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Dynamical Casimir effect in superconducting microwave circuits
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We theoretically investigate the dynamical Casimir effect (DCE) in electrical circuits based on superconducting
microfabricated waveguides with tunable boundary conditions. We propose implementing a rapid modulation
of the boundary conditions by tuning the applied magnetic flux through superconducting quantum-interference
devices that are embedded in the waveguide circuits. We consider two circuits: (i) An open waveguide circuit that
corresponds to a single mirror in free space, and (ii) a resonator coupled to a microfabricated waveguide, which
corresponds to a single-sided cavity in free space. We analyze the properties of the DCE in these two setups by
calculating the generated photon-flux densities, output-field correlation functions, and the quadrature squeezing
spectra. We show that these properties of the output field exhibit signatures unique to the radiation due to the
DCE, and could, therefore, be used for distinguishing the DCE from other types of radiation in these circuits. We
also discuss the similarities and differences between the DCE, in the resonator setup, and the down-conversion
of pump photons in parametric oscillators.
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I. INTRODUCTION

Quantum-field theory predicts that photons can be created
from vacuum fluctuations when the boundary conditions of the
field are time dependent. This effect, often called the dynamical
Casimir effect (DCE), was predicted by Moore [1] in 1970, in
the context of a cavity composed of two moving ideal mirrors.
In 1976, Fulling and Davies [2] showed that a single mirror
in free space also generates radiation, when subjected to a
nonuniform acceleration. The role of the moving mirrors in
these studies is to impose time-dependent boundary conditions
on the electromagnetic fields. The interaction between the
time-dependent boundary condition and the zero-point vacuum
fluctuations can result in photon creation for a sufficiently
strong time dependence [3–6].

However, it has proven to be a difficult task to experimen-
tally observe the DCE. The problem lies in the difficulty in
changing the boundary conditions (e.g., by moving physical
objects, such as massive mirrors, sufficiently fast to generate a
significant number of photons). Although there are proposals
(see, e.g., Ref. [7]) for experimentally observing the DCE
using massive mirrors, no experimental verification of the
DCE has been reported to date [5]. In order to circumvent
this difficulty, a number of theoretical proposals has suggested
to use experimental setups where the boundary conditions are
modulated by some effective motion instead. Examples of such
proposals include using lasers to modulate the reflectivity of
thin semiconductor films [8,9] or to modulate the resonance
frequency of a superconducting stripline resonator [10], to
use a superconducting quantum-interference device (SQUID)
to modulate the boundary condition of a superconducting
waveguide [11], and to use laser pulses to rapidly modulate
the vacuum Rabi frequency in cavity QED systems [12,13].

In this paper, we investigate manifestations of the DCE
in superconducting electrical circuits based on microfabri-
cated (including coplanar) waveguides. Recent theoretical and
experimental developments in the field of superconducting
electronics, which to a large extent is driven by research on

quantum-information processing [14–16], include the realiza-
tion of strong coupling between artificial atoms and oscillators
[17–19] (so-called circuit QEDs), studies of the ultrastrong
coupling regime in circuit QED [20], single-artificial-atom
lasing [21,22], Fock-state generation, and state tomography
[23,24]. Also, there has recently been an increased activity in
studies of multimode quantum fields in superconducting cir-
cuits, both theoretically and experimentally, see, for example,
Refs. [25–28], and in experimental work on frequency-tunable
resonators [29–32]. These studies exemplify how quantum-
optics-like systems can be implemented in superconducting
electrical circuits [33], where waveguides and resonators play
the roles of light beams and cavities, and Josephson-junction-
based artificial atoms play the role of natural atoms in the
original quantum-optics setups.

Here, we theoretically investigate the possibility to exploit
these recent advances to realize a system [11] where the DCE
can be observed experimentally in an electrical circuit. We
consider two circuit configurations, see Figs. 1(c) and 1(d), for
which we study the DCE in the broadband and narrow-band
limits, respectively. We analyze the properties of the radiation
due to the DCE in these systems, and we identify a number of
signatures in experimentally measurable signals that could be
used to distinguish the radiation due to the DCE from other
types of radiation, such as thermal noise.

The DCE has also previously been discussed in the context
of superconducting electrical circuits in Ref. [34]. Another
related theoretical proposal to use superconducting electrical
circuits to investigate photon creation due to nonadiabatic
changes in the field parameters was presented in Ref. [35],
where a circuit for simulating the Hawking radiation was
proposed. In contrast to these works, here we exploit the
demonstrated fast tunability of the boundary conditions for
a one-dimensional electromagnetic field, achieved by termi-
nating a microfabricated waveguide with a SQUID [32]. (See,
e.g., Ref. [36] for a review of the connections between the
DCE, the Unruh effect, and the Hawking effect).

1050-2947/2010/82(5)/052509(17) 052509-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.052509


JOHANSSON, JOHANSSON, WILSON, AND NORI PHYSICAL REVIEW A 82, 052509 (2010)

FIG. 1. (Color online) Schematic of the DCE, (a) in the case of a single oscillating mirror in free space, and (b) in the case of a cavity in free
space where the position of one of the mirrors oscillates. In both cases, photons are generated due to the interplay between the time-dependent
boundary conditions imposed by the moving mirrors and the vacuum fluctuations. Here, � is the frequency of the oscillatory motion of the
mirrors, and a is the amplitude of oscillations. The DCE can also be studied in electrical circuits. Two possible circuit setups that correspond
to the quantum-optics setups (a) and (b) are shown schematically in (c) and (d), respectively. In these circuits, the time-dependent boundary
condition imposed by the SQUID corresponds to the motion of the mirrors in (a) and (b).

This paper is organized as follows: In Sec. II, we briefly
review the DCE. In Sec. III, we propose and analyze an
electrical circuit Fig. 1(c), based on an open microfabricated
waveguide, for realizing the DCE, and we derive the resulting
output-field state. In Sec. IV, we propose and analyze an
alternative circuit Fig. 1(d), featuring a waveguide resonator.
In Sec. V, we investigate various measurement setups that
are realizable in electrical circuits in the microwave regime,
and we explicitly evaluate the photon-flux intensities and
output-field correlation functions for the two setups introduced
in Secs. III and IV. In Sec. VI, we explore the similarities
between the DCE, in the resonator setup, and the closely
related parametric oscillator (PO) with a nonlinear medium.
Finally, a summary is given in Sec. VII.

II. BRIEF REVIEW OF THE DCE

A. Static Casimir effect

Two parallel perfectly conducting uncharged plates (ideal
mirrors) in vacuum attract each other with a force known as
the Casimir force. This is the famous static Casimir effect,
predicted by Casimir in 1948 [37], and it can be interpreted
as originating from vacuum fluctuations and due to the fact
that the electromagnetic mode density is different inside and
outside of the cavity formed by the two mirrors. The difference
in the mode density results in a radiation pressure on the
mirrors, due to vacuum fluctuations, which is larger from the
outside than from the inside of the cavity, thus producing
a force that pushes the two mirrors toward each other. The
Casimir force has been thoroughly investigated theoretically,
including different geometries, nonideal mirrors, and finite
temperature, and it has been demonstrated experimentally in
a number of different situations (see, e.g., Refs. [38–40]). For
reviews of the static Casimir effect, see, e.g., Refs. [41–43].

B. DCE

The dynamical counterpart to the static Casimir effect
occurs when one or two of the mirrors move. The motion
of a mirror can create electromagnetic excitations, which
results in a reactive damping force that opposes the motion
of the mirror [44]. This prediction can be counterintuitive
at first sight because it involves the generation of photons
from nothing (vacuum) with uncharged conducting plates,
and it has no classical analog. However, in the quantum-
mechanical description of the electromagnetic field, even the
vacuum contains fluctuations, and the interaction between
these fluctuations and the time-dependent boundary conditions
can create excitations (photons) in the electromagnetic field.
In this process, energy is taken from the driving of the
boundary conditions to excite vacuum fluctuations to pairs
of real photons, which propagate away from the mirror.

The electromagnetic field in a one-dimensional cavity with
variable length was first investigated quantum mechanically by
Moore [1], in 1970. In that seminal paper, the exact solution
for the electromagnetic field in a one-dimensional cavity with
an arbitrary cavity-wall trajectory was given in terms of the
solution to a functional equation, known as Moore’s equation.
Explicit solutions to this equation for specific mirror motions
have been the topic of numerous subsequent papers, including
perturbative approaches valid in the short-time limit [45],
asymptotic solutions for the long-time limit [46], an exact
solution for a nearly harmonically oscillating mirror [47],
numerical approaches [48], and renormalization group cal-
culations valid in both the short-time and the long-time limits
[49,50]. Effective Hamiltonian formulations were reported in
Refs. [51–53], and the interaction between the cavity field
and a detector was studied in Refs. [54,55]. The DCE was
also investigated in three-dimensional cavities [54–56] and for
different types of boundary conditions [57,58]. The rate of
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TABLE I. Brief summary of early work on the static and DCEs. The static Casimir effect has been experimentally verified, but experimental
verification of the DCE has not yet been reported [5].

Static Casimir effect Dynamical Casimir effect

Description Attractive force between two conductive plates in vacuum Photon production due to a fast modulation of
boundary conditions

Theory Casimir (1948) [37], Lifshitz (1956) [63] Moore (1970) [1], Fulling and Davies (1976) [2]
Experiment Sparnaay (1958) [64], van Blokland et al. (1978) [65],

Lamoreaux (1997) [38], Mohideen and Roy (1998) [39]

buildup of photons depends, in general, on the exact trajectory
of the mirror, and it is also different in the one-dimensional
and three-dimensional cases. For resonant conditions (i.e.,
where the mirror oscillates with twice the natural frequency of
the cavity), the number of photons in a perfect cavity grows
exponentially with time [59].

An alternative approach that focuses on the radiation
generated by a nonstationary mirror, rather than the buildup
of photons in a perfect cavity, was developed by Fulling and
Davies [2], in 1976. In that paper, it was shown that a single
mirror in one-dimensional free space (vacuum) subjected to
a nonuniform acceleration also produces radiation. The two
cases of oscillatory motion of a single mirror and a cavity with
walls that oscillate in a synchronized manner, were studied
in Refs. [60,61], using scattering analysis. The radiation
from a single oscillating mirror was also analyzed in three
dimensions [62].

Table I briefly compares the static and DCEs. See, for
example, Refs. [3–6] for extensive reviews of the DCE.

C. Photon production rate

The rate of photon production of an oscillating ideal mirror
in one-dimensional free space [60], see Fig. 1(a), is, to first
order,

N

T
= �

3π

(vmax

c

)2
, (1)

where N is the number of photons generated during the time
T , � is the oscillation frequency of the mirror, vmax = a�

is the maximum speed of the mirror, and a is the amplitude
of the mirror’s oscillatory motion. From this expression, it is
apparent that, to achieve significant photon production rates,
the ratio vmax/c must not be too small (see, e.g., Table II). The
maximum speed of the mirror, therefore, must approach the
speed of light. The spectrum of the photons generated in this

process has a distinct parabolic shape between zero frequency
and driving frequency �,

n(ω) ∝
(a

c

)2
ω(� − ω). (2)

This spectral shape is a consequence of the density of states of
electromagnetic modes in one-dimensional space, and the fact
that photons are generated in pairs with frequencies that add
up to the oscillation frequency of the boundary ω1 + ω2 = �.

By introducing a second mirror in the setup so that a cavity
is formed, see Fig. 1(b), the dynamical Casimir radiation can
be resonantly enhanced. The photon production rate for the
case when the two cavity walls oscillate in a synchronized
manner [60,61], is

N

T
= Q

�

3π

(vmax

c

)2
, (3)

where Q is the quality factor of the cavity.
In Secs. III and IV, we consider implementations of

one-dimensional single- and two-mirror setups using su-
perconducting electrical circuits. See Figs. 1(c) and 1(d),
respectively. The single-mirror case is studied in the context of
a semi-infinite waveguide in Sec. III, and the two-mirror case
is studied in the context of a resonator coupled to a waveguide
in Sec. IV. In the following, we consider circuits with CPWs,
but the results also apply to circuits based on other types of
microfabricated waveguides.

III. THE DCE IN A SEMI-INFINITE
COPLANAR WAVEGUIDE

In a recent paper [11], we proposed a semi-infinite su-
perconducting CPW terminated by a SQUID as a possible
device for observing the DCE. See Fig. 2. The CPW contains
a semi-infinite one-dimensional electromagnetic field, and the
SQUID provides a means for tuning its boundary condition.
Here, we present a detailed analysis of this system based

TABLE II. The photon production rates n = N/T for a few examples of single-mirror systems. The order of magnitudes of the photon
production rates are calculated using Eq. (1). The table illustrates how small the photon production rates are unless both the amplitude and the
frequency are large so that the maximum speed of the mirror vmax = a� approaches the speed of light. The main advantage of the CPW setup
is that the amplitude of the effective motion can be made much larger than for setups with massive mirrors that oscillate with a comparable
frequency.

Setup Amplitude a (m) Frequency � (Hz) Photons n (s−1)

Mirror moved by hand 1 1 ∼10−18

Mirror on a nanomechanical oscillator 10−9 109 ∼10−9

SQUID-terminated CPW [11] 10−4 1010 ∼105
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FIG. 2. (Color online) (a) Schematic of a CPW terminated by
a SQUID. The SQUID imposes a boundary condition in the CPW
that can be parametrically tuned by changing the externally applied
magnetic flux through the SQUID. (b) The setup in (a) is equivalent
to a waveguide with tunable length or to a mirror with tunable
position.

on quantum-network theory [66,67]. We extend our previous
work by investigating field correlations and the noise-power
spectra of the generated dynamical Casimir radiation, and we
also discuss possible measurement setups.

A. Quantum-network analysis of the SQUID-terminated CPW

In this section, we present a circuit model for the proposed
device, and we derive the boundary condition of the CPW that
is imposed by the SQUID (see Fig. 2). The resulting boundary
condition is then used in the input-output formalism to solve
for the output-field state in the two cases of static and harmonic
driving of the SQUID. The circuit diagram for the device under
consideration is shown in Fig. 3, and the corresponding circuit

...

...

FIG. 3. Equivalent circuit diagram for a CPW terminated by a
SQUID. The CPW has a characteristic inductance L0 and capacitance
C0 per unit length, and it is assumed that it does not have any intrinsic
dissipation. The circuit is characterized by the dynamical fluxes �i

and �J,j .

Lagrangian is

L = 1

2

∞∑
i=1

(
�x C0(�̇i)

2 − (�i+1 − �i)2

�x L0

)

+
∑
j=1,2

[
CJ,j

2
(�̇J,j )2 + EJ,j cos

(
2π

�J,j

�0

)]
, (4)

where L0 and C0 are, respectively, the characteristic induc-
tance and capacitance of the CPW (per unit length) and CJ,j

and EJ,j are the capacitance and Josephson energy of the j th
junction in the SQUID loop. Here, �α is the node flux, which
is related to the phase ϕα , at the node α, as �α = (�0/2π )ϕα ,
where �0 = h/2e is the magnetic flux quantum.

We have assumed that the geometric size of the SQUID
loop is small enough such that the SQUID’s self-inductance
Ls is negligible compared to the kinetic inductance associated
with the Josephson junctions (�0/2π )2/EJ,j (i.e., a term of
the form LsI

2
s has been dropped from the previous Lagrangian,

where Is is the circulating current in the SQUID). Under these
conditions, the fluxes of the Josephson junctions are related to
the externally applied magnetic flux through the SQUID �ext,
according to �J,1 − �J,2 = �ext. We can therefore reduce the
number of fluxes used to describe the SQUID by introducing
�J = (�J,1 + �J,2)/2, and the SQUID effectively behaves as
a single Josephson junction [68].

Under the additional assumption that the SQUID is sym-
metric (i.e., CJ,1 = CJ,2 = CJ /2 and EJ,1 = EJ,2 = EJ ), the
Lagrangian now takes the form

L = 1

2

∞∑
i=1

(
�x C0(�̇i)

2 − (�i+1 − �i)2

�x L0

)

+ 1

2
CJ (�̇J )2 + EJ (�ext) cos

(
2π

�J

�0

)
, (5)

with effective junction capacitance CJ and tunable Josephson
energy,

EJ (�ext) = 2EJ

∣∣∣∣cos

(
π

�ext

�0

)∣∣∣∣ . (6)

For a discussion of the case with asymmetries in the SQUID
parameters, see Ref. [11].

So far, no assumptions have been made on the circuit
parameters that determine the characteristic energy scales of
the circuit, and both the waveguide fluxes and the SQUID
flux are dynamical variables. However, from now on, we
assume that the plasma frequency of the SQUID far exceeds
other characteristic frequencies in the circuit (e.g., the typical
frequencies of the electromagnetic fields in the CPW) so
that oscillations in the phase across the SQUID have small
amplitude �J /�0 � 1, and the SQUID is operated in the
phase regime where EJ (�ext) � (2e)2/2CJ . The condition
�J /�0 � 1 allows us to expand the cosine function in the
SQUID Lagrangian, resulting in a quadratic Lagrangian,

L = 1

2

∞∑
i=1

(
�x C0(�̇i)

2 − (�i+1 − �i)2

�x L0

)

+ 1

2
CJ �̇2

J − 1

2

(
2π

�0

)2

EJ (�ext) �2
J . (7)
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Following the standard canonical quantization procedure,
we can now transform the Lagrangian into a Hamiltonian,
which provides the quantum-mechanical description of the cir-
cuit, using the Legendre transformation H = ∑

i
∂L
∂�̇i

�̇i − L.
We obtain the following circuit Hamiltonian:

H = 1

2

∞∑
i=1

(
P 2

i

�x C0
+ (�i+1 − �i)2

�x L0

)

+ 1

2

P 2
1

CJ

+ 1

2

(
2π

�0

)2

EJ (�ext) �2
1, (8)

and the commutation relations [�i,Pj ] = ih̄δij and [�i,�j ] =
[Pi,Pj ] = 0, where Pj = ∂L

∂�̇j
. In the preceding expression, we

have also made the identification �J ≡ �1 (see Fig. 3). The
Heisenberg equation of motion for the flux operator �1 plays
the role of a boundary condition for the field in the CPW. By
using the commutation relations given earlier, the equation of
motion is found to be

Ṗ1 = CJ �̈1 = −i[P1,H ]

= −EJ (�ext)

(
2π

�0

)2

�1 − 1

L0

(�2 − �1)

�x
, (9)

which, in the continuum limit �x → 0, results in the boundary
condition [69]

CJ �̈(0,t) +
(

2π

�0

)2

EJ (t) �(0,t) + 1

L0

∂� (x,t)

∂x

∣∣∣∣
x=0

= 0,

(10)

where �1(t) ≡ �(x = 0,t), and EJ (t) = EJ [�ext(t)].
This is the parametric boundary condition that can be tuned

by the externally applied magnetic flux. In the following, we
show how, under certain conditions, this boundary condition
can be analogous to the boundary condition imposed by a
perfect mirror at an effective length from the waveguide-
SQUID boundary.

In a similar manner, we can derive the equation of motion
for the dynamical fluxes in the CPW (away from the boundary,
i.e., for �i , i > 1), which results in the well-known massless
scalar Klein-Gordon equation,

∂2

∂t2
�(x,t) − v2 ∂2

∂x2
�(x,t) = 0, (11)

where v = 1/
√

C0L0 is the propagation velocity in the CPW.
The general solution to this one-dimensional wave equation
has independent components that propagate in opposite direc-
tions, and we identify these two components as the input and
output components of the field in the CPW.

B. Quantization of the field in the waveguide

Following, for example, Refs. [66,67], we now introduce
creation and annihilation operators for the flux field in the
CPW and write the field in second quantized form

�(x,t) =
√

h̄Z0

4π

∫ ∞

0

dω√
ω

(ain(ω) e−i(−kωx+ωt)

+ aout(ω) e−i(kωx+ωt) + H.c.), (12)

where Z0 = √
L0/C0 is the characteristic impedance. We

have separated the left- and right-propagating signals along
the x axis, and denoted them as output and input, respec-
tively. The annihilation and creation operators for photons
in the CPW satisfy the canonical commutation relation
[ain(out)(ω′),a†

in(out)(ω
′′)] = δ(ω′ − ω′′), and the wave vector is

defined as kω = |ω|/v.
Here, we use the term photon for a propagating excitation

in the electromagnetic field in the CPW, described by the flux
field �(x,t). We use the term vacuum for the ground state of
this field. A CPW contains a transverse electromagnetic field
between (i) the center conductor and (ii) the ground planes
to the sides of the center conductor. This electromagnetic
field extends partially through the dielectric below the center
conductor and the ground planes and partially through the
free space above the CPW. Therefore, the CPW behaves as a
medium and has a speed of light v that is smaller than in free
space.

The fact that the electromagnetic field propagates in a
medium rather than in free space does not change the basic
mechanism of the DCE. The essence of this effect is the
creation of photons in electromagnetic fields due to time-
dependent boundary conditions, and this can be studied in
either free space or a medium. However, the photon production
rate [Eq. (1)] is proportional to the squared inverse of the
speed of light, and the reduced speed of light in the CPW
can therefore boost the intensity of the dynamical Casimir
radiation.

Our goal is to characterize the output field (e.g., by
calculating the expectation values and correlation functions
of various combinations of output-field operators). To achieve
this goal, we use the input-output formalism: We substitute the
expression for the field into the boundary condition imposed
by the SQUID, and we solve for the output-field operators in
terms of the input-field operators. The input field is assumed to
be in a known state (e.g., a thermal state or the vacuum state).

C. Output-field operators

By substituting Eq. (12) into the boundary condition
Eq. (10) and Fourier transforming the result, we obtain a
boundary condition in terms of the creation and annihilation
operators (for ω′ > 0),

0 =
(

2π

�0

)2 ∫ ∞

−∞
dω g(ω,ω′)

[

(ω)

(
ain

ω + aout
ω

)
+
(−ω)

(
ain

−ω + aout
−ω

)†] − ω′2CJ

(
ain

ω′ + aout
ω′

)
+ i

kω′

L0

(
ain

ω′ − aout
ω′

)
, (13)

where

g(ω,ω′) = 1

2π

√
|ω′|
|ω|

∫ ∞

−∞
dt EJ (t)e−i(ω−ω′)t . (14)

This equation cannot be solved easily, in general, but later,
we consider two cases where we can solve it analytically
[i.e., when EJ (t) is (i) constant or (ii) has a harmonic time
dependence]. In the general case, we can only solve the
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equation numerically, see the Appendix. In Sec. V, we compare
the analytical results with such numerical calculations.

1. Static applied magnetic flux

If the applied magnetic flux is time independent EJ (t) =
E0

J , we obtain g(ω,ω′) = E0
J

√
|ω′

ω
|δ(ω − ω′), and the solution

takes the form

aout(ω) = R(ω) ain(ω), (15)

where

R(ω) = −
(

2π
�0

)2
E0

J − |ω|2CJ + ikω

L0(
2π
�0

)2
E0

J − |ω|2CJ − ikω

L0

. (16)

Assuming that the |ω|2CJ term is small compared to
the other terms (i.e., that the SQUID plasma frequency is
sufficiently large), we can neglect it in the previous expression,
and we are left with the following simplified form:

R(ω) = −1 + ikωL0
eff

1 − ikωL0
eff

≈ − exp
{
2ikωL0

eff

}
. (17)

Here, we have defined

L0
eff =

(
�0

2π

)2 1

E0
J L0

, (18)

and assumed that kωL0
eff � 1 (this condition gives an upper

bound on the frequencies for which this treatment is valid).
Figure 4 shows the dependences of EJ and Leff on the
externally applied magnetic flux �ext.

The reflection coefficient R(ω) on the simplified form
given before [Eq. (17)] exactly coincides with the reflection
coefficient −exp{2ikωL} of a short-circuited CPW of length
L. It is therefore natural to interpret the parameter L0

eff as an
effective length that gives the distance from the SQUID to
a perfectly reflecting mirror (which is equivalent to a short-
circuit termination in the context of CPWs). Alternatively, this
can be phrased in terms of boundary conditions, where Eq. (10)
reduces to a Robin boundary condition at x = 0,

�(0,t) + L0
eff ∂x� (0,t) = 0, (19)

which can be written as the Dirichlet boundary condition of
an ideal mirror at x = L0

eff ,

�
(
x = L0

eff,t
) = 0 (20)

for frequencies satisfying ω � v/L0
eff and ω � ωs . Here,

ωs = 2π
√

EJ /�2
0CJ is the plasma frequency of the SQUID.

Under these assumptions, the boundary condition of the CPW
due to the SQUID is effectively equivalent to the boundary
condition of a perfectly reflecting mirror. See, for example,
Refs. [57,58] for discussions of different types of boundary
conditions in the context of the DCE.

2. Weak harmonic drive

For a weak harmonic applied magnetic flux with frequency
ωd , giving EJ (t) = E0

J + δEJ cos (ωdt), with δEJ � E0
J , we

FIG. 4. (Color online) The top panel shows the normalized
effective Josephson energy EJ (�ext) and the normalized plasma
frequency of the SQUID ωs(�ext) as a function of the external applied
magnetic flux through the SQUID �ext. The driving frequency ωd ,
which should be much lower than the SQUID’s plasma frequency, is
also shown as a reference. The bottom panel shows the corresponding
effective length Leff (�ext). The dashed vertical line marks the bias
point used in the calculations, and the amplitude of the harmonic
drive around this bias point is also indicated by the linearized
region. The parameters used in the calculations are, if nothing
else is specified, E0

J = 1.3EJ , δEJ = E0
J /4, and EJ = Ic�0/(2π ),

where Ic = 1.25 µA is the critical current of the Josephson junctions
in the SQUID, CJ = 90 fF, v = 1.2 × 108 m/s, Z0 ≈ 55 �, and
ωs = 37.3 GHz, ωd = 18.6 GHz. These parameters result in an
effective length L0

eff = 0.44 mm and an effective-length modulation
δLeff = 0.11 mm.

obtain

g(ω,ω′) = E0
J

√
|ω′|
|ω| δ(ω − ω′)

+ δE0
J

√
|ω′|
|ω|

1

2
[δ(ω − ω′ + ωd ) + δ(ω −ω′ − ωd )].

(21)

Inserting this into the previous boundary condition and
assuming that ω′ > 0, we obtain (after renaming ω′ → ω)

0 = (
ain

ω + aout
ω

) + ikωLeff
(
ain

ω − aout
ω

)
+ 1

2

δE0
J

E0
J

{√
ω

ω − ωd


(ω − ωd )
(
ain

ω−ωd
+ aout

ω−ωd

)

+
√

ω

ωd − ω

(ωd − ω)

(
ain

ωd−ω + aout
ωd−ω

)†
+

√
ω

ω + ωd

(
ain

ω+ωd
+ aout

ω+ωd

)}
, (22)
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where 
(ω) is the Heaviside step function, and where we also,
here, have assumed that the SQUID is in the ground state.
This equation cannot be solved exactly because of the mixed-
frequency terms (which create an infinite series of sidebands
around ω), but we can take a perturbative approach assuming

that δE0
J

E0
J

� 1, which results in

aout(ω)

= R(ω) ain(ω) + S(ω,ω + ωd )ei(kω + kωd −ω)L0
eff ain(ω + ωd )

+ S(ω,ω − ωd )ei(kω+kωd −ω)L0
eff ain(ω − ωd )

+ S∗(ω,ωd − ω)ei(kω−kωd −ω)L0
eff a†

in(ωd − ω), (23)

where R(ω) is given by Eq. (17), and

S(ω′,ω′′) = i
δLeff

v

√
ω′ω′′ 
(ω′)
(ω′′), (24)

where δLeff = L0
eff δEJ /E0

J . Here,

ε = max {|S(ω,ωd − ω)|} = δLeff

v

ωd

2
(25)

is the small parameter in the perturbation calculation. We note
that Eq. (23) is simplified by translating it along the x axis from
the point x = 0 to the point x = L0

eff (which is the position of
the effective mirror),

aout(ω) = −ain(ω) + S(ω,ω + ωd )ain(ω + ωd )

+ S(ω,ω − ωd )ain(ω − ωd )

+ S∗(ω,ωd − ω)a†
in(ωd − ω). (26)

It is the last term in Eq. (26) that gives rise to the dynamical
Casimir radiation in the output field of the CPW, and it appears
as a consequence of the mixing of the ain and a

†
in operators

due to the time-dependent boundary condition. Given this
expression for aout(ω), we can, in principle, calculate any
property of the output field. In Sec. V, we discuss a number of
observables of the output field that contain signatures of the
presence of the dynamical Casimir part of the field described
by the preceding equations.

IV. THE DCE IN AN OPEN RESONATOR CIRCUIT

In Sec. III, we discussed a setup that corresponds to a
single oscillating mirror in free space. However, we note
that experimentally it might be hard to completely avoid all
resonances in the waveguide, and in this section, we therefore
analyze the case where the waveguide is interrupted by a small
gap at some distance from the SQUID. Effectively, this system
forms an open CPW resonator with a time-dependent boundary
condition, where the size of the gap determines the coupling
strength between the resonator and the waveguide. This system
closely resembles a single-sided cavity in free space, with
one oscillating mirror. A schematic of the circuit is shown
in Fig. 5(a). This circuit has large parts in common with the
circuit considered in Sec. III (see Figs. 2 and 3). The new
component is the capacitive gap that interrupts the CPW at
x = 0, as shown in Figs. 5(a) and 5(b). This gap is responsible
for the formation of a resonator between the SQUID and
the semi-infinite waveguide at x < 0. The coupling strength
between the resonator and the waveguide determines the

FIG. 5. (Color online) (a) Schematic of a CPW resonator of
length d capacitively coupled to an open semi-infinite CPW to
the left and terminated to ground through a SQUID to the right.
(b) A magnification of the capacitive gap between the resonator and
the semi-infinite waveguide, shown as a dashed box in (a), together
with its equivalent circuit model.

quality factor of the resonator. This quality factor and the
corresponding decay rate are important parameters in the
following analysis. Note that, in the limit of vanishing quality
factor, this setup reduces to the setup studied in Sec. III.

Figure 5(b) shows a lumped circuit model for the part of the
circuit in the proximity of the capacitive gap. The Lagrangian
for this part of the circuit is

L = 1

2
�x C0

(
�̇L

0

)2 − 1

2

(
�L

1 − �L
0

)2

�x L0
+ 1

2
�x C0

(
�̇L

1

)2 + · · ·

+ 1

2
�x C0

(
�̇R

0

)2 − 1

2

(
�R

1 − �R
0

)2

�x L0
+ 1

2
�x C0

(
�̇R

1

)2

+ · · · + 1

2
Cc

(
�̇L

0 − �̇R
0

)2
, (27)

where �L
i and �R

i are the flux fields to the left and right of
the capacitive gap, respectively. In the continuum limit, where
�x → 0, the equations of motion for �L

0 and �R
0 result in the

following boundary condition for the field in the CPW on both
sides of the gap:

− 1

L0

∂�L (x,t)

∂x

∣∣∣∣
x=0−

=Cc

[
∂2�L

∂t2

∣∣∣∣
x=0−

− ∂2�R

∂t2

∣∣∣∣
x=0+

]
(28)

1

L0

∂�R (x,t)

∂x

∣∣∣∣
x=0+

=Cc

[
∂2�R

∂t2

∣∣∣∣
x=0+

− ∂2�L

∂t2

∣∣∣∣
x=0−

]
.

Using the field quantization from Sec. III and Fourier trans-
forming the earlier boundary condition, results in a boundary
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condition in terms of creation and annihilation operators, in
the frequency domain:

− ikω

L0

[
aL

in(ω) − aL
out(ω)

]
= −ω2Cc

[
aL

in(ω) + aL
out(ω) − aR

in(ω) − aR
out(ω)

]
(29)

ikω

L0

[
aR

in(ω) − aR
out(ω)

]
= −ω2Cc

[
aR

in(ω) + aR
out(ω) − aL

in(ω) − aL
out(ω)

]
(30)

This system of equations can be solved, and the operators for
the resonator can be written in terms of the operators of the
semi-infinite CPW,(

aR
in(ω)

aR
out(ω)

)
=

(
1 − i ωc

2ω
i ωc

2ω

−i ωc

2ω
1 + i ωc

2ω

) (
aL

in(ω)

aL
out(ω)

)
, (31)

where ωc = (CcZ0)−1 is a parameter that characterizes the
coupling strength between the resonator and the open CPW.
This transformation can be used together with Eq. (26), which
relates the input and output operators of the field in direct
contact with the effective mirror [i.e., aR

in(ω,x = deff) and
aR

out(ω,x = deff) in the present setup], to obtain a relation
between aL

in(ω) and aL
out(ω) that does not contain the resonator

operators. To achieve this, we note that the resonator operators
at x = 0 are related to those at x = deff by a simple phase
factor, according to the transformation,(

aR
in(ω,0)

aR
out(ω,0)

)
=

(
eikωdeff 0

0 e−ikωdeff

)(
aR

in(ω,deff)

aR
out(ω,deff)

)
, (32)

and that aR
out(ω,0) and aR

in(ω,0) are related to aL
out(ω) and aL

in(ω)
according to the transformation in Eq. (31).

A. Output-field operators

1. Static magnetic flux

The resonator boundary condition on the side that is
terminated by the SQUID is described by Eq. (26). In the
case of a static applied magnetic field, the inelastic scattering
by the effective mirror is absent [i.e., S(ω′,ω′′) = 0], and only
the elastic reflections remain,

aR
out(ω,deff) = −aR

in(ω,deff). (33)

In the present setup, the SQUID is located at x = d, and the
effective mirror is located at x = deff , where deff = d + L0

eff .
Thus, to write a relation between the input and the output
operator that applies on the left side of the resonator, we
translate the boundary condition of the effective mirror by
deff , according to Eq. (32),

aR
out(ω,0) exp{−ikωdeff} = −aR

in(ω,0) exp{ikωdeff}. (34)

Since this relation applies at the point where the resonator is
capacitively coupled to the open CPW, we can transform it
using Eq. (31),[

− i
ωc

2ω
aL

in(ω) +
(

1 + i
ωc

2ω

)
aL

out(ω)

]
exp{−2ikωdeff}

= −
[(

1 − i
ωc

2ω

)
aL

in(ω) + i
ωc

2ω
a

L,0
out (ω)

]
. (35)

This equation can be rewritten as

aL
out(ω) = Rres(ω)aL

in(ω), (36)

where

Rres(ω) = 1 + (1 + 2iω/ωc) exp{2ikωdeff}
(1 − 2iω/ωc) + exp {2ikωdeff} . (37)

Similarly, we can apply Eq. (31) to solve for the resonator
operators in terms of the input operators for the CPW,

aR
out(ω,deff) = Ares(ω)aL

in(ω), (38)

where

Ares(ω) = (2iω/ωc) exp{ikωdeff}
(1 − 2iω/ωc) + exp{2ikωdeff} , (39)

The function Ares(ω) describes the resonator’s response to an
input signal from the CPW, and it contains information about
the mode structure of the resonator. From Ares(ω), we can
extract the resonance frequencies and the quality factors for
each mode, see Fig. 6.

The resonance frequencies ωres
n are approximately given by

the transcendental equation,

tan
(
2πωres

n

/
ω0

) = ωc/ω
res
n , (40)

where ω0 = 2πv/deff and n is the mode number. The corre-
sponding resonance widths and quality factors are

�n = 2
ω0

2π

(
ωres

n

ωc

)2

, (41)

Qn ≡ ωres
n

�n

= 2π
ω2

c

2ω0ωres
n

, (42)

0

10

20

0 1 2

FIG. 6. (Color online) The absolute value of Ares(ω) as a function
of the renormalized frequency ω/ω0, where ω0 = 2πv/deff is the
full-wavelength resonance frequency when the resonator is decoupled
from the open CPW. The sequence of curves corresponds to different
coupling strengths for the CPW, characterized by resonator ωc values
indicated by the labels in the figure.
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respectively. We note that the quality factor for higher-order
modes is rapidly decreasing as a function of the mode number
n (see also Fig. 6).

Using the expressions for ωres
n and �n given before, the

resonator response can be expanded around the resonance
frequencies and written in the form

Ares(ω) ≈ −
√

ω0

2π

√
�n/2

�n/2 − i
(
ω − ωres

n

) , (43)

and, similarly, the expression for the reflection coefficient of
the resonator from the open CPW is

Rres(ω) ≈ −�n/2 + i
(
ω − ωres

n

)
�n/2 − i

(
ω − ωres

n

) . (44)

2. Weak harmonic drive

For a time-dependent applied magnetic flux in the form of
a weak harmonic drive, we again take a perturbative approach
and solve the equations for aL

out(ω) in terms of aL
in(ω) by treating

S(ω′,ω′′) as a small parameter. Following the approach of
Sec. III, we eliminate the resonator variables by using Eqs. (26)
and (31), and we obtain

aL
out(ω) = Rres(ω) aL

in(ω) + Sres,1(ω,ω + ωd )aL
in(ω + ωd )

+ Sres,1(ω,ω − ωd )aL
in(ω − ωd )

+ S∗
res,2(ω,ωd − ω)

(
aL

in

)†
(ωd − ω), (45)

where Rres(ω) is given by Eq. (37), and

Sres,1(ω′,ω′′) = S(ω′,ω′′)Ares(ω
′)Ares(ω

′′), (46)

Sres,2(ω′,ω′′) = S(ω′,ω′′)A∗
res(ω

′)Ares(ω
′′). (47)

In this case, the small parameter in the perturbation calculation
is

εres = max{|Sres,2(ω,ωd − ω)|} = δLeff

deff

ωd

2

1

�n

. (48)

We note that Eq. (45) has the same general form as
Eq. (26) and that the only differences are the definitions
of the reflection and inelastic-scattering functions Rres(ω)
and Sres,α(ω′,ω′′). This similarity allows us to analyze
both cases using the same formalism in Secs. V and VI,
where we calculate expectation values and correlation func-
tions of physically relevant combinations of the output-field
operators.

V. MEASUREMENT SETUPS

Equation (26) in Sec. III and Eq. (45) in Sec. IV constitute
complete theoretical descriptions of the corresponding output
fields, and we can apply these expressions in calculating the
expectation values of any output-field observable or correlation
function. In this section, we discuss possible experimental
setups for measuring various physical properties of the output
field, and we discuss which quantum-mechanical observables
and correlation functions these setups measure in terms of
the output-field operators. Later, we use Eqs. (26) and (45)
and explicitly evaluate these physical observables for the two
setups discussed in Secs. II–IV. The basic setups that we are

CPW Resonator

SQUIDin

out

CPW

SQUIDin

out

Resonator circuit

Single-mirror circuit

FIG. 7. Schematics of the measurement setups for (a) the single-
mirror and (b) the resonator setups in superconducting microwave
circuits, as discussed in Secs. III and IV, respectively. The circulator
(indicated by a circle with a curved arrow) separates the input and
output fields such that only the signal from the SQUID reaches the
measurement device M and so that the input-field state is given
by the thermal Johnson-Nyquist noise from the resistive load R at
temperature T .

considering here are shown schematically in Fig. 7, which
also illustrates the concept of separating the incoming and
outgoing fields by means of a circulator. The input field is
terminated to ground through an impedance-matched resistive
load. This resistor produces a Johnson-Nyquist (thermal)
noise that acts as the input on the SQUID. The circulator
isolates the detector from the thermal signal from the resistor,
except for the part of the noise that is reflected on the
SQUID. The measurement device is denoted by M in these
circuits.

We are interested in experimentally relevant observables
that contain signatures of the dynamical Casimir part of the
output field [i.e., the part that is described by the fourth
term in Eqs. (26) and (45)]. The most distinct signature
of the DCE is perhaps the correlations between individual
pairs of photons, and such correlations could, in principle,
be measured in a coincidence-count experiment. However,
the physical quantities that can be measured in a microwave
circuit are slightly different from those measured in the
quantum-optics regime. For instance, there are currently no
single-photon detectors available in the microwave regime,
and, as a consequence, it is not possible to directly measure
the correlations between individual pairs of photons. Instead,
there are linear amplifiers [70] that can amplify weak signals,
with very low-intensity photon-flux densities, to larger signals
that can be further processed with classical electronics. In
addition to amplifying the signal, these amplifiers also add
noise [71,72] to the signal. However, the increased noise can
often be compensated for (e.g., by averaging the signal over
long a period of time, or by measuring cross correlations in
which the noise mostly cancels out).

In microwave electronics, the natural fields for describing
the CPWs are the current and voltage fields, and these physical
quantities can be readily measured with standard equipment.
Here, we therefore focus on the voltage V (x,t) in the CPW
as our main physical observable. The voltage is related to the
previously defined field creation and annihilation operators
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according to

Vout(x,t)

= ∂t�out (x,t)

=
√

h̄Z0

4π

∫ ∞

0
dω

√
ω

(−iaout
ω e−i(kωx+ωt) + H.c.

)
. (49)

The output-field states described by Eqs. (26) and (45) have
voltage expectation values that are zero 〈Vout(x,t)〉 = 0, but
the squared voltages (i.e., as measured by a voltage square-
law detector and various forms of voltage correlations) can
have nonzero expectation values. For example, 〈Vout(x,t)2〉,
〈Vout(t1)Vout(t2)〉, and 〈Vout(ω1)Vout(ω2)〉, are all, in general,
nonzero and do contain signatures of the presence of the
dynamical Casimir radiation.

A. Photon-flux density

To measure the photon-flux density requires an intensity
detector, such as a photon counter that clicks each time a
photon is absorbed by the detector. The measured signal is
proportional to the rate at which the detector absorbs photons
from the field, which, in turn, is proportional to the field
intensity. This detector model is common in quantum optics,
and it is also applicable to intensity detectors (such as voltage
square-law detectors) in the microwave regime, although not
with single-photon resolution.

The signal recorded by a quantum-mechanical photon
intensity (power) detector (see, e.g., Ref. [73]) in the CPW
corresponds to the observable,

I (t) ∝ Tr [ρV̂ (−)(x,t)V̂ (+)(x,t)], (50)

where V (±)(x,t) are the positive- and negative-frequency
components, respectively, of the voltage field. In terms of the
creation and annihilation operators for the field in the CPW
[see Eq. (49)], where we, for brevity, have taken x = 0,

I (t) ∝
∫ ∞

0
dω′

∫ ∞

0
dω′′ √ω′ω′′ Tr [ρa

†
ω′aω′′ ]ei(ω′−ω′′)t , (51)

and the corresponding noise-power spectrum is

SV (ω) =
∫ ∞

0
dω′ Tr [ρV̂ (−)(ω)V̂ (+)(ω′)]

= h̄Z0

4π

∫ ∞

0
dω′ √ωω′ n(ω,ω′), (52)

where n(ω,ω′) = Tr [ρa†(ω)a(ω)]. Here, SV (ω) is related to
the voltage autocorrelation function via a Fourier transform,
according to the Wiener-Khinchin theorem. The photon-flux
density in the output field,

nout(ω) =
∫ ∞

0
dω′ nout(ω,ω′) (53)

can be straightforwardly evaluated using Eq. (26). The result-
ing expression is

nout(ω) = |R(ω)|2n̄in(ω) + |S(ω,ω + ωd )|2n̄in(|ω + ωd |)
+ |S(ω,|ω − ωd |)|2n̄in(|ω − ωd |)
+ |S(ω,ωd − ω)|2
(ωd − ω), (54)

where n̄in(ω) = Tr [ρa
†
in(ω)ain(ω)] is the thermal photon oc-

cupation of the input-field mode with frequency ω given by
n̄in

ω = [exp (h̄ω/kBT ) − 1]−1, where T is the temperature and
kB is the Boltzmann constant.

The first three terms in the foregoing expression are of
thermal origin, and the fourth term is due to the DCE. In order
for the DCE not to be negligible compared to the thermally
excited photons, we require that kBT � h̄ωd , where the
driving frequency ωd here serves as a characteristic frequency
for the system, since all dynamical Casimir radiation occurs
below this frequency (to leading order). In this case, it is safe to
neglect the term containing the small factor n̄in(|ω + ωd |) in the
previous expression. Substituting the expression for S(ω,ωd )
from Eq. (24) into Eq. (54) results in the following explicit
expression for the output-field photon flux for the single-mirror
case:

nout(ω) = n̄in(ω) +
(

δLeff

v

)2

ω |ω − ωd | n̄in(|ω − ωd |)

+
(

δLeff

v

)2

ω(ωd − ω) 
(ωd − ω). (55)

The output-field photon flux density Eq. (55) is plotted in
Fig. 8. The blue dotted parabolic contribution to nout(ω) is due

thermal only

analytical,
thermal & DCE

numerical,
thermal & DCE

FIG. 8. (Color online) The output-field photon-flux density
nout(ω) as a function of the relative mode frequency ω/ωd for
the single-mirror setup. The solid and dashed curves are for the
temperatures T = 50 mK and T = 25 mK, respectively, and the
dotted curve is for zero temperature. The red (bottom) curves show
the part of the signal with thermal origin, and the blue (dark)
and the green (light) curves also include the radiation due to the
DCE. The blue curves are the analytical results, and the green
curves are calculated numerically using the method described in
the Appendix. The parameters are the same as in Fig. 4. The
presence of the dynamical Casimir radiation is clearly distinguishable
for temperatures up to ∼70 mK. The good agreement between
the analytical and numerical results verifies the validity of the
perturbative calculation for the parameters used here.
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resonance frequencies

FIG. 9. (Color online) The output photon-flux density for the
resonator setup (solid lines) as a function of the normalized frequency
ω/ωd for four difference resonance frequencies (marked by dashed
vertical lines). Note that a double-peak structure appears when the
driving frequency is detuned from twice the resonance frequency.
For reference, the result for the single-mirror setup is also shown (red
dash-dotted curve without resonances). Here, the temperature was
chosen to be T = 25 mK, and the quality factor of the first resonance
mode is Q0 ≈ 20 (ωc ≈ 3ωd ), see Eq. (42). The other parameters are
the same as in Fig. 4.

to the fourth term in Eq. (54), that is, the dynamical Casimir
radiation [compare Eq. (2)].

Similarly, by using Eq. (45), we calculate the output-
field photon-flux density for the setup with a resonator, and
the resulting expression also takes the form of Eq. (54)
but where R(ω) and S(ω′,ω′′) are given by Eqs. (37) and
(46), respectively. The resulting photon-flux density for the
resonator setup is plotted in Fig. 9. Here, photon generation
occurs predominately in the resonant modes of the resonator.
For significant dynamical Casimir radiation to be generated, it
is necessary that the frequencies of both generated photons (ω′
and ω′′ where ω′ + ω′′ = ωd ) are near the resonant modes of
the resonator. In the special case when the first resonance
coincides with half of the driving frequency ωres

n = ωd/2,
there is a resonantly enhanced emission from the resonator,
see Fig. 9. The resonant enhancement is due to parametric
amplification of the electric field in the resonator (i.e.,
amplification of both thermal photons and photons generated
from vacuum fluctuations due to the DCE).

Another possible resonance condition is

ωres
0 + ωres

1 ∼ ωd. (56)

In this case, strong emission can occur even when the
frequencies of the two generated photons are significantly
different, since the two photons can be resonant with different
modes of the resonator (i.e., ω′ ∼ ωres

0 and ω′′ ∼ ωres
1 ). See the

blue (dark gray) curves in Fig. 10.
As shown in Figs. 8–10, the typical photon-flux densities

at the peaks are about 5×10−3 photon/s and unit bandwidth

FIG. 10. (Color online) The output photon-flux density nout(ω)
as a function of normalized frequency for the resonator setups
where two modes (blue, dark gray) and a single mode (green, light
gray) are active in the dynamical Casimir radiation. The dashed
and dotted vertical lines mark the resonance frequencies of the few
lowest modes for the two cases, respectively. The dashed-dotted red
curve shows the photon-flux density in the absence of the resonator.
The blue (dark gray) solid curve is the photon-flux density for the
two-mode resonance (i.e., for the case when the two lowest resonance
frequencies add up to the driving frequency). The green (light gray)
curve shows the photon-flux density for the case when only a single
mode in the resonator is active (see Fig. 9 for more examples of
this case). Here, the temperature was chosen to be T = 10 mK, and
the resonator’s quality factor is, in both cases, Q0 ≈ 50. The other
parameters are the same as in Fig. 4.

at around 10 GHz. The power per unit bandwidth for
these photon-flux densities in this frequency range gives
an energy h̄ωnout(ω)/kB comparable to a few mK, which
should be compared with the noise temperature of the best
commercial amplifiers, which is a few K. Using lock-in
techniques, these power levels are clearly detectable [27].
The experimental outlook is further improved by a new gen-
eration of superconducting amplifiers that has demonstrated
performance an order of magnitude better than commercial
amplifiers [30,31,74–76].

We conclude that, in the case of a waveguide without any
resonances, the observation of the parabolic shape of the
photon-flux density nout(ω) would be a clear signature of the
DCE. The parabolic shape of the photon-flux density should
also be distinguishable in the presence of a realistic thermal
noise. Resonances in the waveguide concentrate the photon-
flux density to the vicinity of the resonance frequencies, which
can give a larger signal with a smaller bandwidth. One should
note that, in order to stay in the perturbative regime, the
driving amplitude should be reduced by the quality factor of
the resonance, compared to the case without any resonances.
The bimodal structure of the spectrum, and its characteristic
behavior as a function of the driving frequency and detuning,
should be a clear indication of the DCE.
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0

0.1

0 0.25 0.5

0.05 single mirror

with resonator

FIG. 11. (Color online) Correlations between photons at the
frequencies ωd/2 − �ω and ωd/2 + �ω as a function of detuning
�ω from half the driving frequency for the single-mirror setup (blue)
and the setup with a resonator (red) that is slightly detuned from
half the driving frequency ωd/2. The dashed blue curve shows the
correlations for the single-mirror setup in the presence of thermal
noise at T = 25 mK.

B. Two-photon correlations

The output fields described by Eqs. (26) and (45) exhibit
correlations between photons at different frequencies. This is
straightforwardly demonstrated by calculating the expectation
value of the photon-annihilation operators at two frequencies
symmetric around half the driving frequency, that is,〈

aout

(
ωd

2
− �ω

)
aout

(
ωd

2
+ �ω

)〉

= R

(
ωd

2
− �ω

)
S∗

(
ωd

2
+ �ω,

ωd

2
− �ω

)

×
[

1 + n̄in

(
ωd

2
− �ω

)]
, (57)

which can be interpreted as the correlation (entanglement)
between two photons that are simultaneously created at the
frequencies ωd/2 − �ω and ωd/2 + �ω where �ω < ωd/2.
This two-photon correlation is shown in Fig. 11, for the field
generated by the SQUID without the resonator, shown in blue
(dark gray) and with the resonator, shown in red (light gray).
Note that, for thermal and vacuum states, this expectation
value vanishes for all frequencies ω. This correlation is
not directly measurable, since the operator combination is
not Hermitian, but it serves the purpose of being the most
basic illustration of the presence of nonclassical two-photon
correlations in the field produced by the DCE. In the following,
we consider two physically observable correlation functions
that are experimentally measurable.

1. Second-order coherence function

The fact that photons are predicted to be generated in pairs
in the DCE implies that the time-domain photon statistics
exhibits photon bunching. For instance, the measurement

signal

signal

Intensity correlation measurement setup

Quadrature squeezing measurement setup

FIG. 12. Schematic measurement setups for (a) intensity
correlations and for (b) quadrature squeezing. In (a),
the box with τ inside represents a time delay, and in (b), the
box represents the local oscillator (LO). The microwave beam
splitter can be implemented, for example, by a hybrid ring. The
detectors are assumed to measure the intensity of the voltage field.
In a practical experimental setup, the signals would also have to pass
through several stages of amplification, which are not shown here.

setup outlined in Fig. 12(a), which measures the second-order
correlation function,

G(2)(τ ) = Tr [ρV (−)(0)V (−)(τ )V (+)(τ )V (+)(0)] (58)

could be used to detect this bunching effect. For the output
fields on the form of Eqs. (26) and (45), this correlation
function takes the form

G(2)(τ )

= |G(1)(τ )|2 +
∣∣∣∣
∫ ωd

0
dω ω|S(ω,ωd − ω)|2eiωτ

∣∣∣∣
2

+
∣∣∣∣
∫ ωd

0
dω

√
ω(ωd − ω)R(ωd − ω)S∗(ω,ωd − ω)eiωτ

∣∣∣∣
2

,

(59)
G(1)(τ ) =

∫ ωd

0
dω ω|S(ω,ωd − ω)|2,

where R(ω) and S(ω′,ω′′) are defined by Eqs. (16) and (24)
and Eqs. (37) and (47) for the two setups, respectively. The
normalized second-order correlation function, that is, the
second-order coherence function,

g(2)(τ ) = G(2)(τ )

G(1)(0)G(1)(τ )
, (60)

is shown in Fig. 13 for the single-mirror setup (blue) and the
resonator setup (red).

These coherence functions show clear photon bunching,
since g(2)(τ ) > 1 for a large range in τ . In particular, for zero
time delay τ = 0, the coherence functions can be written as

g(2)(0) = 2 + 1

ε2
, (61)

where ε is given by Eq. (25) for the single-mirror setup and by
Eq. (48) for the resonator setup, as discussed in Secs. III and IV,
respectively. In both cases, ε is small, and g(2)(0) � 1, which
corresponds to large photon bunching. The high value of g(2)(0)
can be understood from the fact that the photons are created in
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FIG. 13. (Color online) The normalized second-order coherence
function g2(τ ) as a function of the delay time τ for the field
produced by the single-mirror setup from Sec. III (in blue) and for
the resonator setup (in red) at zero temperature. The inset shows
the second-order coherence function for the single-mirror setup
without the normalization, illustrating that g2(τ ) > 1 and showing
the oscillating behavior of g2(τ ) for large τ .

pairs, so the probability to detect two photons simultaneously
is basically the same as the probability to detect one photon.
For low-photon intensities, this gives a very large second-order
coherence. The decay of g(2)(τ ) is given by the bandwidth of
the photons, which, in the case without resonance, is given
by the driving frequency ωd . When a resonance is present, its
bandwidth � determines the decay. Squeezed states show this
type of photon bunching [77], and we now proceed to calculate
the squeezing spectrum of the radiation.

2. Squeezing spectrum

Another nonclassical manifestation of the pairwise photon
correlation in the fields described by Eqs. (26) and (45) is
quadrature squeezing [78,79] and the corresponding squeezing
spectrum [80], defined as the quadrature squeezing at a
certain frequency. The quadratures in the frequency domain
are defined by the relation

Xθ (ω) = 1
2 [a(ω)e−iθ + a†(ω)eiθ ], (62)

so that X1 = Xθ=0 and X2 = Xθ=π/2. Experimentally, the
quadratures in a continuous multimode field can be measured
through homodyne detection, where the signal field is mixed
with an LO on a balanced beam splitter, resulting in aout(t) =
[aLO(t) + asig(t)]/

√
2. See Fig. 12(b) for a schematic of this

setup. The LO field is assumed to be in a large-amplitude
coherent state with frequency � and phase θ , that is, aLO =
|α| exp{−i(θ + �t)}. Probing the resulting output field with
an intensity detector then provides information about the
quadrature in the signal field, since

I (t) = 〈a†
out(t)aout(t)〉 ≈ |α|2 + |α|〈Xθ

out(t)
〉
, (63)

where

Xθ
out(t) = 1

2

[
asig(t)ei(θ+�t) + a†

sig(t)e−i(θ+�t)]. (64)

The noise-power spectrum of the voltage intensity of the output
field therefore gives the squeezing spectrum of the signal field
in the frame rotating with frequency �,

Sθ
X(�ω) = 1 + 4

∫ ∞

−∞
dt e−i �ω t

〈
: �Xθ

out (t) �Xθ
out (0) :

〉
,

(65)

where 〈: :〉 is the normally ordered expectation value and
where we have normalized the squeezing spectrum so that
Sθ

X = 1 for unsqueezed vacuum and Sθ
X = 0 corresponds

to maximum squeezing. Here, �ω is the frequency being
measured after the mixing with the LO, and it is related to
the frequency ω in the signal field as ω = � + �ω. Hereafter,
we choose � = ωd

2 .
Evaluating the squeezing spectrum for the quadrature

defined by the relative phase θ [i.e., Xθ
out(t)] results in

Sθ
X(�ω) = 1 + 2

∣∣∣∣S
(

ωd

2
+ �ω,

ωd

2
− �ω

)∣∣∣∣
2

+ e−2iθR

(
ωd

2
+ �ω

)
S

(
ωd

2
+ �ω,

ωd

2
− �ω

)

+ e2iθR∗
(

ωd

2
− �ω

)
S∗

(
ωd

2
− �ω,

ωd

2
+ �ω

)
,

(66)

where, as before, R(ω) and S(ω′,ω′′) are defined by Eqs. (16)
and (24) and Eqs. (37) and (46) for the two setups, respectively.

For the single-mirror setup discussed in Sec. III, we obtain
the following squeezing spectrum:

Sθ
X(�ω) ≈ 1 − 2ε sin (2θ )

√
1 − 4

(
�ω

ωd

)2

, (67)

where we have neglected the second term in Eq. (66), which is
1 order higher in the small parameter S(ω′,ω′′). Here, we can
identify the relative phases θ− = π/4 and θ+ = −π/4 as the
maximally squeezed quadrature (θ−) and the corresponding
orthogonal quadrature (θ+).

By using the expressions for reflection and inelastic
scattering of the resonator setup Eqs. (37) and (46), in the
expression for the squeezing spectrum Eq. (66), we obtain

Sθ±
X (�ω) ≈ 1 ± 2εres

1 + (
2�ω

�

)2 , (68)

where the frequency of the first resonator mode is assumed
to coincide with half the driving frequency ωres

0 = ωd/2 and
where we again have defined θ± = ∓π/4 to correspond to
the maximally squeezed quadrature and the corresponding
orthogonal quadrature. The squeezing spectra for the single-
mirror setup Eq. (67) and for the resonator setup Eq. (68)
are plotted in Fig. 14. The squeezing is limited by ε and εres,
respectively, and, therefore, it is not possible to achieve perfect
squeezing, but as shown in Fig. 14, significant squeezing is still
possible. In the single-mirror case, the squeezing covers a large
bandwidth, and the total squeezing (see, e.g., Ref. [80]) of the
Xθ− quadrature, given by the integral of SX(ω,θ−), is

STotal
X (θ−) ≈ ωd

(
1 − π

2
ε

)
. (69)
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FIG. 14. (Color online) The spectra of quadrature squeezing in
the output field for a SQUID-terminated CPW with (solid lines) and
without (dashed lines) a resonator, as a function of the renormalized
frequency detuning from ωd/2. The blue (dark) and the red (light)
lines correspond to the variances in the Xθ− and Xθ+ quadratures,
respectively. For reference, the dotted thin lines show the squeezing
spectrum for the field produced by a PO with a nonlinear medium.

VI. COMPARISON WITH A PO

As the Qn values of the resonator considered in Sec. IV
increase, its resonant modes are increasingly decoupled from
the CPW, and the modes become increasingly equidistant.
In the limit Qn → ∞, the system formally reduces to the
ideal case of a closed one-dimensional cavity (see, e.g.,
Refs. [1,45–47]). However, this limit is not realistic for the

type of circuits investigated here because it corresponds to a
regime where the high-frequency modes also are significantly
excited, and this would violate our assumption that the SQUID
is adiabatic (i.e., that the SQUID plasma frequency is the
largest frequency in the problem). Our theoretical analysis is
also unsuitable for studying that extreme limit, since it implies
that εres no longer is small.

However, for moderate Q0 values where εres is small and
our analysis applies, it is still possible to make a comparison
to a single-mode PO below its threshold. The Hamiltonian for
a pumped PO [80] with a nonlinear medium can be written as

HPO = h̄ω2

2
a†a + 1

2
ih̄[e−iωd t ε(a†)2 − eiωd t ε∗a2], (70)

and where the oscillator is assumed to couple to an environ-
ment that induces relaxation with a rate γ . The output field for
the PO is described by

aPO
out (ω) = F (ω)aPO

in (ω) + G(ω)aPO
in (−ω)†, (71)

where

F (ω) = (γ /2)2 + ω2 + |ε|2
(γ /2 − iω)2 − |ε|2 , (72)

G(ω) = γ ε

(γ /2 − iω)2 − |ε|2 , (73)

see, e.g., Ref. [80]. Comparing Eq. (71) to the corresponding
results for the DCE,

aDCE
out (ω) = Rres

(ωd

2
+ ω

)
aDCE

in (ω)

+ S∗
res

(ωd

2
− ω,

ωd

2
+ ω

)
aDCE

in (−ω)†, (74)

where Rres(ω) and Sres(ω′,ω′′) are given by Eqs. (37) and (47),
allows us to identify relations between the PO parameters

TABLE III. Comparison between the DCE in the single-mirror setup and the resonator setup with a PO with a nonlinear medium. In Sec. VI,
we showed that, in the high-Q limit, the DCE in the resonator setup is equivalent to a PO. In the very-high-Q limit, the dynamics involves
many modes of the resonator. We do not consider the latter case here.

Single-mirror DCE Low-Q resonator DCE High-Q resonator DCE/PO

Comments Photons created due to
time-dependent boundary
condition

The resonator slightly alters the
mode density, compared to the
single-mirror case

DCE in a high-Q resonator is
equivalent to a PO below threshold

Classical analog? No, requires vacuum fluctuations No, requires vacuum fluctuations Yes, vacuum and thermal fluctuations
give similar results

Resonance condition No resonator ωres = ωd/2 ωres = ωd/2
Threshold condition εres ∼ Q−1 εres ∼ Q−1 � 1 Above threshold,

nonlinearity dominates behavior
Number of DCE photons

per second
∼n(ωd/2)ωd ∼n(ωres)� ∼n(ωres)�

Spectrum at T = 0 K
Broadband spectrum with peak

at ωd/2

on resonance off resonance

Broad peaks at resonance frequency
ωres and the complementary
frequency ωd − ωres

Sharply peaked around the resonance
frequency ωres = ωd/2
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(to first order in ε) and the dynamical Casimir parameters. We
obtain

γ = �0, (75)

ε = −i
δLeff ωd

4 deff
, (76)

and thereby establish a one-to-one mapping between these
systems, valid for sufficiently large Q and below the PO
threshold ε < γ/2, that is, for

δLeff

deff

ωd

2�
< 1. (77)

Using these expressions we can write a Hamiltonian that
describes the DCE in the resonator setup,

HDCE = h̄ωd

2
a†a − δLeff

4deff

h̄ωd

2
[eiωd ta2 + e−iωd t (a†)2], (78)

and where the capacitive coupling to the open CPW induces
relaxation with a rate �0 in the resonator. This Hamiltonian
picture offers an alternative description of the photon creation
process in the DCE in a resonator. This correspondence
between the DCE and a PO was also discussed in, for example,
Ref. [81] (see Table III).

VII. SUMMARY AND CONCLUSIONS

We have analyzed the dynamical Casimir radiation in
superconducting electrical circuits based on CPWs with tun-
able boundary conditions, which are realized by terminating
the waveguides with SQUIDs. We studied the case of a
semi-infinite CPW and the case of a CPW resonator coupled to
a semi-infinite waveguide, and we calculated the photon flux,
the second-order coherence functions, and the noise-power
spectrum of field quadratures (i.e., the squeezing spectrum)
for the radiation generated due to the DCE. These quantities
have distinct signatures, which can be used to identify the
dynamical Casimir radiation in experiments.

For the single-mirror setup, we conclude that the photon-
flux density nout(ω) has a distinct inverted parabolic shape
that would be a clear signature of the DCE. This feature in
the photon-flux density should also be distinguishable in the
presence of a realistic thermal noise background.

For the resonator setup, the presence of resonances in the
CPW alters the mode density and concentrates the photon-
flux density, of the dynamical Casimir radiation, around the
resonances, which can result in a larger signal within a smaller
bandwidth. If the driving signal is detuned from the resonance
frequency, the resulting photon-flux density spectrum features
a bimodal structure, owing to the fact that photons are created
in pairs with a frequency that adds up to the driving frequency.
The characteristic behavior of these features in the photon-
flux density spectrum should also be a clear indication of the
dynamical Casimir radiation. A resonance with a small quality
factor could therefore make the experimental detection of the
DCE easier. In the limit of a large quality factor, however, the
output field generated due to the DCE becomes increasingly
similar to that of a classical system, which makes it harder to
experimentally identify the presence of the dynamical Casimir
radiation [82].

For both the single-mirror setup and the resonator setup with
a low-quality factor, the second-order coherence functions and
the quadrature squeezing spectrum show signatures of the
pairwise photon production and the closely related quadrature
squeezing in the output field. The pairwise photon production
of the DCE has much in common with a parametrically
driven oscillator, and in the presence of a resonance, this
correspondence can be quantified, and the two systems can
be mapped to each other even though the systems have distinct
physical origins. This correspondence offers an alternative
formulation of the DCE in terms of a Hamiltonian for a
resonator that is pumped via a nonlinear medium.
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APPENDIX: NUMERICAL CALCULATIONS OF
OUTPUT-FIELD EXPECTATION VALUES IN THE

INPUT-OUTPUT FORMALISM

In this section, we describe the methods applied in the nu-
merical calculations of the expectation values and correlation
functions of the output field. Instead of taking a perturbative
approach and solving for the output-field operators in terms
of the input-field operators analytically, we can solve the
linear-integral equation Eq. (13) numerically by truncating
the frequency range to [−�,�] and discretizing it in (2N + 1)
steps [−ωN, . . . ,ω0 = 0, . . . ,ωN ] so that ωN = �. Here, it is
also convenient to define a(−ω) = a†(ω) so that the boundary
condition in the frequency domain reads

0 =
(

2π

�0

)2 ∫ �

−�

dω
[
ain

ω + aout
ω

]
g(ω,ω′)

− |ω′|2CJ

(
ain

ω′ + aout
ω′

) + i|ω′|
vL0

(
ain

ω′ − aout
ω′

)
, (A1)

and, in the discretized frequency space, takes the form

N∑
m=−N

[
−

(
2π

�0

)2

�ω g(ωm,ωn)

+ i|ωn|
vL0

δωn,ωm
+ |ωn|2CJ δωn,ωm

]
aout

ωm

=
N∑

m=−N

[(
2π

�0

)2

�ω g(ωm,ωn)

+ i|ωn|
vL0

δωm,ωn
− |ωn|2CJ δωm,ωn

]
ain

ωm
, (A2)
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where we have substituted ω′ → ωn and ω → ωm. This
equation can be written in the matrix form

Moutaout = Minain ⇒ aout = M−1
out Minain, (A3)

where

Mout
mn = −

(
2π

�0

)2

�ω g(ωm,ωn)

+ i|ωn|
vL0

δωn,ωm
+ |ωn|2CJ δωn,ωm

(A4)

M in
mn =

(
2π

�0

)2

�ω g(ωm,ωn)

− i|ωn|
vL0

δωn,ωm
+ |ωn|2CJ δωn,ωm

, (A5)

and

aout
m = (aout(ω−N ), . . . ,aout(ω0), . . . ,aout(ωN ))T , (A6)

ain
m = (ain(ω−N ), . . . ,ain(ω0), . . . ,ain(ωN ))T , (A7)

and, finally, where

g(ωm,ωn) = 1

2π

√
|ωn|
|ωm|

∫ ∞

−∞
dt EJ (t)e−i(ωm−ωn)t , (A8)

which can be obtained by a Fourier transform of the drive
signal EJ (t).

For a harmonic-drive signal, we can use the fact that the time
dependence in the boundary condition only mixes frequencies
that are integer multiples of the driving frequency, and by
selecting only these sideband frequencies in the frequency-
domain expansion (i.e., ωn = ω + nωd and n = −N, . . . ,N),
we obtain results that are more accurate than the perturbation
results, if N > 1.
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