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ABSTRACT

We discuss the detection of absorption by interstellar hydrogen fluoride (HF) along the sight line to the submillimeter continuum sources W49N
and W51. We have used Herschel’s HIFI instrument in dual beam switch mode to observe the 1232.4762 GHz J = 1−0 HF transition in the upper
sideband of the band 5a receiver. We detected foreground absorption by HF toward both sources over a wide range of velocities. Optically thin
absorption components were detected on both sight lines, allowing us to measure – as opposed to obtain a lower limit on – the column density of
HF for the first time. As in previous observations of HF toward the source G10.6–0.4, the derived HF column density is typically comparable to
that of water vapor, even though the elemental abundance of oxygen is greater than that of fluorine by four orders of magnitude. We used the rather
uncertain N(CH) − N(H2) relationship derived previously toward diffuse molecular clouds to infer the molecular hydrogen column density in the
clouds exhibiting HF absorption. Within the uncertainties, we find that the abundance of HF with respect to H2 is consistent with the theoretical
prediction that HF is the main reservoir of gas-phase fluorine for these clouds. Thus, hydrogen fluoride has the potential to become an excellent
tracer of molecular hydrogen, and provides a sensitive probe of clouds of small H2 column density. Indeed, the observations of hydrogen fluoride
reported here reveal the presence of a low column density diffuse molecular cloud along the W51 sight line, at an LSR velocity of ∼24 km s−1, that
had not been identified in molecular absorption line studies prior to the launch of Herschel.
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1. Introduction

In some of the first results obtained using the HIFI instrument
(de Graauw et al. 2010) on Herschel (Pilbratt et al. 2010), the de-
tection of hydrogen fluoride has been reported along sight lines
to the bright continuum source G10.6–0.4 (Neufeld et al. 2010)
and the Orion hot core (Phillips et al. 2010). In addition, absorp-
tion by HF has been detected (although spectrally unresolved) in
the spectrum of G29.96–0.02, even at the lower spectral resolu-
tion of the SPIRE instrument (Kirk et al. 2010). For G10.6–0.4,
observations of the J = 1−0 transition of HF revealed optically
thick absorption in foreground gas clouds unassociated with the
continuum source, and implied a lower limit of 30% for the frac-
tion of gas-phase fluorine nuclei in HF. Remarkably, the inferred
hydrogen fluoride abundance was comparable to that of water
vapor, even though the interstellar fluorine abundance is four or-
ders of magnitude lower than that of oxygen. These observa-
tions corroborated a theoretical prediction (Neufeld et al. 2005;

� Herschel is an ESA space observatory with science instruments
provided by European-led Principal Investigator consortia and with im-
portant participation from NASA.

Neufeld & Wolfire 2009) that HF is the dominant reservoir of
fluorine wherever the interstellar H2/atomic H ratio exceeds ∼1;
the unusual behavior of fluorine is explained by its unique ther-
mochemistry, F being the only atom in the periodic table that
can react exothermically with H2 to form a hydride. An impli-
cation of this theoretical prediction, together with the detection
of strong HF absorption along the sight lines to G10.6–0.4, the
Orion hot core, and G29.96–0.02, is that HF may serve as a valu-
able surrogate tracer for molecular hydrogen within the diffuse
interstellar medium, both in the Milky Way and other galaxies.

As part of the PRISMAS (PRobing InterStellar Molecules
with Absorption line Studies) key program, we have observed
hydrogen fluoride toward two additional Galactic continuum
sources with sight lines that intersect foreground gas clouds:
the star-forming regions W49N and W51, located at distances of
∼11.4 (Gwinn et al. 1992) and ∼5.4 kpc (Sato et al. 2010) from
the Sun, respectively. Previous observations of both sources have
led to the detection of foreground absorption by many species,
including atomic hydrogen (e.g. Fish et al. 2003), OH, H2O
(Neufeld et al. 2002; Plume et al. 2004), HCO+, CN, HCN, and
HNC (Godard et al. 2010). In general, many of the molecular
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absorption features observed previously toward W49N, and par-
ticularly toward W51, are less saturated than those measured
toward G10.6–0.4; this difference makes W49N and W51 attrac-
tive targets for observations of HF absorption, because our pre-
vious study of G10.6–0.4 yielded only a lower limit on the HF
abundance, as the observed absorption line was completely satu-
rated over most velocities. In this letter we present the results of
observations of HF J = 1−0 obtained toward W49N and W51.

2. Observations and data analysis

The J = 1−0 transition of HF, with rest frequency
1232.4762 GHz (Nolt et al. 1987), was observed toward W49N
and W51 on 2010 March 22 in the upper sideband of HIFI re-
ceiver band 5a. The observations were carried out at three dif-
ferent local oscillator (LO) tunings in order to securely identify
the HF line toward both sight lines. The dual beam switch mode
(DBS) was used with a reference position located 3′ on either
side of the source position along an East-West axis. We cen-
tered the telescope beam at α = 19h10m13.2s, δ = 09◦06′12.0′′
for W49N and α = 19h23m43.9s, δ = 14◦30′30.5′′ for W51
(J2000.0). The total on-source integration time amounts to 222 s
on each source using the wide band spectrometer (WBS) that of-
fers a spectral resolution of 1.1 MHz (∼0.3 km s−1 at 1232 GHz).

The data were processed to Level 2 using the standard HIFI
pipeline and HIPE version 2.4 (Ott 2010), hence providing fully
calibrated spectra for both polarization modes at each LO set-
ting. We further analyzed the Level 2 data using IDL routines
developed locally. We found that the signals measured in the
two polarization modes for each LO setting were in excellent
agreement, as were the spectra obtained at the three LO tunings.
We therefore produced an average spectrum that consists of the
weighted sum of all six observations (three LO tunings with two
polarization modes each), where each observation is weighted in
proportion to its signal-to-noise ratio. The resulting double side-
band continuum antenna temperatures are TA(cont) = 10.65 K
for W49N and TA(cont) = 10.17 K for W51. The rms noise was
0.13 K for both sources.

HIFI employs double sideband receivers. Thus for a side-
band gain ratio of unity, the complete absorption of radiation
at a single frequency will reduce the measured antenna tem-
perature to one-half the apparent continuum level. Assuming
the sideband gain ratio is equal to unity, the flux normalized
with respect to the continuum flux can be expressed as [TA −
0.5TA(cont)]/0.5TA(cont). The upper panels of Figs. 1 and 2
show the normalized fluxes versus Doppler velocity in the LSR
frame (VLSR) for HF (black line) and para-water (green line)
toward W49N and W51, respectively. The para-H2O 111−000
(ν = 1113.343 GHz) spectra presented here for comparison were
observed in the lower sideband of receiver 5a in the same ob-
serving campaign as HF. The total on-source integration time
was 87.6 s for each target. The methods we used to reduce the
HF data were also applied to the para-water data (see above).
The dashed lines represent the continuum temperature TA(cont)
(K) normalized to unity and the zero flux level. One can see that
toward both sight lines the sideband gain ratios are indeed con-
sistent with unity.

3. Results

The spectra shown in Figs. 1 and 2 reveal the presence of HF
(black line) and para-water (green line) absorption in a number
of foreground clouds along the sight lines to both W49N and

W51. The presence of molecular absorption in these spectra was
anticipated by previous observations (e.g., Neufeld et al. 2002;
Plume et al. 2004; Godard et al. 2010).

For W49N, the foreground absorptions in the velocity range
−10 to ∼25 km s−1 are affected by emission due to the source
itself and will not be further discussed here. The two addi-
tional sets of HF absorption components in the ranges VLSR =
30−50 and 50−75 km s−1 are unrelated to the source and have
been detected through absorption from other species such as
HCO+, HCN, HNC (Godard et al. 2010), or atomic hydrogen
(Fish et al. 2003) and atomic oxygen (Vastel et al. 2000). As
for G10.6−0.4 (W31C) observed previously by Neufeld et al.
(2010), the profiles of HF and para-water are remarkably similar
with the exception of two components at LSR velocities of ∼68
and 71 km s−1 that are clearly much stronger in HF than in water.

The distributions of foreground material toward W51 also
exhibit a one-to-one correspondence between the HF and para-
water absorptions with the exception of one component at LSR
velocity of 24 km s−1 that is clearly detected in HF, but is absent
in the para-water spectrum. This component at 24 km s−1 has
been detected in the absorption spectra of atomic hydrogen (Koo
1997) and the HIFI spectra of CH+ (Falgarone et al. 2010), but –
to our knowledge – has not been observed in studies of molecular
absorption prior to the launch of Herschel.

The lower panels of Figs. 1 and 2 compare the HF antenna
temperature TA (K) with the para-water antenna temperature.
Here, each point represents one velocity bin in those LSR veloc-
ity ranges exhibiting only moderate HF and para-water optical
depths. The dashed lines represent the continuum temperature
TA(cont) (K) and 0.5TA(cont) for HF (vertical dashed lines) and
para-water (horizontal dashed lines). The solid black lines in the
lower panels of Figs. 1 and 2 represent the expected location of
the HF and para-water antenna temperatures in each velocity bin
for a given optical depth ratio of HF over para-water. From top
to bottom, we display HF to para-water ratios of 5, 3, 2, 1, 0.5,
0.33 and 0.2. For G10.6–0.4 (Neufeld et al. 2010), we find that
the optical depth of HF is between 2 and 5 times larger than that
of para-water toward both sight lines. Note again the presence
of the 24 km s−1 component detected in HF and clearly absent in
para-water (blue diamonds).

4. Discussion

Toward W51, all para-water components in the LSR velocity
range 0 to 30 km s−1 are optically thin, while those of HF are
either optically thin (the 12 and 24 km s−1 components) or mod-
erately thick (the 6 and the 45 km s−1 complexes), hence allow-
ing us to directly measure the column density of these species for
each set of clouds. This stands in contrast to G10.6–0.4, where
the large HF J = 1 − 0 optical depth allowed Neufeld et al.
(2010) to obtain only a lower limit on the HF abundance. Note
that the HF and para-water lines are optically thick in the veloc-
ity range 50 to 75 km s−1, thus only leading to lower limits on
their column densities.

We used a set of multiple Gaussian components to simulta-
neously fit the HF and para-water profiles in the 0−30 km s−1

range. Due to the similarity between the HF and HCO+ profiles
in this velocity range, we used the HCO+ sight line cloud de-
composition of Godard et al. (2010) as an initial guess in our
fits. Under the assumption that both HF and para-water co-exist
along the W51 sight line, we fixed the cloud velocity and FWHM
of the para-water components to equal those of HF.

Figure 3 displays the optical depth spectra of HF (black line)
and para-water (green line) in the −5 to 30 km s−1 velocity range
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Fig. 1. Top: normalized spectra of HF and para-H2O over VLSR =
[−40,85] km s−1 (see Sect. 2 for details). Bottom: HF J = 1−0 antenna
temperature versus para-H2O 111−000 antenna temperature over the ve-
locity ranges indicated at the top of the figure toward the W49N sight
line. The solid black lines represent the expected loci for given optical
depth ratios of HF to para-water of 5, 3, 2, 1, 0.5, 0.33, 0.2 from top to
bottom.

toward W51, with the best fit to each spectrum superimposed as
a red line. The quality of both fits clearly demonstrates that our
assumption regarding the similarity in distribution for HF and
para-water is justified for the cloud complex at 6 km s−1 and the
12 km s−1 component. This figure further shows that the distribu-
tion of HCO+ does differ slightly from that of HF for the 6 km s−1

cloud complex and that the 24 km s−1 component is traced by
HF alone. The HCO+ counterpart of the 45 km s−1 complex is
blended with strong emission, preventing Godard et al. (2010)
from deriving the cloud structure for this absorption complex.
In addition the blending between the various features seen in
our data is too severe to lead to a unique fitting solution. We
therefore integrated the HF and water absorption profiles over
the entire 42−47 km s−1 range (see Gerin et al. 2010).

Toward W49N, the HF and para-water cloud complexes in
the 30−50 and 50−65 km s−1 ranges are all optically thicker than
those toward W51. Additionally, the various cloud components
detected in HCO+ by Godard et al. (2010) are more severely
blended than toward W51, preventing us from obtaining a unique
fit to the cloud distributions for W49N. Consequently, we in-
tegrated the HF and para-water optical depths over the entire

Fig. 2. Top: normalized spectra of HF and para-H2O over VLSR = [−40,
85] km s−1. Bottom: HF J = 1−0 antenna temperature versus para-H2O
111−000 antenna temperature over the velocity ranges indicated in the
lower right corner toward the W51 sight line. Note the absence of para-
water absorption compared to HF for VLSR = [20,30] km s−1 (blue di-
amonds). The solid black lines represent the expected loci for given
optical depth ratios of HF to para-water of 5, 3, 2, 1, 0.5, 0.33, 0.2 from
top to bottom.

velocity ranges with the exception of the two absorbing clouds
at LSR velocities of 68 and 71 km s−1. These two components
are optically thin in both HF and para-water and were fitted with
Gaussians using the same method as for W51.

Following Neufeld et al. (2010), we derived the HF and para-
water column densities for each LSR velocity range by divid-
ing the velocity-integrated optical depths of HF and para-water
by 4.16 × 10−13 cm2/km s−1 and 4.30 × 10−13 cm2/km s−1, re-
spectively, to obtain the results given in Table 1. Here, we as-
sume that the absorbing material completely covers the contin-
uum emission region, and that each molecule is primarily in
its ground state. The latter assumption is justified because the
gas density is much lower than the critical density at which
the collisional deexcitation and spontaneous decay rates would
be equal (Neufeld et al. 2010). For the same velocity ranges,
we have presented estimates for the H2 and atomic H column
densities. In diffuse molecular clouds (also known as “translu-
cent clouds” in the classification proposed by Snow & McCall
2006), direct measurements of the H2 and CH column den-
sity via far- and near-UV absorption spectroscopy showed that
molecular hydrogen and CH trace each other linearly, with
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Fig. 3. Optical depth spectra of HF J = 1−0 (black line) and para-water
111−000 (green line) toward W51. The (x) mark the positions of the
HCO+ components (see Godard et al. 2010). The (+) mark the posi-
tions of HF components resulting from our multi-component Gaussian
fit to the HF data. When fitting the para-water spectrum, the component
positions and FWHM were held fixed at the values derived from the HF
analysis.

N(CH) = 3.5 × 10−8 N(H2) (Sheffer et al. 2008, and references
therein). Hence, CH is often used as proxy for H2 when the lat-
ter cannot be measured directly. Gerin et al. (2010) detected ab-
sorption of CH (ν = 536.761 GHz) toward both W49N and W51.
The distribution of the CH absorbing clouds matches that of HF
toward both sight lines. We therefore used the CH column den-
sities derived by Gerin et al. (2010) and the Sheffer et al. (2008)
relationship to infer the H2 column densities toward W49N and
W51. The uncertainty in our determination of the H2 column
density is dominated by the scatter in the CH-H2 relationship,
estimated by Sheffer et al. as 0.21 dex, corresponding to a fac-
tor of 1.6. The atomic hydrogen column densities for W51 were
obtained from the 21 cm absorption spectra obtained by Koo
(1997) for an assumed 21 cm spin temperature of 100 K, while
those for W49N were obtained by Godard et al. (2010), based
upon 21 cm observations presented by Fish et al. (2003).

In their analysis of the chemistry of fluorine-containing
molecules in the interstellar medium, Neufeld & Wolfire (2009)
predicted (e.g. their Fig. 7) that over a wide range of condi-
tions the HF and H2 column densities would track each other
exactly, with the ratio N(HF)/2N(H2) equal to the gas-phase el-
emental abundance of F relative to H nuclei. Given the average
gas-phase abundance of interstellar fluorine in diffuse atomic gas
of NF/NH = 1.8 × 10−8 (Snow et al. 2007), this result implies a
N(HF)/N(H2) ratio of 3.6 × 10−8. Given the uncertainty in the
N(CH) − N(H2) relationship used to infer the molecular hydro-
gen column densities and the variations in the gas-phase fluorine
abundance, the results shown in Table 1 are consistent with that
prediction. The lack of correlation between N(HF) and N(H) for
the cloud components presented in this work also suggests that
HF is absent in purely atomic material, but has the potential to
serve as an excellent tracer of H2. Hydrogen fluoride provides a
sensitive probe of clouds of small H2 column density. Indeed, the
observations of HF reported here reveal a low column density
molecular cloud along the W51 sight line, at an LSR velocity
of ∼24 km s−1, which had not been identified in molecular ab-
sorption line studies prior to the launch of Herschel.

Table 1. Summary of derived column densities and abundances.

VLSR N(HF) N(H2O) N(H)a N(H2)b HF/H2

(km s−1) 1012 cm−2 1012 cm−2 1020 cm−2 1020 cm−2

Results for W51
0–10 14.5± 1.1 6.2± 0.5 13.9 10.5 1.4 × 10−8

10–20 1.8± 0.3 0.4± 0.1 6.4 1.4 1.3 × 10−8

20–30 0.8± 0.1 <0.2 11.1 <0.7 >1.2 × 10−8

42–47 8.0± 1.0 5.4± 0.7 ... 5.0 1.6 × 10−8

50–75 >130 >113 22.1 ... ...

Results for W49N
30–50 55± 10 22± 8 69.5 37 1.5 × 10−8

50–78 69± 10 34± 9 72.3 66 1.1 × 10−8

67–71 5.6± 1.0 1.5± 0.3 ... 4.4 1.3 × 10−8

Notes. (a) from Koo 1997 (W51) and Godard et al. 2010 (W49N), for
an assumed 21 cm spin temperature of 100 K.
(b) Derived from CH observations (Gerin et al. 2010), assuming
N(CH) = 3.5×10−8 N(H2) (Sheffer et al. 2008). The relationship shows
a scatter of 0.21 dex, corresponding to a factor of 1.6.
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