Full characterization of a semiconductor laser beam by simultaneous capture of the near- and far-field
Carl Borgentun, Jörgen Bengtsson, and Anders Larsson
Photonics laboratory, Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, Göteborg, Sweden

INTRODUCTION
- We present a new measurement method for fully characterizing a laser beam, i.e. determining the optical phase as well as the intensity.
- The method is based on the simultaneous capture of the near- and far-field, making this method very useful for laser beams with temporal variations in intensity and/or phase.
- A single plano-convex lens is used to create equally large images of the near- and far-field.
- Anti-reflectance coatings on the lens surfaces reduce the need for attenuating filters that disturb the phase, when measuring on high-power lasers.
- When the optical phase has been retrieved, the M^2-value can easily be determined by numerical propagation.

METHOD
- Phase retrieval is used to iteratively determine the phase distribution.
- A modified version of the Gerchberg-Saxton algorithm is used for the phase retrieval.
- The two-step method is used for numerical propagation of the optical fields, providing a free choice of sampling distance in the last plane common to both branches, i.e. just before the plano-convex lens.

RESULTS – TEM10 CASE
- The method can also handle higher order modes with rapid phase variations, for instance the TEM10 mode, see Fig. 4.
- The M^2-value was in this case found to be 3.3 in the x-direction and 1.3 in the y-direction.

RESULTS – TEM00 CASE
- Fig. 3 shows the results for a beam from an OP-SDL, (optically pumped semiconductor disk laser) operating in TEM00 mode.
- The retrieved intensity distributions match the measured distributions to a very high degree.
- The M^2-value was found to be 1.1 in both the x- and y-directions.

SETUP
- The main components in the experimental setup, see Fig. 1, are a plano-convex lens and a CCD camera.
- Light incident on the lens will be reflected both at the flat and at the curved surface of the lens, splitting the beam into two branches.
- Branch 1, created by the flat surface, will produce the far-field on the CCD camera, see Fig. 2.
- Branch 2, created by the curved surface, will produce a magnified image of the near-field on the CCD camera, see Fig. 2.
- When the CCD camera and the plano-convex lens are correctly aligned, the CCD camera will capture the intensity distributions of the near- and far-field.
- The capture will be simultaneous; the near- and far-field are part of the same beam and invariant to temporal variations.
- The fields can be made to fill equally large areas on the CCD camera, which makes the phase retrieval more stable.

METHOD VALIDATION – INTRODUCTION OF KNOWN WAVEFRONT CURVATURE
- For validation, a cylindrical lens was inserted in the beam.
- The resulting phase distribution was simulated in MATLAB.
- The phase distribution was also retrieved through our method.
- The retrieved and simulated phase distributions show a convincing agreement, see Fig. 5.

Fig. 1. A schematic view of the experimental setup. The near- and far-field images on the CCD camera are created by a single optical component: a plano-convex lens.

Fig. 2. The two optical branches in the setup, created by reflections at the flat and the curved surfaces of the plano-convex lens.

Fig. 3. Close match between the measured and retrieved intensity distributions of a TEM00 laser beam. The retrieved phase distribution is overlaid with intensity contours (50%, 10%, and 2% of peak).

Fig. 4. The measured and retrieved intensity distributions for a TEM10 mode laser closely resemble each other. The retrieved phase distribution shows that rapid phase variations can be handled.

Fig. 5. The good match between the retrieved and simulated phase shows the accuracy of the phase retrieval in this method.