\lambda}(s,x) := \hat{f}^{2,3}(s-x, -\frac{\lambda}{2}(s+x), \lambda), \ s, x \in \mathbb{R}^n.$$

If we take now a Schwartz-functions $f \in \mathcal{S}(H_n)$, then the operator $\pi_{\lambda}(f)$ is Hilbert-Schmidt and its Hilbert-Schmidt norm $\|\pi_{\lambda}(f)\|_{\text{H.S.}}$ is given by

(2.3)
$$\|\pi_{\lambda}(f)\|_{\mathrm{H.S.}}^{2} = \int_{\mathbb{R}^{2}} |f_{\lambda}(s,x)|^{2} dx ds = \int_{\mathbb{R}^{2}} |\hat{f}^{2,3}(s,\lambda x,\lambda)|^{2} ds dx < \infty.$$

Proposition 2.3. For any $c \in C^*(H_n)$ and $\lambda \in \mathbb{R}^*$, the operator $\pi_{\lambda}(c)$ is compact, the mapping $\mathbb{R}^* \to B(L^2(\mathbb{R}^n)) : \lambda \mapsto \pi_{\lambda}(c)$ is norm continuous and tending to 0 for λ going to infinity.

Proof. Indeed, for $f \in \mathcal{S}(H_n)$, the compactness of the operator $\pi_{\lambda}(f)$ is a consequence of (2.3) and by (2.1) we have the estimate:

$$\begin{aligned} \|\pi_{\lambda}(f) - \pi_{\nu}(f)\|_{H.S}^{2} &= \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} |\hat{f}^{2,3}(s - x, -\frac{\lambda}{2}(s + x), \lambda) - \hat{f}^{2,3}(s - x, -\frac{\nu}{2}(s + x), \nu)|^{2} ds dx \\ &= \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} |\hat{f}^{2,3}(s, \lambda x, \lambda) - \hat{f}^{2,3}(s, \nu x, \nu)|^{2} ds dx \end{aligned}$$

Hence, since f is a Schwartz function, this expression goes to 0 if λ tends to ν by Lebesgue's theorem of dominated convergence. Therefore the mapping $\lambda \mapsto \pi_{\lambda}(f)$ is norm continuous. Furthermore, the Hilbert-Schmidt norms of the operators $\pi_{\lambda}(f)$ go to 0, when λ tends to infinity. The proposition follows from the density of $\mathcal{S}(H_n)$ in $C^*(H_n)$.

2.2.2 Behavior at 0

Let us now see the behavior of $\pi_{\lambda}(f)$ for Schwartz functions $f \in \mathcal{S}(H_n)$, as λ tends to 0. Choose a Schwartz-function η in $\mathcal{S}(\mathbb{R}^n)$ with L^2 -norm equal to 1. For u = (a, b) in $\mathbb{R}^n \times \mathbb{R}^n$, $\lambda \in \mathbb{R}^*$, we define the function $\eta(\lambda, a, b)$ by

(2.4)
$$\eta(\lambda, a, b)(s) := |\lambda|^{n/4} e^{2\pi i a \cdot s} \eta(|\lambda|^{1/2} (s + \frac{b}{\lambda})) \ s \in \mathbb{R}^n.$$

and let $\eta_{\lambda}(s) = |\lambda|^{n/4} \eta(|\lambda|^{1/2} s), \ s \in \mathbb{R}^n$. Let us compute

$$c_{\lambda,u,u'}(x,y,t) = \langle \pi_{\lambda}(x,y,t)\eta(\lambda,u),\eta(\lambda,u')\rangle$$

$$= \int_{\mathbb{R}^{n}} e^{-2\pi i\lambda t - 2\pi i(\lambda/2)x \cdot y} e^{2\pi i\lambda s \cdot y} \eta(\lambda,u)(s-x)\overline{\eta(\lambda,u')(s)} ds$$

$$= |\lambda|^{n/2} e^{-2\pi i\lambda t - 2\pi i(\lambda/2)x \cdot y} \int_{\mathbb{R}^{n}} e^{2\pi i\lambda s \cdot y - 2\pi ia \cdot x} e^{2\pi i(a-a') \cdot s}$$

$$\eta(|\lambda|^{1/2}(s-x+\frac{b}{\lambda}))\overline{\eta(|\lambda|^{1/2}(s+\frac{b'}{\lambda}))} ds$$

$$= |\lambda|^{n/2} e^{-2\pi i\lambda t - 2\pi i(\lambda/2)x \cdot y} e^{-2\pi ib \cdot y} e^{-2\pi ia \cdot x} \int_{\mathbb{R}^{n}} e^{2\pi i\lambda s \cdot y} e^{2\pi i(a-a') \cdot (s-\frac{b}{\lambda})}$$

$$\eta(|\lambda|^{1/2}(s-x)\overline{\eta(|\lambda|^{1/2}(s+\frac{b'-b}{\lambda}))} ds.$$

Hence for u = u' we get

$$c_{\lambda,u,u}(x,y,t) = e^{-2\pi i\lambda t - 2\pi i\frac{\lambda}{2}x \cdot y} e^{-2\pi ia \cdot x - 2\pi ib \cdot y} \int_{\mathbb{R}^n} e^{2\pi i(\operatorname{sign}\lambda)|\lambda|^{1/2}s \cdot y} \eta(s-|\lambda|^{1/2}x)\overline{\eta(s)} ds$$

$$\to e^{-2\pi ia \cdot x - 2\pi ib \cdot y} \int_{\mathbb{R}^n} \eta(s)\overline{\eta(s)} ds = e^{-2\pi ia \cdot x - 2\pi ib \cdot y}.$$

It follows also that the convergence of the coefficients $c_{\lambda,u,u}$ to the characters $\chi_{a,b}$ is uniform in u and uniform on compact in (x, y, t) since

$$\begin{aligned} |c_{\lambda,u,u}(x,y,t) - \chi_{a,b}(x,y,t)| &= |\int_{\mathbb{R}^n} (e^{-2\pi i\lambda t - 2\pi i\frac{\lambda}{2}x \cdot y} e^{2\pi i(\mathrm{sign}\lambda)|\lambda|^{1/2}s \cdot y} \\ &\eta(s - |\lambda|^{1/2}x)\overline{\eta(s)} - |\eta(s)|^2)ds| \to 0 \\ &\text{as } \lambda \to 0. \end{aligned}$$

Proposition 2.4. For every $u = (a, b) \in \mathbb{R}^n \times \mathbb{R}^n$, $c \in C^*(H_n)$, we have that

$$\lim_{\lambda \to 0} \|F(c)(\lambda)\eta(\lambda, u) - \widehat{F(c)(0)}(u)\eta(\lambda, u)\|_2 = 0$$

uniformly in (a, b).

Proof. For
$$c \in C^*(\underline{H}_n)$$
 we have that
 $\|F(c)(\lambda)\eta(\lambda, u) - F(c)(0)(u)\eta(\lambda, u)\|_2^2 = \|\pi_\lambda(c)\eta(\lambda, u) - \chi_{a,b}(c)\eta(\lambda, u)\|_2^2 =$
 $= \langle \pi_\lambda(c)\eta(\lambda, u) - \chi_{a,b}(c)\eta(\lambda, u), \pi_\lambda(c)\eta(\lambda, u) - \chi_{a,b}(c)\eta(\lambda, u) \rangle$
 $= \langle \pi_\lambda(c^* * c)\eta(\lambda, u), \eta(\lambda, u) \rangle - \overline{\chi_{a,b}(c)}\langle \pi_\lambda(c)\eta(\lambda, u), \eta(\lambda, u) \rangle$
 $- \chi_{a,b}(c)\overline{\langle \pi_\lambda(c)\eta(\lambda, u), \eta(\lambda, u) \rangle} + |\chi_{a,b}(c)|^2$
 $\rightarrow |\chi_{a,b}(c)|^2 - |\chi_{a,b}(c)|^2 - |\chi_{a,b}(c)|^2 + |\chi_{a,b}(c)|^2 = 0.$

2.3 A C^* -condition

The aim of this section is to obtain a characterization of the C^* -algebra $C^*(H_n)$ as a C^* -algebra of operator fields ([Lee1, Lee2]). Let us first define a larger C^* -algebra \mathcal{F}_n .

Definition 2.5. Let \mathcal{F}_n be the family consisting of all operator fields $(F = F(\lambda))_{\lambda \in \mathbb{R}}$ satisfying the following conditions:

1. $F(\lambda)$ is a compact operator on $L^2(\mathbb{R}^n)$ for every $\lambda \in \mathbb{R}^*$,

2.
$$F(0) \in C^*(\mathbb{R}^{2n}),$$

- 3. the mapping $\mathbb{R}^* \to B(L^2(\mathbb{R}^n)) : \lambda \mapsto F(\lambda)$ is norm continuous,
- 4. $\lim_{\lambda \to \infty} \|F(\lambda)\|_{\text{op}} = 0.$

Proposition 2.6. \mathcal{F}_n is a C^* -algebra.

Proof. The proof is straight forward.

Proposition 2.7. The Fourier transform $F : C^*(H_n) \to \mathcal{F}_n$ is an injective homomorphism.

Proof. It is clear from the definition of F and Proposition 2.3 that F is a homomorphism with values in \mathcal{F}_n . If F(c) = 0, then for each irreducible representation π of $C^*(H_n), \pi(c) = 0$. Hence c = 0.

Lemma 2.8. Let $\xi \in \mathcal{S}(\mathbb{R}^n)$. Then, for any $\lambda \in \mathbb{R}^*$,

$$\xi = \frac{1}{|\lambda|^n} \int_{\mathbb{R}^n \times \mathbb{R}^n} \langle \xi, \eta(\lambda, u) \rangle \eta(\lambda, u) du,$$

where $\eta(\lambda, u)$ is given by (2.4), the integral converging in $L^2(\mathbb{R}^n)$.

Proof. Let $\xi \in \mathcal{S}(\mathbb{R}^n)$. Then

$$\begin{split} & \int_{\mathbb{R}^n \times \mathbb{R}^n} \langle \xi, \eta(\lambda, a, b) \rangle \eta(\lambda, a, b)(x) dadb \\ &= \int_{\mathbb{R}^n \times \mathbb{R}^n} \left(\int_{\mathbb{R}^n} \xi(s) e^{-2\pi i a \cdot s} \overline{\eta_{\lambda}(s + \frac{b}{\lambda})} \right) ds \right) e^{2\pi i a \cdot x} \eta_{\lambda}(x + \frac{b}{\lambda}) dadb \\ & \text{(by Fourier's inversion formula)} \\ &= \int_{\mathbb{R}^n \times \mathbb{R}^n} \xi(x) \overline{\eta_{\lambda}(x + \frac{b}{\lambda})} \eta_{\lambda}(x + \frac{b}{\lambda}) db = |\lambda|^n \xi(x) \end{split}$$

giving $\xi = \frac{1}{|\lambda|^n} \int_{\mathbb{R}^n \times \mathbb{R}^n} \langle \xi, \eta(\lambda, a, b) \rangle \eta(\lambda, a, b) dadb$. Furthermore, since ξ is a Schwartz function, it follows that the mapping

 $(a,b) \to \langle \xi, \eta(\lambda,a,b) \rangle = |\lambda|^{n/4} \int_{\mathbb{D}^n} \xi(s) e^{-2\pi i a \cdot s} \overline{\eta(|\lambda|^{1/2}(s+\frac{b}{\lambda}))} ds$

is also a Schwartz function in the variables a, b. Hence the integral $\int_{\mathbb{R}^n \times \mathbb{R}^n} \langle \xi, \eta(\lambda, a, b) \rangle \eta(\lambda, a, b) dadb$ converges in $\mathcal{S}(\mathbb{R}^n)$ and hence also in $L^2(\mathbb{R}^n)$.

Remark 2.9. By Lemma 2.8,

$$\pi_{\lambda}(f)\xi = \frac{1}{|\lambda|^n} \int_{\mathbb{R}^{2n}} \pi_{\lambda}(f)\eta(\lambda, u)\langle\xi, \eta(\lambda, u)\rangle du = \frac{1}{|\lambda|^n} \int_{\mathbb{R}^{2n}} \pi_{\lambda}(f) \circ P_{\eta(\lambda, u)}\xi du$$

for any $f \in C^*(H_n)$, where $P_{\eta(\lambda,u)}$ is the orthogonal projection onto the one dimensional subspace $\mathbb{C}\eta(\lambda, u)$.

Definition 2.10. For a vector $0 \neq \eta \in L^2(\mathbb{R}^n)$, we let P_η be the orthogonal projection onto the one dimensional subspace $\mathbb{C}\eta$.

Define for $\lambda \in \mathbb{R}^*$ and $h \in C^*(\mathbb{R}^{2n})$ the linear operator

(2.6)
$$\nu_{\lambda}(h) := \int_{\mathbb{R}^{2n}} \hat{h}(u) P_{\eta(\lambda,u)} \frac{du}{|\lambda|^n}$$

Proposition 2.11.

- 1. For every $\lambda \in \mathbb{R}^*$ and $h \in \mathcal{S}(\mathbb{R}^{2n})$ the integral (2.6) converges in operator norm.
- 2. $\nu_{\lambda}(h)$ is compact and $\|\nu_{\lambda}(h)\|_{op} \leq \|h\|_{C^*(\mathbb{R}^{2n})}$.
- 3. The mapping $\nu_{\lambda} : C^*(\mathbb{R}^{2n}) \to \mathcal{F}_n$ is involutive, i.e. $\nu_{\lambda}(h^*) = \nu_{\lambda}(h)^*, h \in C^*(\mathbb{R}^{2n})$, where by ν_{λ} we denote also the extension of ν_{λ} to $C^*(\mathbb{R}^{2n})$.

Proof. Since $||P_{\eta(\lambda,u)}||_{\text{op}} = ||\eta(\lambda,u)||_2^2 = 1$, we have that

$$\|\nu_{\lambda}(h)\|_{\rm op} = \|\int_{\mathbb{R}^{2n}} \hat{h}(u) P_{\eta(\lambda,u)} \frac{du}{|\lambda|^n}\|_{\rm op} \le \int_{\mathbb{R}^{2n}} |\hat{h}(u)| \frac{du}{|\lambda|^n} = \frac{\|\hat{h}\|_1}{|\lambda|^n}.$$

Hence the integral $\int_{\mathbb{R}^{2n}} \hat{h}(u) P_{\eta(\lambda,u)} \frac{du}{|\lambda|^n}$ converges in operator norm for $h \in \mathcal{S}(\mathbb{R}^{2n})$.

We compute $\nu_{\lambda}(h)$ applied to a Schwartz function $\xi \in \mathcal{S}(\mathbb{R}^n)$:

$$\begin{split} \nu_{\lambda}(h)\xi(x) &= \int_{\mathbb{R}^{2n}} \hat{h}(u)\langle\xi,\eta(\lambda,u)\rangle\eta(\lambda,u)(x)\frac{du}{|\lambda|^{n}} \\ &= \int_{\mathbb{R}^{2n}} \hat{h}(u)\left(\int_{\mathbb{R}^{n}} \xi(r)\overline{\eta}_{\lambda}(r+\frac{b}{\lambda})e^{-2\pi i a \cdot r}dr\right)e^{2\pi i a \cdot x}\eta_{\lambda}(x+\frac{b}{\lambda})\frac{dadb}{|\lambda|^{n}} \\ (2.7) &= \int_{\mathbb{R}^{n}} \hat{h}^{2}(-,b)*(\xi\overline{\eta}_{\lambda,b})(x)\eta_{\lambda}(x+\frac{b}{\lambda})\frac{db}{|\lambda|^{n}} \\ &\quad (\text{where } \eta_{\lambda,b}(s) := \eta_{\lambda}(s+\frac{b}{\lambda}), s \in \mathbb{R}^{n}) \\ &= \int_{\mathbb{R}^{2n}} \int_{\mathbb{R}^{n}} \hat{h}^{2}(x-s,b)\xi(s)\overline{\eta}_{\lambda}(s+\frac{b}{\lambda})\eta_{\lambda}(x+\frac{b}{\lambda})\frac{db}{|\lambda|^{n}} ds \\ &= \int_{\mathbb{R}^{2n}} \int_{\mathbb{R}^{n}} \hat{h}^{2}(x-s,|\lambda|^{1/2}b)\xi(s)\overline{\eta}(|\lambda|^{1/2}s+\mathrm{sign}\lambda\cdot b)\eta(|\lambda|^{1/2}x+\mathrm{sign}\lambda\cdot b)dbds \end{split}$$

The kernel function $h_{\lambda}(x,s)$ of $\nu_{\lambda}(h)$ is in $\mathcal{S}(\mathbb{R}^{2n})$ if $h \in \mathcal{S}(\mathbb{R}^{2n})$. In particular $\nu_{\lambda}(h)$ is a compact operator and we have the following estimate for the Hilbert-Schmidt norm, $\|\cdot\|_{H.S}$, of $\nu_{\lambda}(h)$:

$$\begin{split} \|\nu_{\lambda}(h)\|_{H.S}^{2} &= \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} |\int_{\mathbb{R}^{n}} \hat{h}^{2}(x-s,b)\overline{\eta}_{\lambda}(s+\frac{b}{\lambda})\eta_{\lambda}(x+\frac{b}{\lambda})\frac{db}{|\lambda|^{n}}|^{2}dsdx \\ &\leq \int_{\mathbb{R}^{3n}} |\hat{h}^{2}(x-s,\lambda(b-x))|^{2}|\eta_{\lambda}(s-x+b)|^{2}dbdxds \\ &= \int_{\mathbb{R}^{3n}} |\hat{h}^{2}(x,\lambda(b+s))|^{2}|\eta_{\lambda}(b)|^{2}dbdxds \\ &= \int_{\mathbb{R}^{2n}} |\hat{h}^{2}(x,\lambda s)|^{2}dxds < \infty. \end{split}$$

Let us show that $\|\nu_{\lambda}(h)\|_{\text{op}} \leq \|\hat{h}\|_{\infty}$. Indeed

$$\begin{split} \|\nu_{\lambda}(h)\xi\|_{2}^{2} &= \int_{\mathbb{R}^{n}} |\int_{\mathbb{R}^{n}} \hat{h}^{2}(-,b) * (\xi \overline{\eta}_{\lambda,b})(x)\eta_{\lambda}(x+\frac{b}{\lambda})\frac{db}{|\lambda|^{n}}|^{2}dx \\ &\leq \frac{1}{|\lambda|^{2n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} |\hat{h}^{2}(-,b) * (\xi \overline{\eta}_{\lambda,b})(x)|^{2}dbdx \\ &\leq \frac{\|\hat{h}\|_{\infty}^{2}}{|\lambda|^{n}} \int_{\mathbb{R}^{n}} \|\xi\eta_{\lambda,b}\|_{2}^{2}db \\ &= \frac{\|\hat{h}\|_{\infty}^{2}}{|\lambda|^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} |\xi(x)\eta_{\lambda}(x+\frac{b}{\lambda})|^{2}dxdb \\ &= \|\hat{h}\|_{\infty}^{2} \|\xi\|_{2}^{2}. \end{split}$$

Let $h \in S(\mathbb{R}^{2n})$. Then $\overline{\hat{h}} = \hat{h^*}$. This gives

$$\nu_{\lambda}(h)^{*} = \left(\int_{\mathbb{R}^{2n}} \hat{h}(u) P_{\eta(\lambda,u)} \frac{du}{|\lambda|^{n}}\right)^{*} = \int_{\mathbb{R}^{2n}} \overline{\hat{h}(u)} P_{\eta(\lambda,u)} \frac{du}{|\lambda|^{n}}$$
$$= \int_{\mathbb{R}^{2n}} \hat{h}^{*}(u) P_{\eta(\lambda,u)} \frac{du}{|\lambda|^{n}} = \nu_{\lambda}(h^{*}).$$

Theorem 2.12. Let $a \in C^*(H_n)$ and let A be the operator field A = F(a), i. e.

$$A(\lambda) = \pi_{\lambda}(a), \lambda \in \mathbb{R}^*, A(0) = \rho(a) \in C^*(\mathbb{R}^{2n}).$$

Then

$$\lim_{\lambda \to 0} \|A(\lambda) - \nu_{\lambda}(A(0))\|_{\rm op} = 0.$$

Proof. Let $f \in \mathcal{S}(H_n), \xi \in L^2(\mathbb{R}^n), \eta \in \mathcal{S}(\mathbb{R}^n), \|\eta\|_2 = 1$. Then by (2.1) and (2.7)

$$\begin{aligned} ((\pi_{\lambda}(f) - \nu_{\lambda}(\rho(f))\xi)(x) &= \int_{\mathbb{R}^{n}} \hat{f}^{2,3}(x - s, -\frac{\lambda}{2}(x + s), \lambda)\xi(s)ds \\ &- \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \hat{f}^{2,3}(x - s, b, 0)\xi(s)\overline{\eta}_{\lambda}(s + \frac{b}{\lambda})\eta_{\lambda}(x + \frac{b}{\lambda})\frac{db}{|\lambda|^{n}}ds \\ &= \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \hat{f}^{2,3}(x - s, -\frac{\lambda}{2}(x + s), \lambda)\eta_{\lambda}(b)\overline{\eta}_{\lambda}(b)\xi(s)dbds \\ &- \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \hat{f}^{2,3}(x - s, \lambda(b - x), 0)\xi(s)\overline{\eta}_{\lambda}(s - x + b)\eta_{\lambda}(b)dbds \end{aligned}$$

Let

$$\begin{aligned} u_{\lambda}(x,b) &= \int_{\mathbb{R}^{n}} \xi(s) \overline{\eta}_{\lambda}(s-x+b) (\hat{f}^{2,3}(x-s,-\frac{\lambda}{2}(x+s),\lambda) - \hat{f}^{2,3}(x-s,-\frac{\lambda}{2}(x+s),0)) ds, \\ v_{\lambda}(x,b) &= \int_{\mathbb{R}^{n}} \xi(s) \overline{\eta}_{\lambda}(s-x+b) (\hat{f}^{2,3}(x-s,-\frac{\lambda}{2}(x+s),0) - \hat{f}^{2,3}(x-s,\lambda(b-x),0)) ds \end{aligned}$$

and

$$w_{\lambda}(x) = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \hat{f}^{2,3}(x-s, -\frac{\lambda}{2}(x+s), \lambda)\xi(s)\eta_{\lambda}(b)(\overline{\eta}_{\lambda}(b) - \overline{\eta}_{\lambda}(s-x+b))dbds.$$

We have

(2.8)
$$((\pi_{\lambda}(f) - \nu_{\lambda}(\rho(f))\xi)(x) = \int_{\mathbb{R}^n} u_{\lambda}(x,b)\eta_{\lambda}(b)db + \int_{\mathbb{R}^n} v_{\lambda}(x,b)\eta_{\lambda}(b)db + w_{\lambda}(x).$$

Thus to prove $\|\pi_{\lambda}(f) - \nu_{\lambda}(\rho(f))\|_{\text{op}} \to 0$ as $\lambda \to 0$ it is enough to show that $\|u_{\lambda}\|_{2} \leq \delta_{\lambda} \|\xi\|_{2}$, $\|v_{\lambda}\|_{2} \leq \omega_{\lambda} \|\xi\|_{2}$ and $\|w_{\lambda}\|_{2} \leq \epsilon_{\lambda} \|\xi\|_{2}$, where $\delta_{\lambda}, \omega_{\lambda}, \epsilon_{\lambda} \to 0$ as $\lambda \to 0$. We have

$$\hat{f}^{2,3}(x-s,-\frac{\lambda}{2}(x+s)),\lambda) - \hat{f}^{2,3}(x-s,-\frac{\lambda}{2}(x+s),0) = \lambda \int_0^1 \partial_3 \hat{f}^{2,3}(x-s,-\frac{\lambda}{2}(x+s)),t\lambda)dt$$

and

$$\hat{f}^{2,3}(x-s,-\frac{\lambda}{2}(x+s)),0) - \hat{f}^{2,3}(x-s,\lambda(b-x),0) = \lambda(\frac{1}{2}(s-x) - (s-x+b)) \\ \times \int_0^1 \partial_2 \hat{f}^{2,3}(x-s,\lambda(b-x) + t(\lambda(\frac{1}{2}(s-x) - (s-x+b)),0)dt.$$

Hence, since $f \in \mathcal{S}(H_n)$, there exists a constant C > 0 such that

$$|f^{2,3}(x-s,-\frac{\lambda}{2}(x+s)),\lambda) - \hat{f}^{2,3}(x-s,-\frac{\lambda}{2}(x+s),0)| \le |\lambda| \frac{C}{(1+\|x-s\|)^{2n+1}},$$

and

$$\begin{aligned} |\hat{f}^{2,3}(x-s,-\frac{\lambda}{2}(x+s)),0) - \hat{f}^{2,3}(x-s,\lambda(b-x),0)| \\ &\leq |\lambda|(||s-x+b|| + ||s-x||) \frac{C}{(1+||x-s||)^{4n+1}} \end{aligned}$$

for all $\lambda \in \mathbb{R}^*$, $x, s \in \mathbb{R}^n$. Therefore we see that

$$\begin{aligned} \|u_{\lambda}\|_{2}^{2} &= \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} |u_{\lambda}(x,b)|^{2} dx db \\ &\leq \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} |\xi(s)\eta_{\lambda}(s-x+b)| |\lambda| \frac{C}{(1+\|x-s\|)^{2n+1}} ds \right)^{2} dx db \\ &\leq |\lambda|^{2} C' \int_{\mathbb{R}^{3n}} \frac{|\xi(s)|^{2}}{(1+\|x-s\|)^{2}} |\eta_{\lambda}(s-x+b)|^{2} db dx ds \\ &\leq C'' |\lambda|^{2} \|\xi\|_{2}^{2}. \end{aligned}$$

Similarly

$$\begin{split} \|v_{\lambda}\|_{2}^{2} &= \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} |v_{\lambda}(x,b)|^{2} dx db \\ &\leq \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} |\xi(s)\eta_{\lambda}(s-x+b)| |\lambda| (\|s-x+b\|+\|s-x\|) \right) \\ &\quad \frac{C}{(1+\|x-s\|)^{4n+1}} ds \right)^{2} db dx \\ &\leq C' \int_{\mathbb{R}^{3n}} |\xi(s)\eta_{\lambda}(s-x+b)|^{2} |\lambda|^{2} (\|s-x+b\|+\|s-x\|)^{2} \\ &\quad \frac{1}{(1+\|x-s\|)^{4n+1}} ds db dx \\ &\leq 2C' \int_{\mathbb{R}^{3n}} |\xi(s)|\lambda|^{n/4} \eta (|\lambda|^{1/2}(s-x+b))|^{2} |\lambda|^{2} \|s-x+b\|^{2} \frac{ds db dx}{(1+\|x-s\|)^{4n+1}} \\ &\quad + 2C' \int_{\mathbb{R}^{3n}} |\xi(s)|\lambda|^{n/4} \eta (|\lambda|^{1/2}(s-x+b))|^{2} |\lambda|^{2} \|s-x\|^{2} \frac{ds db dx}{(1+\|x-s\|)^{4n+1}} \\ &\leq 2C' |\lambda| \int_{\mathbb{R}^{3n}} |\xi(s)|\lambda|^{n/4} \tilde{\eta} (|\lambda|^{1/2}(s-x+b))|^{2} \frac{ds db dx}{(1+\|x-s\|)^{4n+1}} \\ &\quad + 2C' |\lambda|^{2} \int_{\mathbb{R}^{3n}} |\xi(s)|\lambda|^{n/4} \eta (|\lambda|^{1/2}(s-x+b))|^{2} \frac{ds db dx}{(1+\|x-s\|)^{4n+1}} \\ &\quad + 2C' |\lambda|^{2} \int_{\mathbb{R}^{3n}} |\xi(s)|\lambda|^{n/4} \eta (|\lambda|^{1/2}(s-x+b))|^{2} \frac{ds db dx}{(1+\|x-s\|)^{4n-1}} \\ &\leq C'' |\lambda| (\|\tilde{\eta}\|_{2}^{2} + |\lambda|\|\eta\|_{2}^{2}) \|\xi\|_{2}^{2}, \end{split}$$

for some constants C', C'' > 0, where the function $\tilde{\eta}$ is defined by $\tilde{\eta}(s) := ||s|| \eta(s), s \in \mathbb{R}$. Since $\eta \in \mathcal{S}(\mathbb{R}^n)$, we can use the same arguments to see that

$$\begin{aligned} \|w_{\lambda}\|_{2}^{2} &= \int_{\mathbb{R}^{n}} |w_{\lambda}(x)|^{2} dx \\ &\leq \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} |\xi(s)| \eta_{\lambda}(b)| |\lambda|^{n/4+1/2} (\|s-x\|) \frac{C}{(1+\|x-s\|)^{4n+1}} db ds \right)^{2} dx \\ &\leq C' |\lambda|^{n/2+1} \int_{\mathbb{R}^{3n}} |\xi(s)|^{2} |\eta_{\lambda}(b)|^{2} \frac{\|x-s\|^{2} ds dx db}{1+\|x-s\|^{4n+1}} \leq C'' |\lambda|^{n/2+1} \|\xi\|_{2}^{2} \|\eta\|_{2}^{2}. \end{aligned}$$

We have proved therefore $\|\pi_{\lambda}(f) - \nu_{\lambda}(\rho(f))\| \to 0$ as $\lambda \to 0$ for $f \in \mathcal{S}(H_n)$. Since $\mathcal{S}(H_n)$ is dense in $C^*(H_n)$, the statement holds for any $a \in C^*(H_n)$.

Definition 2.13. For $\eta \in \mathcal{S}(\mathbb{R}^n)$ we define the linear mapping $\nu_\eta := \nu : C^*(\mathbb{R}^{2n}) \to \mathcal{F}_n$ by

$$\nu(h)(\lambda) = \nu_{\lambda}(h), \lambda \in \mathbb{R}^* \text{ and } \nu(h)(0) = h.$$

Proposition 2.14. The mapping $\nu : C^*(\mathbb{R}^{2n}) \to \mathcal{F}_n$ has the following properties:

- 1. $\|\nu\| = 1$.
- 2. For every $h, h' \in C^*(\mathbb{R}^{2n})$, we have that

$$\lim_{\lambda \to 0} \|\nu_{\lambda}(h \cdot h') - \nu_{\lambda}(h) \circ \nu_{\lambda}(h')\|_{\rm op} = 0$$

and also

$$\lim_{\lambda \to 0} \|\nu_{\lambda}(h^*) - \nu_{\lambda}(h)^*\|_{\mathrm{op}} = 0.$$

3. For $(a,b) \in \mathbb{R}^{2n}$ and $h \in C^*(\mathbb{R}^{2n})$ we have that

$$\lim_{\lambda \to 0} \|\nu(h)(\lambda)\eta(\lambda, a, b) - \hat{h}(a, b)\eta(\lambda, a, b)\|_2 = 0.$$

4. $\lim_{\lambda \to 0} \|\nu(h)(\lambda)\| = \|\hat{h}\|_{\infty}$.

Proof. (1) follows from Proposition 2.11. To prove (2) we take for $h, h' \in \mathcal{S}(\mathbb{R}^{2n})$ two elements $f, f' \in \mathcal{S}(H_n)$, such that $\rho(f) = h, \rho(f') = h'$. Then $\rho(f * f') = h \cdot h'$ and

$$\begin{aligned} \|\nu_{\lambda}(h \cdot h') - \nu_{\lambda}(h) \circ \nu_{\lambda}(h')\|_{\text{op}} &\leq \|\nu_{\lambda}(h \cdot h') - \pi_{\lambda}(f * f')\|_{\text{op}} \\ &+ \|\nu_{\lambda}(h) \circ \nu_{\lambda}(h') - \pi_{\lambda}(f) \circ \pi_{\lambda}(f')\|_{\text{op}} \\ &\leq \|\nu_{\lambda}(h \cdot h') - \pi_{\lambda}(f * f')\|_{\text{op}} \\ &+ \|f'\|_{C^{*}(H_{n})}\|\nu_{\lambda}(h) - \pi_{\lambda}(f)\|_{\text{op}} \\ &+ \|h\|_{C^{*}(\mathbb{R}^{2n})}\|\nu_{\lambda}(h') - \pi_{\lambda}(f')\|_{\text{op}}. \end{aligned}$$

Hence, by Theorem 2.12, $\lim_{\lambda\to 0} \|\nu_{\lambda}(f*f') - \nu_{\lambda}(f) \circ \nu_{\lambda}(f')\|_{op} = 0$. Furthermore

$$\begin{aligned} \|\nu_{\lambda}(h^*) - \nu_{\lambda}(h)^*\|_{\text{op}} &\leq \|\nu_{\lambda}(h^*) - \pi_{\lambda}(f^*)\|_{\text{op}} + \|\nu_{\lambda}(h)^* - \pi_{\lambda}(f)^*\|_{\text{op}} \to 0\\ &\text{as } \lambda \to 0. \end{aligned}$$

We conclude by the usual approximation argument.

For assertion (3), using Propositions 2.4 and Theorem 2.12, it suffices to take for $h \in C^*(\mathbb{R}^{2n})$ an element $c \in C^*(H_n)$, for which $\rho(c) = h$. The last statement follows from Proposition 2.11 and assertion (3).

Definition 2.15. Let $D_{\nu}(H_n)$ be the subspace of the algebra \mathcal{F}_n , consisting of all the fields $(F(\lambda))_{\lambda \in \mathbb{R}} \in \mathcal{F}_n$, such that

$$\lim_{\lambda \to 0} \|F(\lambda) - \nu_{\lambda}(F(0))\|_{\text{op}} = 0.$$

Our main theorem of this section is the following characterisation of $C^*(H_n)$.

Theorem 2.16. The Heisenberg C^* -algebra $C^*(H_n)$ is isomorphic to $D_{\nu}(H_n)$.

Proof. First we show that $D_{\nu}(H_n)$ is a *-subalgebra of \mathcal{F}_n . Indeed if $F, F' \in D_{\nu}(H_n)$, then

$$\|\nu_{\lambda}(F(0) + F'(0)) - \pi_{\lambda}(F + F')\|_{\text{op}} \leq \|\nu_{\lambda}(F(0)) - \pi_{\lambda}(F)\|_{\text{op}} + \|\nu_{\lambda}(F'(0)) - \pi_{\lambda}(F')\|_{\text{op}} \to 0$$

as $\lambda \to 0$.

and since $\lim_{\lambda\to 0} \|\nu_{\lambda}(F \cdot F'(0)) - \nu_{\lambda}(F(0)) \circ \nu(F'(0))\|_{op} = 0$ it follows that

$$\|\nu_{\lambda}(F(0)\cdot F'(0)) - \pi_{\lambda}(F\cdot F')\|_{\text{op}} \to 0.$$

Proposition 2.14 tells us that $D_{\nu}(H_n)$ is also invariant under the involution *. In order to see that $D_{\nu}(H_n)$ is closed, let $F \in \mathcal{F}_n$ be contained in the closure of $D_{\nu}(H_n)$. Let $\varepsilon > 0$. Choose $F' \in D_{\nu}(H_n)$, such that $\|F - F'\|_{\mathcal{F}_n} < \varepsilon$. In particular, $\|F(0) - F'(0)\|_{C^*(\mathbb{R}^2)} < \varepsilon$. Thus there exists $\lambda_0 > 0$, such that

$$\|\pi_{\lambda}(F') - \nu_{\lambda}(F'(0))\|_{\rm op} < \varepsilon$$

for all $|\lambda| < |\lambda_0|$, whence

$$\begin{aligned} \|\pi_{\lambda}(F) - \nu_{\lambda}(F(0))\|_{\text{op}} &= \|\pi_{\lambda}(F) - \pi_{\lambda}(F') + \pi_{\lambda}(F') - \nu_{\lambda}(F'(0)) + \nu_{\lambda}(F'(0)) - \nu_{\lambda}(F(0))\|_{\text{op}} \\ &\leq 3\varepsilon, \text{ for } |\lambda| < |\lambda_0|. \end{aligned}$$

Hence $D_{\nu}(H_n)$ is a C^* -subalgebra of \mathcal{F}_n .

Let $I_0 := \{F \in \mathcal{F}_n, F(0) = 0\}$ and let $I_{00} = \{F \in I_0; \lim_{\lambda \to 0} ||F(\lambda)||_{op} = 0\}$. Then I_0 and I_{00} are closed two sided ideals of \mathcal{F}_n and it follows from the definition of \mathcal{F}_n that I_{00} is just the algebra $C_0(\mathbb{R}^*, \mathcal{K})$. It is clear that $D_{\nu}(H_n) \cap I_0 = I_{00}$. But $D_{\nu}(H_n) \cap I_0$ is the kernel in $D_{\nu}(H_n)$ of the homomorphism $\delta_0 : \mathcal{F}_n \to \mathbb{C}^*(\mathbb{R}^{2n}); F \mapsto F(0)$.

Since $\operatorname{im}(\nu) \subset D_{\nu}(H_n)$, the canonical projection $D_{\nu}(H_n) \to C^*(\mathbb{R}^{2n}) : F \mapsto F(0)$ is surjective and has the ideal I_{00} as its kernel. Thus $D_{\nu}(H_n)/I_{00} = C^*(\mathbb{R}^{2n})$ and therefore $D_{\nu}(H_n)$ is an extension of I_{00} by $C^*(\mathbb{R}^{2n})$. Moreover,

$$D_{\nu}(H_n) = I_{00} + \operatorname{im}(\nu).$$

Since for every irreducible representation π of $D_{\nu}(H_n)$, we have either $\pi(I_{00}) \neq 0$, and then $\pi = \pi_{\lambda}$ for some $\lambda \in \mathbb{R}^*$ or $\pi = 0$ on I_{00} and then π must be a character of $C^*(\mathbb{R}^{2n})$. Hence $\hat{D}_{\nu}(H_n) = \hat{H}_n$ as sets. That topologies of these spaces agree follows from the equality

$$\lim_{\lambda \to 0} \|\tau(h)(\lambda)\|_{\mathrm{op}} = \|\hat{h}\|_{\infty}, \ \forall h \in C^*(\mathbb{R}^{2n}),$$

which is due to Proposition 2.14.

By Theorem 2.12, $F(\mathcal{S}(H_n)) \subset D_{\nu}(H_n)$. Hence the C^* - algebra $C^*(H_n)$ can be injected into $D_{\nu}(H_n)$.

Since $D_{\nu}(H_n)$ is a type I algebra and the dual spaces of $D_{\nu}(H_n)$ and of $C^*(H_n)$ are the same, we have that $F(C^*(H_n))$ is equal to $D_{\nu}(H_n)$ by the Stone -Weierstrass theorem (see [Di]). \Box **Remark 2.17.** Another characterisation of the C^* -algebra $C^*(H_n)$ is given (without proof) in a short paper by Gorbachev [Gor]. For n = 1 and $\lambda \in \mathbb{R}^*$ he defines an operator-valued measure μ_{λ} on \mathbb{R}^2 given on the product of two intervals $[s,t] \times [e,d]$ by $\mu_{\lambda}([s,t] \times [e,d]) = P^{\frac{e}{\lambda},\frac{d}{\lambda}}FP^{s,t}F^{-1}$, where $P^{s,t}$ is the multiplication operator by the characteristic function of [t,s] on $L^2(\mathbb{R})$ and F is the Fourier transform on $L^2(\mathbb{R})$. For $f \in C_0(\mathbb{R}^2), \lambda \in \mathbb{R}^*$ let

$$y(f)(\lambda) = \int_{\mathbb{R}^2} f(a,b) d\mu_{\lambda}(a,b)$$

and y(f)(0) = f. Gorbachev states that $C^*(H_1)$ is isomorphic to the C^* -algebra of operator fields $B = \{B(\lambda) = y(f)(\lambda) + a, \lambda \in \mathbb{R}^*, B(0) = f, f \in C_0(\mathbb{R}^2), a \in C_0(\mathbb{R}^*, \mathcal{K})\}.$

2.4 Almost homomorphisms and Heisenberg property

Definition 2.18. A bounded mapping $\tau : C^*(\mathbb{R}^{2n}) \to \mathcal{F}_n$ is called an *almost homomorphism* if

$$\begin{split} &\lim_{\lambda \to 0} \|\tau_{\lambda}(\alpha h + \beta f) - \alpha \tau_{\lambda}(h) - \beta \tau_{\lambda}(f)\|_{\rm op} = 0, \\ &\lim_{\lambda \to 0} \|\tau_{\lambda}(h \cdot h') - \tau_{\lambda}(h) \circ \tau_{\lambda}(h')\|_{\rm op} = 0, \\ &\lim_{\lambda \to 0} \|\tau_{\lambda}(h^{*}) - \tau_{\lambda}(h)^{*}\|_{\rm op} = 0, \ \alpha, \beta \in \mathbb{C}, f, h \in C^{*}(\mathbb{R}^{2n}). \end{split}$$

The mapping ν from the previous section is an example of such almost homomorphism. Let τ be an arbitrary almost homomorphism such that $\tau(f)(0) = f$ for any $f \in C^*(\mathbb{R}^{2n})$. We define as before $D_{\tau}(H_n)$ to be the subspace of the algebra \mathcal{F}_n , consisting of all the fields $F = (F(\lambda))_{\lambda \in \mathbb{R}} \in \mathcal{F}_n$, such that

$$\lim_{\lambda \to 0} \|F(\lambda) - \tau_{\lambda}(F(0))\|_{\text{op}} = 0.$$

Using the same arguments as the one in the proof of Theorem 2.16 one can easily prove the following

Proposition 2.19. The subspace $D_{\tau}(H_n)$ of the C^* -algebra \mathcal{F}_n is itself a C^* -algebra. The algebra $D_{\tau}(H_n)$ is an extension of $C_0(\mathbb{R}^*, \mathcal{K})$ by $C^*(\mathbb{R}^{2n})$, i.e., $C_0(\mathbb{R}^*, \mathcal{K})$ is a closed *-ideal in $D_{\tau}(H_n)$ such that $D_{\tau}(H_n)/C_0(\mathbb{R}^*, \mathcal{K})$ is isomorphic to $C^*(\mathbb{R}^{2n})$.

Definition 2.20. We say that an almost homomorphism $\tau : C^*(\mathbb{R}^{2n}) \to \mathcal{F}_n$ has the *Heisenberg* property, if the C^* -algebra $D_{\tau}(H_n)$ is isomorphic to $C^*(H_n)$.

Remark 2.21. As for the mapping ν we have that the dual spaces of $D_{\tau}(H_n)$ and of H_n coincides as sets. The necessary and the sufficient conditions for them to coincide as topological spaces is

$$\lim_{\lambda} \|\tau_{\lambda}(h)\|_{\mathrm{op}} = \|\hat{h}\|_{\infty}, \quad h \in C^{*}(\mathbb{R}^{n}).$$

Remark 2.22. Using the notion of Busby invariant for a C^* -algebra extension and the pullback algebra ([W]), one can show that any extension $\mathcal{B} \subset \mathcal{F}_n$ of $C_0(\mathbb{R}^*, \mathcal{K})$ by $C^*(\mathbb{R}^{2n})$ is isomorphic to $D_{\tau}(H_n)$ for some almost homomorphism τ . The Busby invariant of such extension is $b: C^*(\mathbb{R}^{2n}) \to C_b(\mathbb{R}^*, B(H))/C_0(\mathbb{R}^*, \mathcal{K}), b(h) = \tau(h) + C_0(\mathbb{R}^*, \mathcal{K}).$

Question.

What mappings τ give us C^{*}-algebras $D_{\tau}(H_n)$, which are isomorphic to C^{*}(H_n)?

Using a procedure described in [De] one can construct families of C^* -algebras of type $D_{\tau}(H_n)$ which are isomorphic to $D_{\nu}(H_n)$ and therefore to $C^*(H_n)$.

Next example shows that there is no topological obstacle for a C^* -algebra of type $D_{\tau}(H_n)$ to be non-isomorphic to $C^*(H_n)$. Namely, there is a C^* -algebras $D_{\tau}(H_n)$ with the spectrum equal to \hat{H}_n and such that $D_{\tau}(H_n) \not\simeq C^*(H_n)$.

We recall first that if \mathcal{A} , \mathcal{C} are C^* -algebras, then an extension of \mathcal{C} by \mathcal{A} is a short exact sequence

(2.10)
$$0 \to \mathcal{A} \xrightarrow{\alpha} \mathcal{B} \xrightarrow{\beta} \mathcal{C} \to 0$$

of C^* -algebras. One says that the exact sequence splits if there is a cross-section *homomorphism $s: \mathcal{C} \to \mathcal{B}$ such that $\beta \circ s = I_{\mathcal{C}}$. It is known that the extension

(2.11) $0 \to C_0(\mathbb{R}^*, \mathcal{K}) \to C^*(H_n) \to C^*(\mathbb{R}^{2n}) \to 0$

does not split (see [R] and references therein) while there exists a large number of splitting extensions \mathcal{B} and therefore non-isomorphic to $C^*(H_n)$ such that $\hat{\mathcal{B}} = \hat{H}_n$ (see [De, VII.3.4]). Here is a concrete example inspired by [De].

Example 2.23. Let $\{\xi_Z\}_{Z\in\mathbb{Z}^{2n}}$ be an orthonormal basis of the Hilbert space $L^2(\mathbb{R}^n)$. Let $P_Z, Z \in \mathbb{Z}^{2n}$, be the orthogonal projection onto the one-dimensional $\mathbb{C}\xi_Z$. We define a homomorphism ν from $C^*(\mathbb{R}^{2n})$ to \mathcal{F}_n by

$$\nu(\varphi)(\lambda) := \sum_{Z \in \mathbb{Z}^{2n}} \hat{\varphi}(|\lambda|^{1/2} Z) P_Z, \lambda \in \mathbb{R}^*, \nu(\varphi)(0) := \varphi, \ \varphi \in C^*(\mathbb{R}^{2n}).$$

We note that since for each $\lambda \neq 0$ and each compact subset $K \subset \mathbb{R}^{2n}$, the set $\{Z \in \mathbb{Z}^{2n} : |\lambda|^{1/2} \in K\}$ is finite and since $\hat{\varphi} \in C_0(\mathbb{R}^{2n})$, one can easily see that $\nu(\varphi)(\lambda)$ is compact. Moreover

$$\|\nu(\varphi)(\lambda)\|_{\mathrm{op}} = \sup_{Z \in \mathbb{Z}^{2n}} |\varphi(|\lambda|^{1/2}Z)|.$$

Since we can find for every vector $u \in \mathbb{R}^{2n}$ and $\lambda \in \mathbb{R}^*$ a vector $Z_{\lambda} \in \mathbb{Z}^{2n}$, such that $\lim_{\lambda \to 0} |\lambda|^{1/2} Z_{\lambda} = u$, we see that

(2.12)
$$\lim_{\lambda \to 0} \|\nu_{\lambda}(\varphi)\|_{\mathrm{op}} = \|\hat{\varphi}\|_{\infty} = \|\varphi\|_{\mathbb{C}^*(\mathbb{R}^{2n})}.$$

3 The C^* -algebra of the thread-like Lie groups G_N

For $N \geq 3$, let \mathfrak{g}_N be the N-dimensional real nilpotent Lie algebra with basis X_1, \ldots, X_N and non-trivial Lie brackets

$$[X_N, X_{N-1}] = X_{N-2}, \dots, [X_N, X_2] = X_1.$$

The Lie algebra \mathfrak{g}_N is (N-1)-step nilpotent and is a semi-direct product of $\mathbb{R}X_N$ with the abelian ideal

(3.13)
$$\mathfrak{b} := \sum_{j=1}^{N-1} \mathbb{R} X_j$$

Let

$$\mathfrak{b}_j := \operatorname{span}\{X_i, i = 1, \cdots, j\}, 1 \le j \le N - 1.$$

Note that \mathfrak{g}_3 is the three dimensional Heisenberg Lie algebra. Let $G_N := \exp(\mathfrak{g}_N)$ be the associated connected, simply connected Lie group. Let also $B_j := \exp(\mathfrak{b}_j)$ and $B := \exp(\mathfrak{b})$. Then for $3 \leq M \leq N$ we have $G_M \simeq G_N/B_{N-M}$.

3.1 The unitary dual of G_N

In this section we describe the unitary irreducible representations of G_N up to a unitary equivalence.

equivalence. For $\xi = \sum_{j=1}^{N-1} \xi_j X_j^* \in \mathfrak{g}_N^*$, the coadjoint action is given by

$$Ad^{*}(\exp(-tX_{N}))\xi = \sum_{j=1}^{N-1} p_{j}(\xi, t)X_{j}^{*},$$

where, for $1 \le j \le N - 1$, $p_j(\xi, t)$ is a polynomial in t defined by

$$p_j(\xi, t) = \sum_{k=0}^{j-1} \frac{t^k}{k!} \xi_{j-k}.$$

Moreover, if $\xi_j \neq 0$ for at least one $1 \leq j \leq N-2$, then $\operatorname{Ad}^*(G_N)\xi$ is of dimension two, and $\operatorname{Ad}^*(G_N)\xi = \{\operatorname{Ad}^*(\exp(tX_N))\xi + \mathbb{R}X_N^*, t \in \mathbb{R}\}$. We shall always identify \mathfrak{g}_N^* with \mathbb{R}^N via the mapping $(\xi_N, \ldots, \xi_1) \to \sum_{j=1}^N \xi_j X_j^*$ and the subspace $V = \{\xi \in \mathfrak{g}_N^* : \xi_N = 0\}$ with the dual space of \mathfrak{b} . For $\xi \in V$ and $t \in \mathbb{R}$, let

$$t \cdot \xi = \operatorname{Ad}^*(\exp(tX_N))\xi$$

(3.14)
$$= \left(0, \xi_{N-1} - t\xi_{N-2} + \ldots + \frac{1}{(N-2)!} (-t)^{N-2} \xi_1, \ldots, \xi_2 - t\xi_1, \xi_1\right).$$

As in [AKLSS], we define the function $\hat{\xi}$ on \mathbb{R} by

(3.15)
$$\widehat{\xi}(t) := (t \cdot \xi)_{N-1} = \xi_{N-1} - t\xi_{N-2} + \ldots + \frac{1}{(N-2)!} (-t)^{N-2} \xi_1.$$

Then the mapping $\xi \to \hat{\xi}$ is a linear isomorphism of V onto P_{N-2} , the space of real polynomials of degree at most N-2. In particular, $\xi_k \to \xi$ coordinate-wise in V as $k \to \infty$ if and only if $\hat{\xi}_k(t) \to \hat{\xi}(t)$ for all $t \in \mathbb{R}$. Also, the mapping $\xi \to \hat{\xi}$ intertwines the Ad*-action and translation in the following way:

$$\overline{t} \cdot \overline{\xi}(s) = (s \cdot (t \cdot \xi))_{N-1}$$
$$= ((s+t) \cdot \xi)_{N-1} = \widehat{\xi}(s+t)$$

for $\xi \in V$ and $s, t \in \mathbb{R}$.

By Kirillov's orbit picture of the dual space of a nilpotent Lie group, we can describe the irreducible unitary representations of G_N in the following way (see [CG] for details). For any

non-constant polynomial $p = \hat{\ell} \in P_{N-2}$ we consider the induced representation $\pi_{\ell} = \operatorname{ind}_{B}^{G} \chi_{\ell}$, where χ_{ℓ} denotes the unitary character of the abelian group B defined by:

$$\chi_{\ell}(\exp(U)) = e^{-2\pi i \langle \ell, U \rangle}, U \in \mathfrak{b}.$$

Since \mathfrak{b} is abelian of codimension 1, it is a polarization at ℓ and so π_{ℓ} is irreducible. Every infinite dimensional irreducible unitary representation of G_N arises in this manner up to equivalence.

Let us describe the representation $\pi_{\ell}, \ell \in \mathfrak{b}^*$, explicitly. The Hilbert space \mathcal{H}_{ℓ} of the representation π_{ℓ} is the space $L^2(G_N/B, \chi_{\ell})$ consisting of all measurable functions $\tilde{\xi} : G_N \to \mathbb{C}$, such that $\tilde{\xi}(gb) = \chi_{\ell}(b^{-1})\tilde{\xi}(g)$ for all $b \in B$ and all $g \in G$ outside some set of measure of Lebesgue measure 0 and such that the function $|\tilde{\xi}|$ is contained in $L^2(G_N/B)$. We can identify the space $L^2(G_N/B, \chi_{\ell})$ in an obvious way with $L^2(\mathbb{R})$ via the isomorphism $U : \xi \mapsto \tilde{\xi}$ where $\tilde{\xi}(\exp(sX_N)b) := \chi_{\ell}(b^{-1})\xi(s), s \in \mathbb{R}, b \in B$. Hence for $g = \exp(tX_N)b$ and $\xi \in L^2(\mathbb{R})$ we have an explicit expression for the operator $\pi_{\ell}(g)$:

(3.16)
$$\pi_{\ell}(g)\xi(s) = \tilde{\xi}(g^{-1}\exp(sX_N))$$
$$= \tilde{\xi}(b^{-1}\exp((s-t)X_N))$$
$$= \tilde{\xi}(\exp((s-t)X_N)(\exp((t-s)X_N)b^{-1}\exp((s-t)X_N)))$$
$$= \chi_{\ell}(\exp((t-s)X_N)b\exp((s-t)X_N))\xi(s-t)$$
$$= e^{-2\pi i \ell (\operatorname{Ad}(\exp((t-s)X_N)\log(b))}\xi(s-t), s \in \mathbb{R}.$$

We can parametrize the orbit space \mathfrak{g}_N^*/G_N in the following way. First we have a decomposition

$$\mathfrak{g}_N^*/G_N = \bigcup_{j=1}^{N-2} \mathfrak{g}_N^{*,j}/G_N \bigcup X^*,$$

where

$$\mathfrak{g}_N^{*,j} := \{\ell \in \mathfrak{g}_N^*, \ell(X_i) = 0, i = 1, \cdots, j - 1, \ell(X_j) \neq 0\}$$

and where

$$X^* := \{ \ell \in \mathfrak{g}_N^*, \ell(X_j) = 0, j = 1, \cdots, N - 2 \}$$

denotes the characters of G_N . A character of the group G_N can be written as $\chi_{a,b}, a, b \in \mathbb{R}$, where

$$\chi_{a,b}(x_N, x_{N-1}, \cdots, x_1) := e^{-2\pi i a x_N - 2\pi i b x_{N-1}}, \ (x_N, \cdots, x_1) \in G_N.$$

For any $\ell \in \mathfrak{g}_N^{*j}$, $N-2 \geq j \geq 1$ there exists exactly one element ℓ_0 in the G_N -orbit of ℓ , which satisfies the conditions

$$\ell_0(X_j) \neq 0, \ell_0(X_{j+1}) = 0, \ell_0(X_N) = 0.$$

We can thus parametrize the orbit space \mathfrak{g}_N^*/G_N , and hence also the dual space $\widehat{G_N}$, with the sets

$$S_N := \bigcup_{j=1}^{N-2} S_N^j \bigcup X^*.$$

where $S_N^j := \mathcal{S}_N \cap \mathfrak{g}^{*j} = \{\ell \in \mathfrak{g}_N^{*j}, \ell(X_k) = 0, k = 1, \cdots, j - 1, j + 1, \ell(X_j) \neq 0\}$. Let N-2

$$S_N^{gen} := \bigcup_{j=1}^{N-2} S_N^j$$

be the family of points in S_N , whose G_N -orbits are of dimension 2.

3.2 The topology of $\widehat{G_N}$

The topology of the dual space of G_N has been studied in detail in the papers [ALS] and [AKLSS] based on the methods developed in [LRS] and [L]. We need the following description of the convergence of sequences $(\pi_k)_k$ of representations in $\widehat{G_N}$.

Let $(\pi_k)_k$ be a sequence in $\widehat{G_N}$. It is said to be *properly convergent* if it is convergent and all cluster points are limits. It is known (see [LRS]) that any convergent sequence has a properly convergent subsequence.

Proposition 3.1. Suppose that $(\pi_k = \pi_{\ell_k})_k$, $(\ell_k \in S_N^{\text{gen}}, k \in \mathbb{N})$ is a sequence in $\widehat{G_N}$ that has a cluster point. Then there exists a subsequence, (also indexed by the symbol k for simplicity), called with perfect data such that $(\pi_k)_k$ is properly converging and such that the polynomials p_k , $k \in \mathbb{N}$, associated to π_k have the following properties: The polynomials p_k have all the same degree d. Write

$$p_k(t) := c_k \prod_{j=1}^d (t - a_j^k) = \hat{\ell}_k(t), t \in \mathbb{R}, \ell_k \in V.$$

There exist $0 < m \leq 2d$, real sequences $(t_i^k)_k$ and polynomials q_i of degree $d_i \leq d$, $i = 1, \dots, m$, such that

- 1. $\lim_{k\to\infty} p_k(t+t_i^k) \to q_i(t), t \in \mathbb{R}, 1 \le i \le m \text{ or equivalently } \lim_{k\to\infty} t_i^k \cdot \ell_k \to \ell^i, \text{ where } \ell^i \text{ in } V \text{ such that } \hat{\ell}^i(t) = q_i(t).$
- 2. $\lim_{k \to \infty} |t_i^k t_{i'}^k| = +\infty$, for all $i \neq i' \in \{1, \cdots, m\}$.
- 3. If $C = \{i \in \{1, \dots, m, \}, \ell^i \text{ is a character } \}$ then for all $i \in C$
 - (a) $\lim_{k\to\infty} |t_i^k a_j^k| = +\infty$ for all $j \in \{1, \cdots, d\}$;
 - (b) there exists an index $j(i) \in \{1, \dots, d\}$ such that $|t_i^k a_{j(i)}^k| \leq |t_i^k a_j^k|$ for all $j \in \{1, \dots, d\}$; let

$$\rho_i^k := |t_i^k - a_{j(i)}^k|$$

- (c) there exists a subset $L(i) \subset \{1, \dots, m\}$, such that $\lim_{k \to \infty} \frac{|t_i^k a_j^k|}{\rho_i^k}$ exists in \mathbb{R} for every $j \in L(i)$ and such that $\lim_{k \to \infty} \frac{|t_i^k a_j^k|}{\rho_i^k} = +\infty$ for $j \notin L(i)$;
- (d) the polynomials $(t_i^k + s\rho_i^k) \cdot p_k$ in t converge uniformly on compact to the constants

$$\lim_{k \to \infty} (t_i^k + s\rho_i^k) \cdot p_k(t) = p^i(s), s \in \mathbb{R}$$

and these constants define a real polynomial of degree #L(i) in s.

(e) If $i' \neq i \in C$, then $L(i) \cap L(i') = \emptyset$.

4. Let $D = \{1, \dots, m\} \setminus C$ and write $\rho_i^k := 1$ for $i \in D$. For $i \in D$, let

$$J(i) := \{1 \le j \le d, \lim_{k \to \infty} |t_i^k - a_j^k| = \infty\}.$$

Suppose that $(t_k)_k$ is a real sequence, such that $\lim_{k\to\infty} t_k \cdot \ell_k \to \ell$ in \mathfrak{g}_N^* , then

- (a) if ℓ is a non-character, then the sequence $(|t_k t_i^k|)_k$ is bounded for some $i \notin C$;
- (b) if ℓ is a character, then $\lim_{k\to\infty} \left| \frac{t_k a_j^k}{t_i^k a_j^k} \right|$ exists for some $i \in C$ and some $j \in L(i)$ and $\ell_{|\mathfrak{b}} = q_i(s) X_{N-1}^*$ for some $s \in \mathbb{R}$.

5. Take any real sequence $(s_k)_k$, such that $\lim_{k\to\infty} |s_k| = +\infty$, and such that for any $i \in D$, $j \in J(i), \frac{s_k}{|t_i^k - a_j^k|} \to 0$, and for $i \in C$, $j \notin L(i), \frac{s_k \rho_i^k}{|a_j^k - t_i^k|} \to 0$ and $\frac{s_k}{\rho_i^k} \to 0$ as $k \to \infty$. Let

$$S_k := (\bigcup_{i=1}^m [t_i^k - s_k \rho_i^k, t_i^k + s_k \rho_i^k]); \ T_k := \mathbb{R} \setminus S_k, k \in \mathbb{N}$$

Then for any sequence $(t_k)_k$, $t_k \in T_k$, we have $t_k \cdot l_k \to \infty$.

We say that the sequence $(s_k)_k$ is adapted to the sequence (ℓ_k) .

Proof. We may assume that $(\pi_k)_k$ is properly convergent with limit set L. We can also assume, by passing to a subsequence, that each p_k has degree d. By [L] the number of non-characters in L is finite. Let this subset of non-characters be denoted by L^{gen} . If L^{gen} is non-empty by passing further to a subsequence we may assume the sequence $(\pi_k)_k$ converges i_{σ} -times to each non-character $\sigma \in L^{gen}$ (see p.34, [AKLSS] for the definition of m-convergence and p.253 [ALS]). Let $s = \sum_{\sigma \in L^{gen}} i_{\sigma}$. Then there exist non-constant polynomials q_1, \ldots, q_s of degree $d_i \leq d$, $i = 1, \ldots, s$, and sequences $(t_1^k)_k, \ldots, (t_s^k)_k$ such that the conditions (1) and (2) are fulfilled and for each $\sigma \in L^{gen}$ there are i_{σ} equal polynomials amongst q_1, \ldots, q_s corresponding to σ . Then if $(t_k)_k$ is a real sequence such that $t_k \cdot \ell_k \to \ell$, ℓ is a non-character, then ℓ corresponds to some $\sigma \in L^{gen}$ and we may assume that $\hat{\ell} = q_i$ for some $i \in 1, \ldots, s$. It follows from the definition of i_{σ} -convergence that the sequences $(t_k \cdot \ell_k)$ and $(t_i^k \cdot \ell_k)$ are not disjoint implying $|t_k - t_i^k|$ is bounded and therefore (4a).

If $(\pi_k)_k$ has a character as a limit point then passing if necessary to a subsequence we can find a maximal family of real sequences $(t_l^k)_k$, $l < s \leq m \leq d$, constant polynomials q_l , nonnegative sequences $(\rho_l^k)_k$ and polynomials p_l satisfying (1) - (4) (see Definition 6.4 and the discussion before in [ALS]).

The condition (4b) follows from the maximality of the family of sequences $(t_l^k)_k$ and the proof of Proposition 6.2, [ALS].

Suppose now that we have a sequence $(t_k)_k$ such that $t_k \in T_k$ for every k and such that some subsequence (also indexed by k for simplicity of notations) $(t_k \cdot \ell_k)_k$ converges to an $\ell \in \mathfrak{g}^*$. By condition (5) then either for some $i \in D$, the sequence $(t_k - t_i^k)_k$ is bounded, i.e $t_k \in [t_i^k - s_k \rho_i^k, t_i^k + s_k \rho_i^k]$ for k large enough, which is impossible, or we have an $i \in C$, such that $\lim_{k\to\infty} \left| \frac{t_k - a_j^k}{t_i^k - a_j^k} \right|$ exists for some $j \in L(i)$. But then

$$\begin{aligned} \frac{|t_k - t_i^k|}{\rho_i^k} &\leq \frac{|t_k - a_j^k|}{\rho_i^k} + \frac{|t_i^k - a_j^k|}{\rho_i^k} \\ &= \frac{|t_k - a_j^k|}{|t_i^k - a_j^k|} \frac{|t_i^k - a_j^k|}{\rho_i^k} + \frac{|t_i^k - a_j^k|}{\rho_i^k} \end{aligned}$$

and so the sequence $(\frac{|t_k - t_i^k|}{\rho_i^k})_k$ is bounded, i.e $t_k \in [t_i^k - s_k \rho_i^k, t_i^k + s_k \rho_i^k] \subset S_k$ for k large enough, a contradiction. Hence $\lim_k t_k \cdot \ell_k = \infty$ whenever $t_k \in T_k$ for large k.

Example 3.2. Let us consider the Heisenberg group G_3 . Then $S_3 = S_3^1 \cup \mathbb{R}^2$. Let $(\ell_k) \in S_3^1$. Then $\ell_k = \lambda_k X_1^*$, $\lambda_k \in \mathbb{R}^*$. The associated polynomials are $p_k(t) = -\lambda_k t$ $(d = 1, c_k = -\lambda_k, a_1^k = 1)$. Assume that (ℓ_k) is a sequence with perfect data. Then either π_{ℓ_k} converges to π_ℓ , $\ell \in S_3^1$, or π_{ℓ_k} converges to a character and in this case $\lambda_k \to 0$ as $k \to \infty$. We shall consider now the second case. So we have m = 1 and $\ell^1 = X_2^*$ with the corresponding polynomial $q_1(t) = 1$ and $t_1^k = -1/\lambda_k$ and thus $\rho_1^k = 1/|\lambda_k|$. The polynomial $p^1(s)$ is the limit

$$\lim_{k \to \infty} p_k(t_1^k + s\rho_i^k + t) = \lim_{k \to \infty} (-\lambda_k)(-1/\lambda_k + s/|\lambda_k| + t) = \lim_{k \to \infty} (1 - \operatorname{sign}\lambda_k s - \lambda_k t).$$

Since (ℓ_k) is a sequence with perfect data, the sign of λ_k is constant, implying $q_1 1(s) = 1 + \epsilon s$, where $\epsilon = \pm 1$. A real sequence (s_k) is adapted to (ℓ_k) if and only if $s_k \to \infty$ and $s_k |\lambda_k| \to 0$.

3.3 A C^* -condition

Let $C^*(G_N)$ be the full C^* -algebra of G_N that is the completion of the convolution algebra $L^1(G_N)$ with respect to the norm

$$||f||_{C^*(G_N)} = \sup_{\ell \in \mathcal{S}_N} ||\int_{G_N} f(g)\pi_\ell(g)dg||_{\text{op}}.$$

Definition 3.3. Let $f \in L^1(G_N)$. Define the function \hat{f}^2 on $\mathbb{R} \times \mathfrak{b}^*$ by

$$\hat{f}^2(s,\ell) := \int_B f(s,u) e^{-2\pi i \ell (\log(u))} du, s \in \mathbb{R}, \ell \in \mathfrak{b}^*.$$

We denote by $L^1_c(G_N)$ the space of functions $f \in L^1(G_N)$, for which \hat{f}^2 is contained in $C^{\infty}_c(\mathbb{R} \times \mathfrak{b}^*)$, the space of compactly supported C^{∞} -functions on $\mathbb{R} \times \mathfrak{b}^*$. The subspace $L^1_c(G_N)$ is dense in $L^1(G_N)$ and hence in the full C^* -algebra $C^*(G_N)$ of G_N .

Proposition 3.4. Take $f \in L^1_c(G_N)$ and let $\ell \in S_N^{gen}$. Then the operator $\pi_\ell(f)$ is a kernel operator with kernel function

$$f_{\ell}(s,t) = \hat{f}^2(s-t,t\cdot\ell), s,t \in \mathbb{R}.$$

Proof. Indeed, for $\xi \in L^2(\mathbb{R}), s \in \mathbb{R}$, we have that

$$\pi_{\ell}(f)\xi(s) = \int_{G_N} f(g)\pi_{\ell}(g)\xi dg$$

$$= \int_{\mathbb{R}} \int_{B} f(t,b)e^{-2\pi i \ell (\operatorname{Ad}(\exp((t-s)X_N)\log(b)))}\xi(s-t)dbdt(by 3.16)$$

$$= \int_{\mathbb{R}} \int_{B} f(s-t,b)e^{-2\pi i (\operatorname{Ad}^*(\exp(tX_N)(\ell)(\log(b)))}\xi(t)dbdt$$

$$= \int_{\mathbb{R}} \hat{f}^2(s-t,\operatorname{Ad}^*(\exp(tX_N(\ell))\xi(t)dt)$$

$$= \int_{\mathbb{R}} \hat{f}^2(s-t,t\cdot\ell)\xi(t)dt.$$

Definition 3.5. Let $\mathfrak{c} := \operatorname{span} \{X_1, \dots, X_{N-2}\}$. Then \mathfrak{c} is an abelian ideal of \mathfrak{g}_N , the algebra $\mathfrak{g}_N/\mathfrak{c}$ is abelian and isomorphic to \mathbb{R}^2 and $C := \exp(\mathfrak{c})$ is an abelian closed normal subgroup of G_N .

$$\rho = \operatorname{ind}_{C}^{G_{N}} 1$$

be the left regular representation of G_N on the Hilbert space $L^2(G_N/C)$. Then the image $\rho(C^*(G_N))$ is the C^* -algebra of \mathbb{R}^2 considered as algebra of convolution operators on $L^2(\mathbb{R}^2)$ and hence $\rho(C^*(G_N))$ is isomorphic to the algebra $C_0(\mathbb{R}^2)$ of continuous functions vanishing at infinity on \mathbb{R}^2 . As for the Heisenberg algebra we have that if $f \in L^1(G_N)$ then the Fourier transform $\rho(f)(a, b)$ of $\rho(f) \in C^*(\mathbb{R}^2)$ equals $\hat{f}(a, b, 0, \dots, 0)$.

Our aim is to realize the C^* -algebra $C^*(G_N)$ as a C^* -algebra of operator fields.

Definition 3.6. For $a \in C^*(G_N)$ we define the Fourier transform F(a) of a as operator field

$$F(a) := \{ (A(\ell) := \pi_{\ell}(a), \ell \in S_N^{gen}, A(0) := \rho(a) \in C^*(\mathbb{R}^2) \}.$$

Remark 3.7. We observe that the spaces S_N^j , $j = 1, \dots, N-2$, are Hausdorff spaces if we equip them with the topology of $\widehat{G_N}$. Indeed, let $(\ell_k)_k$ be a sequence in S_N^j , such that the sequence of representations $(\pi_{\ell_k})_k$ converges to some π_ℓ with $\ell \in S_N^j$. Then the numerical sequence $(\lambda_k := \ell_k(X_k))_k$ converges to $\lambda := \ell(X_j) \neq 0$. Suppose now that the same sequence (π_{ℓ_k}) converges to some other point $\pi_{\ell'}$. Then there exists a numerical sequence $(t_k)_k$ such that $\operatorname{Ad}^*(\exp(t_kX_N))\ell_{k|\mathfrak{b}}$ converges to $\ell'_{|\mathfrak{b}}$. In particular $-\lambda_k t_k = \operatorname{Ad}^*(\exp(t_kX_N))\ell_k(X_{j+1}) \xrightarrow{k\to\infty} \ell'(X_{j+1})$. Hence the sequence $(t_k)_k$ converges to some $t \in \mathbb{R}$ and $\pi_{\ell'} = \pi_\ell$. Similarly, we see from (3.17) that for $f \in L^1_c(G_N)$, the mapping $\ell \to \pi_\ell(f)$ is norm continuous when restricted to the sets S_N^j , $j = 1, \dots, N-2$, since for the sequence $(\pi_{\ell_k})_k$ above, the functions f_{ℓ_k} converge in the L_2 -norm to f_ℓ .

Definition 3.8. Define for $t, s \in \mathbb{R}$ the selfadjoint projection operator on $L^2(\mathbb{R})$ given by

$$M_{t,s}\xi(x) := \mathbb{1}_{(t-s,t+s)}(x)\xi(x), x \in \mathbb{R}, \xi \in L^2(\mathbb{R}),$$

where $1_{(a,b)}, a, b \in \mathbb{R}$, denotes the characteristic function of the interval $(a, b) \subset \mathbb{R}$.

We put for $s \in \mathbb{R}$

$$M_s := M_{0,s}.$$

More generally, for a measurable subset $T \subset \mathbb{R}$, we let M_T be the multiplication operator with the characteristic function of the set T. For $r \in \mathbb{R}$, let U(r) be the unitary operator on $L^2(\mathbb{R})$ defined by

$$U(r)\xi(s) := \xi(s+r), \xi \in L^2(\mathbb{R}), s \in \mathbb{R}.$$

Definition 3.9. Let $(\pi_{\ell_k})_k$ be a properly converging sequence in \widehat{G}_N with perfect data $((t_i^k)_k, (\rho_i^k), (s_i^k))$. Let $i \in C$ and let $\eta \in \mathcal{D}(\mathbb{R}^n)$ such that η has L^2 -norm 1. Define for $\rho_i^k, k \in \mathbb{N}, i \in C$, and $u = (a, b) \in \mathbb{R}^2$ the Schwartz function

$$\eta(i,k,u)(s) := \eta(s_k p^i\left(\frac{s}{\rho_i^k}\right) + s_k b)e^{2\pi i a \cdot s}, s \in \mathbb{R}.$$

By Example 3.2, for N = 3 we have

$$\eta(1,k,u) = \eta(\pm s_k | \lambda_k | s + s_k(1+b)) e^{2\pi i a \cdot s}.$$

Let $P_{i,k,u}$ be the operator of rank one defined by

$$P_{i,k,u}\xi := \langle \xi, \eta(i,k,u) \rangle \eta(i,k,u), \xi \in L^2(\mathbb{R}).$$

Definition 3.10. For an element $\varphi \in \mathcal{S}(\mathbb{R}^2)$ let

$$\nu(\varphi)(i,k) \quad := s_k \int_{\mathbb{R}^2} \hat{\varphi}(a,-b) P_{i,k,u} dadb, k \in \mathbb{N}, i \in C.$$

Then for $\varphi \in \mathcal{S}(\mathbb{R}^2), \xi \in L^2(\mathbb{R}), s \in \mathbb{R}$, we have that

$$\begin{aligned}
\nu(\varphi)(i,k)(\xi)(s) &:= s_k \int_{\mathbb{R}^2} \hat{\varphi}(a,-b)(P_{i,k,u}\xi)(s) du \\
&= s_k \int_{\mathbb{R}^2} \hat{\varphi}(a,-b) \left(\int_{\mathbb{R}} \xi(t) \overline{\eta(s_k p^i\left(\frac{t}{\rho_i^k}\right) + s_k b)} e^{-2\pi i a \cdot (t-s)} dt \right) \\
&= \eta(s_k p^i\left(\frac{s}{\rho_i^k}\right) + s_k b) db da \\
&= s_k \int_{\mathbb{R}} \int_{\mathbb{R}} \hat{\varphi}^2(s-t,-b)\xi(t) \overline{\eta(s_k p^i\left(\frac{t}{\rho_i^k}\right) + s_k b)} \eta(s_k p^i\left(\frac{s}{\rho_i^k}\right) + s_k b) dt db \\
\end{aligned}$$

$$(3.18) \qquad = \int_{\mathbb{R}} \int_{\mathbb{R}} \hat{\varphi}^2(s-t,-\frac{b}{s_k} + p^i\left(\frac{t}{\rho_i^k}\right)) \overline{\eta(b)} \\
&= \eta(s_k \left(p^i\left(\frac{s}{\rho_i^k}\right) - p^i\left(\frac{t}{\rho_i^k}\right)\right) + b)\xi(t) dt db.
\end{aligned}$$

Since η has L_2 -norm 1, using (3.17) and (3.18) we get

$$(U(t_{i}^{k}) \circ \pi_{\ell_{k}}(f) \circ U(-t_{i}^{k}) \circ M_{s_{k}} - \nu(F(f)(0))(i,k) \circ M_{s_{k}})(\xi)(s) = \int_{-s_{k}}^{s_{k}} (\int_{\mathbb{R}} \hat{f}^{2}(s-t,(t+t_{i}^{k}) \cdot \ell_{k})) - \hat{f}^{2}(s-t,-\frac{b}{s_{k}} + p^{i}\left(\frac{t}{\rho_{i}^{k}}\right), 0\dots)$$

$$(3.19) \qquad \overline{\eta(b)}\eta(s_{k}\left(p^{i}(\frac{s}{\rho_{i}^{k}}) - p^{i}\left(\frac{t}{\rho_{i}^{k}}\right)\right) + b)db)\xi(t)dt + \int_{-s_{k}}^{s_{k}} (\int_{\mathbb{R}} \hat{f}^{2}(s-t,(t+t_{i}^{k}) \cdot \ell_{k}))\overline{\eta(b)}$$

$$(\eta(b) - \eta(s_{k}\left(p^{i}\left(\frac{s}{\rho_{i}^{k}}\right) - p^{i}\left(\frac{t}{\rho_{i}^{k}}\right)\right) + b))db)\xi(t)dt.$$

Proposition 3.11. Let $\varphi \in C^*(\mathbb{R}^2)$, $i \in C$ and $k \in \mathbb{N}$. Then

- 1. the operator $\nu(\varphi)(i,k)$ is compact and $\|\nu(\varphi)(i,k)\|_{\text{op}} \leq \|\varphi\|_{C^*(\mathbb{R}^2)}$;
- 2. we have that $\nu(\varphi)(i,k)^* = \nu(\varphi^*)(i,k);$
- 3. furthermore

$$\lim_{k\to\infty}\|\nu(\varphi)(i,k)\circ(\mathbb{I}-M_{s_k\rho_i^k})\|_{\mathrm{op}}=0$$

 $and\ hence$

$$\lim_{k\to\infty} \|(\mathbb{I}-M_{s_k\rho_i^k})\circ\nu(\varphi)(i,k)\circ M_{s_k\rho_i^k}\|_{\mathrm{op}}=0.$$

Proof. 1.) It suffices to prove this for $\varphi \in \mathcal{D}(\mathbb{R}^2)$. We have that

$$\begin{split} \|\nu(\varphi)(i,k)\xi\|_{2}^{2} &= \int_{\mathbb{R}} |\int_{\mathbb{R}} \int_{\mathbb{R}} \hat{\varphi}^{2}(s-t, -\frac{b}{s_{k}})\xi(t)\overline{\eta(s_{k}p^{i}(\frac{t}{\rho_{i}^{k}})+b)}dt\eta(s_{k}p^{i}(\frac{s}{\rho_{i}^{k}})+b)db|^{2}ds \\ &= \int_{\mathbb{R}} |\int_{\mathbb{R}} (\hat{\varphi}^{2}(-, -\frac{b}{s_{k}})*(\xi\overline{\eta_{k,b}}))(s)\eta(s_{k}p^{i}(\frac{s}{\rho_{i}^{k}})+b)db|^{2}ds \\ &\quad (\text{where } \eta_{k,b}(t) := \eta(s_{k}p^{i}(\frac{t}{\rho_{i}^{k}})+b), t \in \mathbb{R}) \\ &\leq \int_{\mathbb{R}^{2}} |(\hat{\varphi}^{2}(-, -\frac{b}{s_{k}})*(\xi\overline{\eta_{k,b}}))(s)|^{2}dbds \\ &\leq \|\varphi\|_{C^{*}(\mathbb{R}^{2})}^{2} \int_{\mathbb{R}} \|\xi\eta_{k,b}\|_{2}^{2}db \\ &= \|\varphi\|_{C^{*}(\mathbb{R}^{2})}^{2} \int_{\mathbb{R}^{2}} |\xi(t)|^{2}|\eta(s_{k}p^{i}(\frac{t}{\rho_{i}^{k}})+b)|^{2}dbdt \\ &= \|\varphi\|_{C^{*}(\mathbb{R}^{2})}^{2} \|\xi\|_{2}^{2}. \end{split}$$

Furthermore, since $\nu(\varphi)(i, k)$ is an integral of rank one operators, $\nu(\varphi)(i, k)$ must be compact. Hence for every $\varphi \in C^*(\mathbb{R}^2)$, $\nu(\varphi)(i, k)$ is a compact operator bounded by $\|\varphi\|_{C^*(\mathbb{R}^2)}$. 2.) Let $\varphi \in \mathcal{S}(\mathbb{R}^2)$. Then $\overline{\hat{\varphi}} = \hat{\varphi^*}$ and so

$$\nu(\varphi)(i,k)^* = (s_k \int_{\mathbb{R}^2} \hat{\varphi}(u) P_{i,k,u} du)^* = s_k \int_{\mathbb{R}^2} \overline{\hat{\varphi}(u)} P_{i,k,u} du$$
$$= s_k \int_{\mathbb{R}^2} \hat{\varphi}^*(u) P_{i,k,u} du = \nu(\varphi^*)(i,k).$$

3.) Take now $\varphi \in \mathcal{S}(\mathbb{R}^2)$, such that $\hat{\varphi}$ has a compact support. We denote by $[-s_k \rho_i^k, s_k \rho_i^k]^c$ the set $\mathbb{R} \setminus [-s_k \rho_i^k, s_k \rho_i^k]$. By (3.18) for any $\xi \in L^2(\mathbb{R}), s \in \mathbb{R}$ we have

$$\begin{split} \nu(\varphi)(i,k) &\circ (\mathbb{I} - M_{s_k \rho_i^k})(\xi)(s) \\ &= \int_{[-s_k \rho_i^k, s_k \rho_i^k]^c} \int_{\mathbb{R}} \hat{\varphi}^2(s-t, -\frac{b}{s_k} + p^i(\frac{t}{\rho_i^k}))\overline{\eta(b)}\eta(s_k(p^i(\frac{s}{\rho_i^k}) - p^i(\frac{t}{\rho_i^k})) + b)db\xi(t)dt = 0 \end{split}$$

since for k large enough $\hat{\varphi}^2(s-t, -\frac{b}{s_k} + p^i(\frac{t}{\rho_i^k})) = 0$ for any $t \in [-s_k \rho_i^k, s_k \rho_i^k]^c$, $b \in \operatorname{supp}(\eta)$, $s \in \mathbb{R}$. Hence $\nu(\varphi(i,k)) \circ (\mathbb{I} - M_{s_k \rho_i^k}) = 0$ for k large enough. Since the mapping ν is continuous, it follows that $\lim_{k \to \infty} \|\nu(\varphi)(i,k)(\mathbb{I} - M_{s_k \rho_i^k})\|_{\operatorname{op}} = 0$ for all $\varphi \in C^*(\mathbb{R}^2)$ and every $i \in C$. Hence also

$$\begin{split} &\lim_{k\to\infty} \|(\mathbb{I}-M_{s_k\rho_i^k})\circ\nu(\varphi)(i,k)\circ M_{s_k\rho_i^k}\|_{\mathrm{op}} \\ &= \lim_{k\to\infty} \|(M_{s_k\rho_i^k}\circ\nu(\varphi^*)(i,k)\circ(\mathbb{I}-M_{s_k\rho_i^k})\|_{\mathrm{op}} \\ &\leq \lim_{k\to\infty} \|\nu(\varphi^*)(i,k)\circ(\mathbb{I}-M_{s_k\rho_i^k})\|_{\mathrm{op}} = 0. \end{split}$$

Definition 3.12. Let Let $A = (A(\ell) \in \mathcal{K}(L^2(\mathbb{R})), \ell \in S_N^{gen}, A(0) \in C^*(\mathbb{R}^2))$ be a field of bounded operators. We say that A satisfies the *generic condition* if for every properly converging sequence with perfect data $(\pi_{\ell_k})_k \subset \hat{G}_N$ and for every limit point $\pi_{\ell^i}, i \in D$, and for every adapted real sequence $(s_k)_k$

(3.20)
$$\lim_{k \to \infty} \|U(t_i^k) \circ A(\ell_k) \circ U(-t_i^k) \circ M_{s_k} - A(\ell^i) \circ M_{s_k}\|_{\text{op}} = 0.$$

A satisfies the character condition if for every properly converging sequence with perfect data $(\pi_{\ell_k})_k, \ \ell_k \in S_N^{gen}$ and for every limit point $\pi_{\ell^i}, i \in C$, and for every adapted real sequence $(s_k)_k$

$$\lim_{k\to\infty} \|U(t_i^k) \circ A(\ell_k) \circ U(-t_i^k) \circ M_{s_k\rho_i^k} - \nu(A(0))(i,k) \circ M_{s_k\rho_i^k}\|_{\mathrm{op}} = 0.$$

A satisfies the *infinity* condition, if for any properly converging sequence $(\pi_{\ell_k}), \ell_k \in S_N^{gen}$, with perfect data we have that

$$\lim_{k \to \infty} \|A(\ell_k) \circ M_{T_k}\|_{\text{op}} = 0,$$

where $T_k = \mathbb{R} \setminus \left(\bigcup_{i=1}^m [t_i^k - s_k \rho_i^k, t_i^k + s_k \rho_i^k] \right)$, and that for every sequence $(\ell_k)_k \subset S_N^{gen}$, for which the sequence of orbits $G_N \cdot \ell_k$ goes to infinity we also have

$$\lim_{k \to \infty} A(\ell_k) = 0$$

We can now define the operator field C^* -algebra D_N^* , which will be the image of the Fourier transform of $C^*(G_N)$.

Definition 3.13. Let D_N^* be the space of all bounded operator fields $A = (A(\ell)) \in \mathcal{K}(L^2(\mathbb{R})), \ell \in S_N^{gen}, A(0) \in C^*(\mathbb{R}^2)$, such that A and the adjoint field A^* satisfy the generic, the character and the infinity conditions. Let for $A \in D_N^*$

$$|A||_{\infty} := \sup\{||A(\ell)||_{\mathrm{op}}, ||A(0)||_{C^*(\mathbb{R}^2)} : \ell \in S_N^{gen}\}.$$

It is clear that D_N^* is a Banach space for the norm $\|\cdot\|_{\infty}$, since the generic, the character and the infinity conditions are stable for the sum, for scalar multiplication and limits of sequences of operator fields.

Theorem 3.14. Let $a \in C^*(G_N)$ and let A be the operator field defined by A = F(a) as in Definition 3.6. Then A satisfies the generic, the character and the infinity conditions.

Proof. For the infinity condition, it suffices to remark that for any $f \in L^1_c(G_N)$, and k large enough, we have that $\hat{f}^2(s - t, t \cdot \ell_k) = 0$ for every $s \in \mathbb{R}$, $t \in T_k$ and so $\pi_{\ell_k}(f) \circ M_{T_k} = 0$. If $G_N \cdot \ell_k$ goes to infinity in the orbit space, then $\mathbb{R} \cdot \ell_k$ is outside any given compact subset $K \subset \mathfrak{g}_N^*$ and so $\hat{f}^2(s - t, t \cdot \ell_k) = 0, s, t \in \mathbb{R}$ and hence $\pi_{\ell_k}(f) = 0$ for k large enough. Using the density argument, we see that the infinity condition is satisfied for every element in the Fourier transform of $C^*(G_N)$.

For the generic condition, let $(\ell_k)_k$ be a properly converging sequence in S_N with perfect data. Take $i \in D$. Then for an adapted sequence $(s_k)_k$, $f \in L^1_c(G_N)$ and $\xi \in L^2(\mathbb{R}), s \in \mathbb{R}$, we have that

(3.21)
$$(U(t_i^k) \circ \pi_{\ell_k}(f) \circ U(-t_i^k) \circ M_{s_k} - \pi_{\ell^i}(f) \circ M_{s_k})\xi(s)$$
$$= \int_{-s_k}^{s_k} \left(\hat{f}^2(s-t, (t+t_i^k) \cdot \ell_k)) - \hat{f}^2(s-t, t \cdot \ell^i)) \right) \xi(t) dt.$$

Let p_k and q_i be the polynomials corresponding to ℓ_k and ℓ^i respectively, i.e., $p_k(t) = \hat{\ell}_k(t)$ and $q_i(t) = \hat{\ell}^i(t)$. Since $\lim_{k \to \infty} \frac{s_k}{|t_i^k - a_j^k|} \to 0$, $j \in J(i)$, there exists R > 0 such that $(s - t, (t + t_i^k) \cdot \ell_k) = (s - t, p_k(t + t_i^k), -p'_k(t + t_i^k), \ldots)$ is out of the support of \hat{f}^2 if $t \in [-s_k, s_k]$ and |t| > R. In fact if $t \in [-s_k, s_k]$ we have

$$\begin{aligned} |p_k(t+t_i^k)| &= |c_k \prod_{j=1}^d (t+t_i^k - a_j^k)| = |c_k \prod_{j \in J(i)} |t_i^k - a_j^k| \prod_{j \in J(i)} |\frac{t}{t_i^k - a_j^k} + 1| \prod_{j \notin J(i)} |t+t_i^k - a_j^k| \\ &\geq |b_i| \prod_{j \in J(i)} |1 - \frac{s_k}{|t_i^k - a_j^k|} |\prod_{j \notin J(i)} |t+t_i^k - a_j^k|, \end{aligned}$$

where b_i is the leading coefficient of the polynomial q_i , giving the statement. Thus by (3.21)

$$(U(t_i^k) \circ \pi_{\ell_k}(f) \circ U(-t_i^k) \circ M_{s_k} - \pi_{\ell^i}(f) \circ M_{s_k})\xi(s)$$

= $\int_{-R}^{R} \left(\hat{f}^2(s-t, (t+t_i^k) \cdot \ell_k)) - \hat{f}^2(s-t, t \cdot \ell^i)) \right) \xi(t) dt$

for k large enough. It is clear now that $U(t_i^k) \circ \pi_{\ell_k}(f) \circ U(-t_i^k) \circ M_{s_k} - \pi_{\ell^i}(f) \circ M_{s_k}$ converges to 0 with respect to the Hilbert-Schmidt norm and hence in the operator norm. Let $a \in C^*(G_N)$. Then for any $\varepsilon > 0$ there exists $f \in L^1_c(G_N)$ such that $||\pi(f) - \pi(a)||_{op} \leq$ $||f - a||_{C^*(G_N)} < \varepsilon$ for any representation π of $C^*(G_N)$. Thus for $A(\ell) = \pi_\ell(a), \ \ell \in S_N^{gen}$ we have

$$\begin{aligned} \|U(t_i^k) \circ A(\ell_k) \circ U(-t_i^k) \circ M_{s_k} - A(\ell^i) \circ M_{s_k}\|_{\rm op} &= \|U(t_i^k) \circ (A(\ell_k) - \pi_{\ell_k}(f)) \circ U(-t_i^k)\|_{\rm op} \\ &+ \|U(t_i^k) \circ \pi_{\ell_k}(f) \circ U(-t_i^k) \circ M_{s_k} - \pi_{\ell^i}(f) \circ M_{s_k}\|_{\rm op} + \|(\pi_{\ell^i}(f) - A(\ell^i))\|_{\rm op} \to 0, \end{aligned}$$

and hence A satisfies the generic condition.

Choose now $i \in C$. By (3.19), for $k \in \mathbb{N}, s \in \mathbb{R}, \xi \in L^2(\mathbb{R}), f \in L^1_c(G_N)$

$$\begin{split} &U(t_i^k) \circ \pi_{\ell_k}(f) \circ U(-t_i^k) \circ M_{s_k \rho_i^k} - \nu(F(f(0)))(i,k) \circ M_{s_k \rho_i^k}(\xi)(s) \\ &= \int_{-s_k \rho_i^k}^{s_k \rho_i^k} (\int_{\mathbb{R}} \hat{f}^2(s-t,(t+t_i^k) \cdot \ell_k)) - \hat{f}^2(s-t,-\frac{b}{s_k} + p^i(\frac{t}{\rho_i^k}),0\ldots,0) \\ &\overline{\eta(b)}\eta(s_k(p^i(\frac{s}{\rho_i^k}) - p^i(\frac{t}{\rho_i^k})) + b)db)\xi(t)dt + \\ &\int_{-s_k}^{s_k} (\int_{\mathbb{R}} \hat{f}^2(s-t,(t+t_i^k) \cdot \ell_k))\overline{\eta(b)}(\eta(b) - \eta(s_k(p^i(\frac{s}{\rho_i^k}) - p^i(\frac{t}{\rho_i^k})) + b))db)\xi(t)dt. \end{split}$$

In order to show that

(3.22)
$$\|U(t_i^k) \circ \pi_{\ell_k}(f) \circ U(-t_i^k) \circ M_{s_k \rho_i^k} - \nu(F(f(0)))(i,k) \circ M_{s_k \rho_i^k}\| \to 0, \ k \to \infty,$$

 $\operatorname{consider}$

$$q(k,i)(s,b) = \int_{-s_k \rho_i^k}^{s_k \rho_i^k} (\hat{f}^2(s-t,(t+t_i^k) \cdot \ell_k)) - \hat{f}^2(s-t,-\frac{b}{s_k} + p^i(\frac{t}{\rho_i^k}),0\dots,0))$$

$$\eta(s_k(p^i(\frac{s}{\rho_i^k}) - p^i(\frac{t}{\rho_i^k})) + b))\xi(t)dt = u(k,i) + v(k,i),$$

where

$$\begin{split} u(k,i)(s,b) &= \int_{-s_k \rho_i^k}^{s_k \rho_i^k} (\hat{f}^2(s-t, p_k(t+t_i^k), -p'_k(t+t_i^k), \ldots) - \hat{f}^2(s-t, p_k(t+t_i^k), 0, \ldots)) \\ &\qquad \eta(s_k(p^i(\frac{s}{\rho_i^k}) - p^i(\frac{t}{\rho_i^k})) + b))\xi(t)dt, \\ v(k,i)(s,b) &= \int_{-s_k \rho_i^k}^{s_k \rho_i^k} (\hat{f}^2(s-t, p_k(t+t_i^k), 0, \ldots) - \hat{f}^2(s-t, -\frac{b}{s_k} + p^i(\frac{t}{\rho_i^k}), 0 \ldots)) \\ &\qquad \eta(s_k(p^i(\frac{s}{\rho_i^k}) - p^i(\frac{t}{\rho_i^k})) + b))\xi(t)dt. \end{split}$$

and let

$$w(k,i)(s) = \int_{\mathbb{R}} \int_{-s_k}^{s_k} (\int_{\mathbb{R}} \hat{f}^2(s-t,(t+t_i^k)\cdot\ell_k))\overline{\eta(b)}(\eta(b) - \eta(s_k(p^i(\frac{s}{\rho_i^k}) - p^i(\frac{t}{\rho_i^k})) + b))db)\xi(t)dt.$$

Our aim is to prove that for $p(s,b) = \mathbf{1}_{\mathbb{R} \times \mathrm{supp}(\eta)}(s,b)$

(3.23)
$$\|u(k,i)p\|_{2} \le \omega_{k} \|\xi\|_{2}, \|v(k,i)p\|_{2} \le \delta_{k} \|\xi\|_{2} \text{ and } \|w(k,i)\|_{2} \le r_{k} \|\xi\|_{2}$$

with $\omega_k, \delta_k, r_k \to 0$ as $k \to \infty$. This will imply

$$\int_{\mathbb{R}} |\int_{\mathbb{R}} (q(k,i)(s,b))\overline{\eta(b)}db|^2 ds \le ||q(k,i)||_2^2 ||\eta||_2 \le (\omega_k + \delta_k)^2 ||\xi||_2^2$$

which together with $||w(k,i)||_2 \le r_k ||\xi||_2$ will give (3.22).

To see this we note first that since $\frac{s_k \rho_i^k}{|a_k^j - t_i^k|} \to 0$ if $j \notin L(i)$, we have that for $|t| \leq s_k \rho_i^k$

$$\begin{aligned} |p_k(t+t_i^k)| &= |c_k \prod_{j=1}^d (t+t_i^k - a_j^k)| = |c_k \prod_j |t_i^k - a_j^k| \prod_{j \notin L(i)} |\frac{t}{t_i^k - a_j^k} + 1| \prod_{j \in L(i)} |\frac{t}{t_i^k - a_j^k} + 1| \\ &\geq \sigma \prod_{j \notin L(i)} |1 - \frac{s_k \rho_i^k}{|t_i^k - a_j^k|}| \prod_{j \in L(i)} |\frac{|t|}{\rho_i^k} \frac{\rho_i^k}{|t_i^k - a_j^k|} - 1| \end{aligned}$$

for some $\sigma > 0$. Thus for large k there exists R > 0 such that $\hat{f}^2(s - t, p_k(t + t_i^k), -p'_k(t + t_i^k), \dots) = 0$ and $\hat{f}^2(s - t, p_k(t + t_i^k), 0, \dots) = 0$ if $|t| < s_k \rho_i^k$ and $|t| > R \rho_i^k$. Hence the integration over the interval $[-s_k, s_k]$ can be replaced by the integration over $[-R \rho_i^k, R \rho_i^k]$ in the expression for u(k, i), v(k, i)p and w(k, i). Since $f \in L_c^1(G_N)$ we have that

$$|\hat{f}^{2}(s-t,p_{k}(t+t_{i}^{k}),0,\ldots)-\hat{f}^{2}(s-t,p^{i}(\frac{t}{\rho_{i}^{k}})-\frac{b}{s_{k}},0,\ldots)| \leq C|p_{k}(t+t_{i}^{k})-p^{i}(\frac{t}{\rho_{i}^{k}})+\frac{b}{s_{k}}|\frac{1}{1+|t-s|^{m}}|p_{i}^{k}|^{2}$$

for some constant C>0 and $m\in\mathbb{N},\,m\geq 2$. This gives

$$\begin{split} \|v(k,i)p\|_{2}^{2} &= C \int_{\mathbb{R}^{2}} \left| \int_{-R\rho_{i}^{k}}^{R\rho_{i}^{k}} \eta(s_{k}(p^{i}(\frac{s}{\rho_{i}^{k}}) - p^{i}(\frac{t}{\rho_{i}^{k}}) + b) \\ &(p_{k}(t+t_{i}^{k}) - p^{i}(\frac{t}{\rho_{i}^{k}}) + \frac{b}{s_{k}}) \frac{\xi(t)}{1 + |t-s|^{m}} dt \right|^{2} dsdb \\ &\leq \frac{3C}{s_{k}^{2}} \int_{\mathbb{R}^{2}} \int_{-R\rho_{i}^{k}}^{R\rho_{i}^{k}} \left| \eta(s_{k}(p^{i}(\frac{s}{\rho_{i}^{k}}) - p^{i}(\frac{t}{\rho_{i}^{k}}) + b) \\ &(b+s_{k}(p^{i}(\frac{s}{\rho_{i}^{k}}) - p^{i}(\frac{t}{\rho_{i}^{k}})) \frac{\xi(t)}{1 + |t-s|^{m}} dt \right|^{2} dsdb \\ &+ 3C \int_{\mathbb{R}^{2}} \int_{-R\rho_{i}^{k}}^{R\rho_{i}^{k}} \left| \eta(s_{k}(p^{i}(\frac{s}{\rho_{i}^{k}}) - p^{i}(\frac{t}{\rho_{i}^{k}})) + b)(p_{k}(t+t_{i}^{k}) - p^{i}(\frac{t}{\rho_{i}^{k}})) \frac{\xi(t)}{1 + |t-s|^{m}} dt \right|^{2} dsdb \\ &+ 3C \int_{\mathbb{R}^{2}} \int_{-R\rho_{i}^{k}}^{R\rho_{i}^{k}} \left| \xi(t)\eta(s_{k}(p^{i}(\frac{s}{\rho_{i}^{k}}) - p^{i}(\frac{t}{\rho_{i}^{k}})) + b)(p^{i}(\frac{t}{\rho_{i}^{k}}) - p^{i}(\frac{s}{\rho_{i}^{k}})) \frac{1}{1 + |t-s|^{m}} dt \right|^{2} dsdb \\ &+ 3C \int_{\mathbb{R}^{2}} \int_{-R\rho_{i}^{k}}^{R\rho_{i}^{k}} \left| \xi(t)\eta(s_{k}(p^{i}(\frac{s}{\rho_{i}^{k}}) - p^{i}(\frac{t}{\rho_{i}^{k}})) + b)(p^{i}(\frac{t}{\rho_{i}^{k}}) - p^{i}(\frac{s}{\rho_{i}^{k}})) \frac{1}{1 + |t-s|^{m}} dt \right|^{2} dsdb \\ &\leq \frac{C_{1}}{s_{k}^{2}} \int_{\mathbb{R}^{2}} \int_{-R\rho_{i}^{k}}^{R\rho_{i}^{k}} \left| \xi(t)\eta(s_{k}(p^{i}(\frac{s}{\rho_{i}^{k}}) - p^{i}(\frac{t}{\rho_{i}^{k}})) + b) \right|^{2} \frac{1}{1 + |t-s|^{m}} dt dsdb \\ &(\text{where } \tilde{\eta}(b) = b\eta(b)) \\ &+ C_{1} \int_{\mathbb{R}^{2}} \int_{-R\rho_{i}^{k}}^{R\rho_{i}^{k}} \left| \xi(t)\eta(s_{k}(p^{i}(\frac{s}{\rho_{i}^{k}}) - p^{i}(\frac{t}{\rho_{i}^{k}})) + b)(p_{k}(t+t_{i}^{k}) - p^{i}(\frac{t}{\rho_{i}^{k}})) \right|^{2} \\ &\frac{1}{1 + |t-s|^{m}} dt dsdb \\ &+ \int_{\mathbb{R}^{2}} \int_{-R\rho_{i}^{k}}^{R\rho_{i}^{k}} \left| \xi(t)\eta(s_{k}(p^{i}(\frac{s}{\rho_{i}^{k}}) - p^{i}(\frac{t}{\rho_{i}^{k}})) + b)(p^{i}(\frac{t}{\rho_{i}^{k}}) - p^{i}(\frac{s}{\rho_{i}^{k}})) \right|^{2} \\ &\frac{1}{1 + |t-s|^{m}} dt dsdb \\ \end{aligned}$$

$$\leq \frac{C_2}{s_k^2} \|\tilde{\eta}\|_2^2 \|\xi\|_2^2 + C_2 \|\eta\|_2^2 \int_{-R}^{R} |\xi(t\rho_i^k)|^2 |p_k(t\rho_i^k + t_i^k) - p^i(t)|^2 \rho_i^k dt \\ + C_3 \|\eta\|_2^2 \int_{\mathbb{R}} \int_{-R\rho_i^k}^{R\rho_i^k} |\xi(t)|^2 \left| p^i(\frac{t}{\rho_i^k}) - p^i(\frac{s}{\rho_i^k}) \right|^2 \frac{1}{1 + |t - s|^m} dt ds$$

As $p_k(t\rho_i^k + t_i^k) - p^i(t)$ converges to 0 uniformly on each compact,

$$\int_{-R}^{R} |\xi(t\rho_i^k)|^2 |p_k(t\rho_i^k + t_i^k) - p^i(t)|^2 \rho_i^k dt \le r_k ||\xi||_2^2$$

with $r_k \to 0$ as $k \to \infty$. Moreover, $p^i(\frac{t}{\rho_i^k}) - p^i(\frac{s}{\rho_i^k}) = \frac{t-s}{\rho_i^k} \sum_l \alpha_l(\frac{t}{\rho_i^k}) \beta_l(\frac{t-s}{\rho_i^k})$ for some finite number of polynomials α_l , β_l which do not depend on k. Thus

$$\begin{split} &\int_{\mathbb{R}} \int_{-R\rho_{i}^{k}}^{R\rho_{i}^{k}} |\xi(t)|^{2} \left| p^{i}(\frac{t}{\rho_{i}^{k}}) - p^{i}(\frac{s}{\rho_{i}^{k}}) \right|^{2} \frac{1}{1 + |t - s|^{m}} dt ds \\ &= \int_{\mathbb{R}} \int_{-R\rho_{i}^{k}}^{R\rho_{i}^{k}} |\xi(t)|^{2} \left| \frac{t - s}{\rho_{i}^{k}} \sum_{l} \alpha_{l}(\frac{t}{\rho_{i}^{k}}) \beta_{l}(\frac{t - s}{\rho_{i}^{k}}) \right|^{2} \frac{1}{1 + |t - s|^{m}} dt ds \\ &\leq \frac{C_{4}}{(\rho_{i}^{k})^{2}} \int_{-R\rho_{i}^{k}}^{R\rho_{i}^{k}} |\xi(t)|^{2} dt \leq \frac{C_{4}}{(\rho_{i}^{k})^{2}} \|\xi\|_{2}^{2} \end{split}$$

for a properly chosen m. It follows now that

$$||v(k,i)p||_2 \le \delta_k \|\xi\|_2$$

for some $\delta_k \to 0$ as $k \to \infty$. For w(k, i) we have

$$\begin{split} \|w(k,i)\|^2 &= \int_{\mathbb{R}} \left| \int_{-R\rho_i^k}^{R\rho_i^k} \int_R \hat{f}^2(s-t,(t+t_i^k) \cdot \ell_k) \overline{\eta(b)} \right| \\ &\quad (\eta(b) - \eta(s_k(p^i(\frac{s}{\rho_i^k}) - p^i(\frac{t}{\rho_i^k})) + b))\xi(t) db dt \right|^2 ds \\ &\leq C \|\eta\|_2^2 \int_{\mathbb{R}} \left| \int_{-R\rho_i^k}^{R\rho_i^k} |s_k(p^i(\frac{s}{\rho_i^k}) - p^i(\frac{t}{\rho_i^k}))| \frac{1}{1 + |t-s|^m} |\xi(t)| dt \right|^2 ds \\ &\leq C \|\eta\|_2^2 \int_R \int_{-R\rho_i^k}^{R\rho_i^k} |s_k(p^i(\frac{s}{\rho_i^k}) - p^i(\frac{t}{\rho_i^k}))|^2 \frac{1}{1 + |t-s|^m} |\xi(t)|^2 dt ds \end{split}$$

for some constant C. Then using the previous arguments we get

$$\|w(k,i)\|^2 \le \frac{Ds_k^2}{(\rho_i^k)^2} \|\xi\|_2^2 \|\eta\|_2^2$$

As $\frac{s_k}{\rho_i^k} \to 0$ we get the desired inequality for w(k,i).

To prove the inequality for u(k, i) we have as in the previous case that

$$|\hat{f}^{2}(s-t, p_{k}(t+t_{i}^{k}), -p_{k}'(t+t_{i}^{k}), \ldots) - \hat{f}^{2}(s-t, p_{k}(t+t_{i}^{k}), 0, \ldots)|$$

$$\leq C(\sum_{n=1}^{N-2} |p_{k}^{(n)}(t+t_{i}^{k})|^{2})^{1/2} \frac{1}{1+|t-s|^{m}}$$

for some constant C > 0 and $m \in \mathbb{N}$, $m \ge 2$; here $p_k^{(n)}$ denotes the *n*-th derivative of p_k . For n = 1 we have

$$|p_k'(t+t_i^k)| = |c_k \prod_j (t_i^k - a_k^j)| \sum_l \frac{1}{(t_i^k - a_k^l)} \prod_{j \neq l} (\frac{t}{t_i^k - a_k^j} + 1)| \le \sigma \frac{1}{\rho_i^k} \left(\frac{|t|}{\rho_i^k} + 1\right)^{d-1}$$

for some constant $\sigma > 0$. Similar inequalities hold for higher order derivatives $p_k^{(n)}(t + t_i^k)$ which show that

$$\begin{split} \|u(k,i)\|_{2}^{2} &= \\ &= \int_{\mathbb{R}^{2}} |\int_{-R\rho_{i}^{k}}^{R\rho_{i}^{k}} (\hat{f}^{2}(s-t,p_{k}(t+t_{i}^{k}),-p_{k}'(t+t_{i}^{k}),\ldots) - \hat{f}^{2}(s-t,p_{k}(t+t_{i}^{k}),0,\ldots)) \\ &= \int_{\mathbb{R}^{2}} |\int_{-R\rho_{i}^{k}}^{R\rho_{i}^{k}} (\hat{f}^{2}(s-t,p_{k}(t+t_{i}^{k})) + b))\xi(t)dt|^{2}dbds \\ &\leq \int_{\mathbb{R}^{2}} |\int_{-R\rho_{i}^{k}}^{R\rho_{i}^{k}} C(\sum_{n=1}^{N-2} |p_{k}^{(n)}(t+t_{i}^{k})|^{2})^{1/2} \frac{1}{1+|t-s|^{m}} \eta(s_{k}(p^{i}(\frac{s}{\rho_{i}^{k}}) - p^{i}(\frac{t}{\rho_{i}^{k}})) + b))\xi(t)dt|^{2}dbds \\ &\leq \frac{1}{\rho_{i}^{k}} \int_{\mathbb{R}^{2}} |\int_{-R\rho_{i}^{k}}^{R\rho_{i}^{k}} |p\left(\frac{|t|}{\rho_{i}^{k}}\right)| \frac{1}{1+|t-s|^{m}} \eta(s_{k}(p^{i}(\frac{s}{\rho_{i}^{k}}) - p^{i}(\frac{t}{\rho_{i}^{k}})) + b))\xi(t)dt|^{2}dbds \\ &\leq \frac{C'}{\rho_{i}^{k}} \|\eta\|_{2}^{2} \|\xi\|_{2}^{2} \end{split}$$

for a polynomial p. Thus we get the required inequality for u(k, i) and hence

$$\lim_{k \to \infty} \| U(t_i^k) \circ \pi_{\ell_k}(f) \circ U(-t_i^k) \circ M_{s_k \rho_i^k} - \nu(F(f(0)))(i,k) \circ M_{s_k \rho_i^k} \|_{\text{op}} = 0.$$

To show now that the character condition holds for the fields $A \in \widehat{C^*(G_N)}$ we use again the density of $L^1_c(G_N)$ in $C^*(G_N)$.

Corollary 3.15. Let $(\pi_{\ell_k})_k$ be a properly converging sequence in \widehat{G}_N with perfect data $((t_i^k)_k, (\rho_i^k), (s_i^k))$. Let $i \in C$. Then for every $\varphi, \psi \in C^*(\mathbb{R}^2)$ we have that

$$\lim_{k \to \infty} \|\nu(\varphi)(i,k) \circ \nu(\psi)(i,k) - \nu(\varphi\psi)(i,k)\|_{\text{op}} = 0.$$

Proof. Indeed, if we take first φ, ψ in $\mathcal{S}(\mathbb{R}^2)$, then we can choose $f, g \in \mathcal{S}(G_N)$, such that

 $\rho(f) = \varphi, \rho(g) = \psi$ and so, by Proposition 3.11 and Theorem 3.14,

$$\begin{split} \|\nu(i,k)(\varphi) \circ \nu(i,k)(\psi) - \nu(i,k)(\varphi\psi)\|_{\text{op}} \\ &\leq \|(\nu(i,k)(\varphi) \circ \nu(i,k)(\psi) - \nu(i,k)(\varphi\psi)) \circ M_{s_k\rho_i^k}\|_{\text{op}} \\ &+ \|(\nu(i,k)(\varphi) \circ \nu(i,k)(\psi) - \nu(i,k)(\varphi\psi)) \circ (\mathbb{I} - M_{s_k\rho_i^k})\|_{\text{op}} \\ &\leq \|(\nu(i,k)(\varphi) \circ \nu(i,k)(\psi) \\ -(U(t_i^k) \circ \pi_{\ell_k}(f) \circ U(-t_i^k)) \circ (U(t_i^k) \circ \pi_{\ell_k}(g) \circ U(-t_i^k))) \circ M_{s_k\rho_i^k}\|_{\text{op}} \\ &+ \|(U(t_i^k) \circ \pi_{\ell_k}(f * g) \circ U(-t_i^k) - \nu(i,k)(\varphi\psi)) \circ M_{s_k\rho_i^k}\|_{\text{op}} \\ &+ \|(\nu(i,k)(\varphi) \circ \nu(i,k)(\psi) - \nu(i,k)(\varphi\psi)) \circ (\mathbb{I} - M_{s_k\rho_i^k})\|_{\text{op}} \\ &\leq \|(\nu(i,k)(\varphi) - (U(t_i^k) \circ \pi_{\ell_k}(f) \circ U(-t_i^k)) \circ (\mathbb{I} - M_{s_k\rho_i^k}) \circ \nu(i,k)(\psi) \circ M_{s_k\rho_i^k}\|_{\text{op}} \\ &+ \|(\nu(i,k)(\varphi) - (U(t_i^k) \circ \pi_{\ell_k}(f) \circ U(-t_i^k)) \circ M_{s_k\rho_i^k} \circ \nu(i,k)(\psi) \circ M_{s_k\rho_i^k}\|_{\text{op}} \\ &+ \|(U(t_i^k) \circ \pi_{\ell_k}(f) \circ U(-t_i^k)) \circ (\nu(i,k)(\psi) - (U(t_i^k) \circ \pi_{\ell_k}(g) \circ U(-t_i^k)) \circ M_{s_k\rho_i^k}\|_{\text{op}} \\ &+ \|(U(t_i^k) \circ \pi_{\ell_k}(f * g) \circ U(-t_i^k) - \nu(i,k)(\varphi\psi)) \circ M_{s_k\rho_i^k}\|_{\text{op}} \\ &+ \|(U(t_i^k) \circ \pi_{\ell_k}(f * g) \circ U(-t_i^k) - \nu(i,k)(\varphi\psi)) \circ M_{s_k\rho_i^k}\|_{\text{op}} \\ &+ \|(U(t_i^k) \circ \pi_{\ell_k}(f * g) \circ U(-t_i^k) - \nu(i,k)(\varphi\psi)) \circ M_{s_k\rho_i^k}\|_{\text{op}} \\ &+ \|(U(t_i^k) \circ \pi_{\ell_k}(f * g) \circ U(-t_i^k) - \nu(i,k)(\varphi\psi)) \circ M_{s_k\rho_i^k}\|_{\text{op}} \\ &+ \|(U(t_i^k) \circ \varphi_{\ell_k}(f * g) \circ U(-t_i^k) - \psi(i,k)(\varphi\psi)) \circ M_{s_k\rho_i^k}\|_{\text{op}} \\ &+ \|(U(t_i^k) \otimes \varphi_{\ell_k}(f * g) \circ U(-t_i^k) - \psi(i,k)(\varphi\psi)) \circ M_{s_k\rho_i^k}\|_{\text{op}} \\ &+ \|(U(t_i^k) \otimes \varphi_{\ell_k}(f * g) \circ U(-t_i^k) - \psi(i,k)(\varphi\psi)) \circ M_{s_k\rho_i^k}\|_{\text{op}} \\ &+ \|(\psi(i,k)(\varphi) \circ \psi(i,k)(\psi) - \psi(i,k)(\varphi\psi)) \circ (\mathbb{I} - M_{s_k\rho_i^k})\|_{\text{op}} \\ &+ \|(\psi(i,k)(\varphi) \circ \psi(i,k)(\psi) - \psi(i,k)(\varphi\psi)) \circ (\mathbb{I} - M_{s_k\rho_i^k})\|_{\text{op}} \\ &+ \|(\psi(i,k)(\varphi) \circ \psi(i,k)(\psi) - \psi(i,k)(\varphi\psi)) \otimes (\mathbb{I} - M_{s_k\rho_i^k})\|_{\text{op}} \\ &+ \|(\psi(i,k)(\varphi) \circ \psi(i,k)(\psi) - \psi(i,k)(\varphi\psi)) \otimes (\mathbb{I} - M_{s_k\rho_i^k})\|_{\text{op}} \\ &+ \|(\psi(i,k)(\varphi) \circ \psi(i,k)(\psi) - \psi(i,k)(\varphi\psi)) \otimes (\mathbb{I} - M_{s_k\rho_i^k})\|_{\text{op}} \\ &+ \|(\psi(i,k)(\varphi) \otimes \psi(i,k)(\psi) - \psi(i,k)(\varphi\psi)) \otimes (\mathbb{I} - M_{s_k\rho_i^k})\|_{\text{op}} \\ &+ \|(\psi(i,k)(\varphi) \otimes \psi(i,k)(\psi) - \psi(i,k)(\varphi\psi)) \otimes (\mathbb{I} - M_{s_k\rho_i^k})\|_{\text{op}} \\ \\ &+ \|(\psi(i,k)(\varphi) \otimes \psi(i,k)(\psi) \otimes \psi(i,k)(\psi\psi) + \psi(i,k)(\varphi\psi)) \otimes (\mathbb{I} - M_{s_k\rho_i^k})\|_{\text{op}} \\ &+ \|(\psi(i,k)(\varphi) \otimes \psi(i$$

The usual density condition shows that the statement holds for all $\varphi, \psi \in C^*(\mathbb{R}^2)$.

Theorem 3.16. The space D_N^* is a C^* -algebra, which is isomorphic with $C^*(G_N)$ for every $N \in \mathbb{N}, N \geq 3$.

Proof. Let us first show that D_N^* is a C^* -algebra. We prove first that D_N^* is closed under multiplication. Let $A = (A(\ell), \ell \in S_N)$ and $B = (B(\ell), \ell \in S_N)$ satisfy the generic condition and let $(\pi_{\ell_k})_k \subset \hat{G}_N$ be a properly convergent sequence with perfect data such that for every limit point $\pi_{l^i}, i \in D$, and for every adapted real sequence $(s_k)_k$ the fields A, B satisfy (3.20). Then

$$\begin{split} \|U(t_{i}^{k}) \circ A(\ell_{k}) \circ B(\ell_{k}) \circ U(-t_{i}^{k}) \circ M_{s_{k}} - A(\ell^{i}) \circ B(\ell^{i}) \circ M_{s_{k}}\|_{\text{op}} \\ &\leq \|(U(t_{i}^{k}) \circ A(\ell_{k}) \circ U(-t_{i}^{k}) \circ M_{s_{k}} - A(\ell^{i}) \circ M_{s_{k}}) \circ U(t_{i}^{k}) \circ B(\ell_{k}) \circ U(-t_{i}^{k}) \circ M_{s_{k}}\|_{\text{op}} \\ &+ \|A(\ell^{i}) \circ M_{s_{k}} \circ (U(t_{i}^{k}) \circ B(\ell_{k}) \circ U(-t_{i}^{k}) \circ M_{s_{k}} - B(\ell^{i}) \circ M_{s_{k}})\|_{\text{op}} \\ &+ \|U(t_{i}^{k}) \circ A(\ell_{k}) \circ U(-t_{i}^{k}) \circ (\mathbb{I} - M_{s_{k}}) \circ (U(t_{i}^{k}) \circ B(\ell_{k}) \circ U(-t_{i}^{k}) \circ M_{s_{k}} - B(\ell^{i}) \circ M_{s_{k}})\|_{\text{op}} \\ &+ \|A(\ell^{i}) \circ (\mathbb{I} - M_{s_{k}}) \circ B(\ell^{i}) \circ M_{s_{k}}\|_{\text{op}} \\ &+ \|U(t_{i}^{k}) \circ A(\ell_{k}) \circ U(-t_{i}^{k}) \circ (\mathbb{I} - M_{s_{k}}) \circ B(\ell^{i}) \circ M_{s_{k}}\|_{\text{op}}. \end{split}$$

Since $B(\ell^i)$ is compact and $\mathbb{I} - M_{s_k}$ converges to 0 strongly, $\|(\mathbb{I} - M_{s_k}) \circ B(\ell^i)\|_{\text{op}} \to 0$ giving that the product $A(\ell) \circ B(\ell)$ satisfies the generic condition.

To see that the character condition is closed under multiplication we argue as before, but use $\|(\mathbb{I} - M_{s_k \rho_i^k}) \circ \nu(\varphi)(i,k) \circ M_{s_k \rho_i^k}\|_{\text{op}} \to 0$ which is due to Propsition 3.11.

The infinity condition is clearly closed under multiplication of fields.

By Theorem 3.14, the Fourier transform F maps $C^*(G_N)$ into D_N^* Let us show that F is also onto. By the Stone-Weierstrass approximation theorem, we must only prove that the dual space of D_N^* is the same as the dual space of $C^*(G_N)$. We proceed by induction on N. If N = 3, then G_N is the Heisenberg group and the statement follows from Theorem 2.16. Let $\pi \in \widehat{D_N^*}$.

Let for $M = 3, \dots, N - 1, R_M : D_N^* \to D_M^*$ be the restriction map, i.e. denote by $q_M : \mathfrak{g}_N \to \mathfrak{g}_N/\mathfrak{b}_{N-M} \simeq \mathfrak{g}_M$ the quotient map and by $q_M^t : \mathfrak{g}_M^* \simeq \mathfrak{b}_{N-M}^\perp \to \mathfrak{g}_N^*$ its transpose. Then for an operator field $A \in D_N^*$ we define the operator field $R_M(A)$ over S_M^{gen} by:

$$R_M(A)(\tilde{\ell}) := A(q_M^t(\tilde{\ell})), \tilde{\ell} \in S_M^{\text{gen}}.$$

It follows from the definition of D_N^* that the image of R_M is contained in D_M^* . Hence R_M is a homomorphism of C^* -algebras, whose kernel I_M is the ideal

$$I_M = \{ A \in D_N^*, A(\ell) = 0 \text{ for all } \ell \in S_N \cap \mathfrak{b}_{N-M}^{\perp} \}.$$

Let $Q_M : C^*(G_N) \to C^*(G_M) \simeq C^*(G_N/B_{N-M})$ be the canonical projection. Then the kernel of this projection is the ideal $J_M := \{a \in C^*(G_N); \pi_\ell(a) = 0, \ell \in S_N \cap \mathfrak{b}_{N-M}^\perp\}$. Let us write F_M for the Fourier transform $C^*(G_M) \to D_M^*$. With these notations we have the formula

(3.24)
$$R_M(F_N(a)) = F_M(a \text{ modulo } J_M), a \in C^*(G_N).$$

Since by the induction hypothesis $\widehat{D_M^*} = F_M(\widehat{C^*(G_M)})$ for every $3 \le M \le N-1$ we see from (3.24) that $R_M(F_N(C^*(G_N))) = F_M(C^*(G_M)) = D_M^*$ and so the mapping R_M is surjective for such an M. Hence $D_N^*/I_M \simeq C^*(G_M)$. We have also $I_{N-1} \subseteq I_{N-2} \subseteq \ldots \subseteq I_3$. If $\pi(I_{N-1}) = \{0\}$ then $\pi \in \widehat{G_N/B_1} \subset \widehat{G_N}$.

Suppose now that $\pi(I_{N-1}) \neq \{0\}$. Let us show that $I_{N-1} \simeq C_0(S_N^1, \mathcal{K}(L^2(\mathbb{R})))$. It is clear from the definition of D_N^* that $C_0(S_N^1, \mathcal{K}(L^2(\mathbb{R}))) \subset D_N^*$ and so is contained in I_{N-1} . It suffices to show now that $I_{N-1} \subset C_0(S_N^1, \mathcal{K}(L^2(\mathbb{R})))$. For that it is enough to see that for any element A in I_{N-1} and any sequence $(\ell_k)_k$ in S_N^1 for which either (π_{ℓ_k}) converges to infinity or to a representation π_ℓ with $\ell \notin S_N^1$, we have that $\lim_k ||A(\ell_k)||_{\text{op}} = 0$. This follows from the infinity condition in the first case. In the second case no limit point of the sequence (π_{ℓ_k}) is in S_N^1 by Remark 3.7. It suffices to show then that $\lim_k ||A(\ell_k)||_{\text{op}} = 0$ for every subsequence with perfect data (also indexed by k for simplicity of notation). We have with the notations of Definition 3.12 that for $k \in \mathbb{N}$

$$A(\ell_k) = A(\ell_k) \circ M_{S_k} + A(\ell_k) \circ M_{T_k}.$$

where $S_k = \bigcup_i (t_i^k - s_k \rho_i^k, t_i^k + s_k \rho_i^k)$, $T_k = \mathbb{R} \setminus S_k$. Since $A(\ell) = 0$ for every π_ℓ in the limit set of the sequence $(\pi_{\ell_k})_k$, the generic and the character conditions say that

$$\lim_{k} \|U(t_i^k) \circ A(\ell_k) \circ U(t_i^k) \circ M_{s_k \rho_i^k}\|_{\text{op}} = 0.$$

Hence

$$\lim_k \|A(\ell_k) \circ M_{t^k_i, s_k \rho^k_i}\|_{\mathrm{op}} = 0$$

and since also

$$\lim_{k} \|A(\ell_k) \circ M_{T_k}\|_{\mathrm{op}} = 0$$

it follows that $\lim_k ||A(\ell_k)||_{\text{op}} = 0$. Hence $I_{N-1} \subset C_0(S_N^1, \mathcal{K}(L^2(\mathbb{R})))$ and so $I_{N-1} = C_0(S_N^1, \mathcal{K}(L^2(\mathbb{R})))$. Finally $\pi_{|I_{N-1}}$ is evaluation in some point $\ell \in S_N^1$ and so $\pi \in \widehat{G_N}$. This finishes the proof of the theorem.

Acknowledgements. We would like to thank K. Juschenko for the reference [Gor]. The second author was supported by the Swedish Research Council.

References

- [AKLSS] Archbold, R. J.; Kaniuth, E.; Ludwig, J.; Schlichting, G.; Somerset, D. W. B. Strength of convergence in duals of C^{*}-algebras and nilpotent Lie groups. Adv. Math. 158 (2001), no. 1, 26–65.
- [ALS] Archbold, R. J.; Ludwig, J.; Schlichting, G. Limit sets and strengths of convergence for sequences in the duals of thread-like Lie groups. Math. Z. 255 (2007), no. 2, 245–282.
- [CG] Corwin, L.J.; Greenleaf, F.P. Representations of nilpotent Lie groups and their applications. Part I. Basic theory and examples. Cambridge Studies in Advanced Mathematics, 18. Cambridge University Press, Cambridge, 1990. viii+269 pp.
- [De] Delaroche, C. Extensions des C*-algébres. (French) Bull. Soc. Math. France Mém., No. 29. Supplément au Bull. Soc. Math. France, Tome 100. Société Mathématique de France, Paris, 1972. 142 pp.
- [Di] Dixmier, J. C*-algebras. Translated from the French by Francis Jellett. North-Holland Mathematical Library, Vol. 15. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. xiii+492 pp.
- [Gor] Gorbachev, N. V. C*-algebra of the Heisenberg group. Uspekhi Mat. Nauk 35 (1980), no. 6(216), 157–158.
- [Lee1] Lee, R-Y. On the C* Algebras of Operator Fields Indiana University Mathematics Journal, 26 No. 2 (1977), 351-372.
- [Lee2] Lee, R-Y. Full Algebras of Operator Fields Trivial Except at One Point. Indiana University Mathematics Journal, 25 No. 4 (1976), 303-314.
- [LRS] Ludwig, J; Rosenbaum, G.; Samuel, J. The elements of bounded trace in the C*-algebra of a nilpotent Lie group. Invent. Math. 83 (1985), no. 1, 167–190.
- [L] Ludwig, J. On the behaviour of sequences in the dual of a nilpotent Lie group. Math. Ann. 287, 239-257 (1990).
- [R] Rosenberg, J. Homological invariants of extensions of C*-algebras. Operator algebras and applications, Part 1 (Kingston, Ont., 1980), pp. 35–75, Proc. Sympos. Pure Math., 38, Amer. Math. Soc., Providence, RI, 1982.
- [W] Wegge-Olsen, N. E. K-theory and C*-algebras. A friendly approach. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993.

Jean Ludwig, Laboratoire LMAM, UMR 7122, Département de Mathématiques, Université Paul Verlaine Metz, Ile de Saulcy, F-57045 Metz cedex 1, France, ludwig@univ-metz.fr

Lyudmila Turowska, Department of Mathematics, Chalmers University of Technology and University of Gothenburg, SE-412 96 Göteborg, Sweden, turowska@chalmers.se