
Chalmers Publication Library        

           

 

 

 

 

Copyright Notice IET 

 

 

This paper is a postprint (i.e. final accepted author 

manuscript) of the published paper: 

M. Bosiljevac, Z. Sipus, P.-S. Kildal, "Construction of Green's functions of parallel plates 

with periodic texture with application to gap waveguides - A plane wave spectral domain 

approach", IET Microwaves, Antennas & Propagation, Vol. 4, No. 11, pp. 1799–1810, Nov. 

2010. 

The paper is subject to Institution of Engineering and 

Technology Copyright.  

 

The published version of the paper is available at IET Digital 

Library and IEEEXplore. 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5639178  

 

 

 

 

 

 

 

 

 

 

 

 

(Article begins on next page) 

http://www.ietdl.org/journals/doc/IEEDRL-home/info/support/copyinf.jsp
http://www.ietdl.org/journals/doc/IEEDRL-home/info/support/copyinf.jsp
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5639178


IE
do

www.ietdl.org
Published in IET Microwaves, Antennas & Propagation
Received on 28th July 2009
Revised on 18th January 2010
doi: 10.1049/iet-map.2009.0399

ISSN 1751-8725

Construction of Green’s functions of parallel
plates with periodic texture with application
to gap waveguides – a plane-wave spectral-
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Abstract: This study presents Green’s functions of parallel-plate structures, where one plate has a smooth
conducting surface and the other an artificial surface realised by a one-dimensional or two-dimensional
periodic metamaterial-type texture. The purpose of the periodic texture is to provide cut-off of the lowest
order parallel-plate modes, thereby forcing electromagnetic energy to follow conducting ridges or strips, that
is, to form a gap waveguide as recently introduced. The Green’s functions are constructed by using the
appropriate homogenised ideal or asymptotic boundary conditions in the plane-wave spectral domain, thereby
avoiding the complexity of the Floquet-mode expansions. In the special case of a single ridge or strip, an
additional numerical search for propagation constants is needed and performed in order to satisfy the
boundary condition on the considered ridge or strip in the spatial domain. The results reveal the dispersion
characteristics of the quasi-transverse electromagnetic modes that propagate along the ridges or strips,
including their lower and upper cut-off frequencies, as well as the theoretical decay of the modal field in the
transverse cut-off direction. This lateral decay shows values of 50 – 100 dB per wavelength for realisable
geometries, indicating that the gap waveguide modes are extremely confined. The analytical formulas for the
location of the stopband of the lowest order parallel-plate modes obtained by small-argument approximation
of the dispersion equation are also shown. To verify the proposed analysis approach, the results are compared
with the results obtained with a general electromagnetic solver showing very good agreement.
T

1 Introduction
For exploring higher microwave frequencies, existing
transmission line technologies are found to be either too
expensive to manufacture or too lossy. This has triggered
interest in the development of novel transmission lines and
waveguides, such as the recently proposed metamaterial-based
gap waveguide [1]. This has the potential of becoming an
attractive solution for microwave applications above 30 GHz.

The essential idea of the gap waveguide is to use a periodic
metamaterial-type loading of one of two parallel conducting
surfaces in such a way that the lowest order parallel-plate
Microw. Antennas Propag., 2010, Vol. 4, Iss. 11, pp. 1799–181
i: 10.1049/iet-map.2009.0399
modes are in cut-off, and thereby to force the waves to
propagate in desired directions along the ridges or strips
within the gap between the surfaces (see Fig. 1). There are
two principally different types of gap waveguides that need
different theoretical treatments (Fig. 1). We choose to refer
to them as:

1. One-dimensional (1D) periodic type.

2. Two-dimensional (2D) periodic type.

The 1D periodic type is characterised by a purely 1D
periodic texture in the lower surface that supports confined
0 1799
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local-mode wave propagation along parallel ridges or strips.
The 2D periodic type has a 2D periodic artificial surface
providing the parallel-plate cut-off and an additional single
ridge or strip, along which confined local waves can
propagate.

The ideal form of the latter 2D periodic-type structure
comprises parallel perfect electric conductor (PEC) and
perfect magnetic conductor (PMC) surfaces, and it exhibits
cut-off if the spacing between the two surfaces, referred to as
the gap height, is smaller than a quarter wavelength. Such a
parallel-plate cut-off condition can be easily realised by using
electromagnetic bandgap (EBG) surfaces, or high
impedance surfaces (i.e. artificial magnetic conductors). The
most common practical realisation of EBG surfaces is the
so-called mushroom surface using periodic patches on a
grounded substrate with vias [2], whereas here we use the
pin surface (also called bed-of-nails) [3] because it is simpler
to realise at high frequency when the dimensions are small.

The 1D periodic-type waveguide is based on the soft and
hard surfaces concept [4], which allows wave propagation
only in the hard direction. Ideally, the soft and hard
surfaces are grids of parallel PEC and PMC strips and are
most simply realised by corrugations, but they can also be
realised by metal strips with vias [5]. The gap waveguide
can also be understood as a miniaturised rectangular hard

Figure 1 Two gap waveguide types considered in the
present paper

a 1D periodic type allowing wave propagation along each single
ridge or strip
b 2D periodic type with a 2D periodic texture in one plate
allowing wave propagation only along the ridge or strip
00 IET
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waveguide having two PEC walls and two PMC walls [6],
where the vertical PMC walls are realised by the cut-off
between two parallel plates, which gives a very wideband
solution compared to the narrow-band frequency selective
surface wall realisation in [6], and also compared to the
simpler realisation using dielectrically loaded vertical walls.

The gap waveguide is a result of studies of parallel-plate
waveguides in which one of the surfaces was loaded with
longitudinal corrugations to provide a hard surface [7, 8].
The intention was to feed a planar slot array in a simple
manner without having to locate several rectangular
waveguides side-by-side. Feeding using one wide oversized
rectangular waveguide caused problems with multiple
modes, but these modes were successfully suppressed using
a longitudinally corrugated hard surface. In addition,
simulations in [7, 8] revealed uncoupled local waves
following individual ridges between the corrugations which
opened up the additional possibility of phase-steering in
the plane transverse to the corrugations. These local waves
were studied in detail in [9], and it finally resulted in the
generalisation to the gap waveguide concept [1].

It is clear that gap waveguides have many potential
applications (apart from building the feeding network for slot
arrays). We will not discuss these here, but instead refer to
[1, 10], where the latter describes cavity mode suppression
when microstrip circuits are packaged in metal boxes. Thereby,
the gap waveguide technology becomes a new and useful
packaging technology for both passive and active microwave
circuits, including also complete chips with MMICs.

The present paper will show how to derive the Green’s
functions of gap waveguides realised using different
artificial surfaces described above. In particular, in Section
3, we shall deal with 1D types of periodic surfaces (ideal
PEC/PMC grid and corrugated surface), and in Section 4
with 2D types of periodic surfaces (ideal PMC and bed-
of-nails surface).The parallel-plate cut-off bandwidths of
several artificial surfaces have already been investigated
numerically in [11] by using a general electromagnetic
solver, but here we will show how the dispersion equations
and the whole Green’s functions can be determined by
using a more physical approach involving homogenised
surface impedance formulations in the plane-wave spectral
domain (all being explained for the general 1D and 2D
periodic surface types in Section 2). This includes special
treatment of the 2D periodic type due to the presence of
the single and therefore non-periodic guiding ridge or strip.

It is important to be aware that the cut-off bandwidth (i.e.
stopband of the lowest order parallel-plate modes)
determines the useful bandwidth of the gap waveguide [1],
or rather the potentially useful bandwidth, as there may be
higher order gap waveguide modes present within this
bandwidth if the strip or ridge is wide enough. Notice also
that the cut-off bandwidth of the lowest-order parallel-
plate modes has limited relation to the bandgap of surface
Microw. Antennas Propag., 2010, Vol. 4, Iss. 11, pp. 1799–1810
doi: 10.1049/iet-map.2009.0399
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waves in the open periodically loaded surface. This can be
seen by comparing the cut-off bandwidths in [11] with the
surface wave bandgaps of the same open surfaces in [12],
from which it can be seen that the lower cut-off frequency
is approximately the same as the start frequency of the
bandgap, whereas the upper cut-off frequency is very
different from the stop frequency of the bandgap of the
surface waves in the open surface.

Finally, it needs to be pointed out that the present results
have been validated by using the general electromagnetic
solver computer simulation technology (CST) Microwave
Studio [13]. Microwave devices based on gap waveguides
can of course always be analysed and designed by such
general codes. However, the computer time will increase
with the size of the devices in terms of wavelength.
Therefore it is always of importance to derive faster analysis
approaches such as the method of moments (MoM), and
the first step in developing a moment method analysis
approach is to find the Green’s function of the analysed
structure, which thereby motivates the present paper. The
analytical treatment involved also improves the physical
understanding of how the gap waveguide works, and
therefore it can also help to improve the performance in the
long run.

2 Homogenised plane-wave
spectral-domain approach
2.1 Plane-wave spectral-domain
approach

The derivation of the Green’s functions will be obtained in
the plane-wave spectral domain. The method was
previously used commonly in the analysis of microstrip
circuits and antennas, see for example, [14–17], where [17]
represents the formulation and algorithm implementation
of it used in the present paper. The plane-wave spectral
domain is defined by

Ẽ(kx, ky, z) =
∫1

−1

∫1

−1

E(x, y, z)e jkxxe jkyydx dy (1)

where ‘� ’ denotes the two-dimensional Fourier
transformation with kx and ky the spectral variables, and
correspondingly for the H-field. The spatially varying field
is obtained by the corresponding inverse transformation.

Field solutions in the spectral domain (without single
separate ridges or strips) can be determined by using the
approach described in any of the references [14–17]. In
short, we assume that the spectral solutions of the
Helmholtz differential equation for Ez and Hz components
of the electromagnetic field have the form

Ẽz(kx, ky, z) = A cos(kzz) + B sin(kzz) (2a)

H̃ z(kx, ky, z) = C cos(kzz) + D sin(kzz) (2b)
T Microw. Antennas Propag., 2010, Vol. 4, Iss. 11, pp. 1799–181
i: 10.1049/iet-map.2009.0399
where the e−jkxxe−jkyy variation is understood and suppressed.

kz =
��������������
k2

0 − k2
x − k2

y

√
, k0 is the free-space wavenumber and

A, B, C and D are the unknowns which are determined by
fulfilling the boundary conditions on each of the two
surfaces for the x- and y-components of the fields. It
is important to mention that it is sufficient to determine
only the z-components of the electromagnetic field,
whereas all the other components are given from these by
(12) in [14].

2.2 Homogenisation using spectral
surface admittance

The rigorous analysis of periodic structures can be performed by
expanding the electromagnetic field into Floquet modes and
then by using some general numerical approach (e.g. MoM,
finite-element method (FEM) or finite-difference time-
domain (FDTD)) to determine the fields and/or currents in a
unit cell, but still this is very time consuming if the source
excites a spectrum of plane waves, such as it does in our
Green’s function case (i.e. when we have a point source).
However, it is possible to be much more computationally
efficient by introducing some simplifications into the rigorous
analysis approach, by which all electromagnetic effects will
still be included.

The general idea is to use some approximate boundary
condition replacing the periodic texture in the plane-wave
spectral domain, and to derive the Green’s functions for
this simpler waveguide. We will assume that the period of
the surface is very small compared to wavelength that will
allow us to base the analysis on the so-called asymptotic
boundary conditions [18]. In principle, the asymptotic
boundary conditions are valid in the limit when the
periodicity of the surface approaches zero. This
homogenises the surface and captures the main physical
phenomena. For example, it is isotropic for the 2D style
periodic surface and anisotropic for the 1D periodic type.

The asymptotic boundary condition for the considered
surface will be conveniently represented by the
homogenised surface impedance in the plane-wave spectral
domain. This will then have an angle of incidence variation
(spectral kx and ky variation), through which the depth d of
the surface is accounted for, and in general, we need to
allow the surface impedance to be anisotropic. Further, it is
advantageous to use the spectral surface admittance instead
of the surface impedance, in order to avoid problems with
the infinite impedance of PMC. Thus, we will finally use
the general surface admittance components Ỹ xy and Ỹ yx

defined by (the periodic surface coincides with the xy-plane)

Ỹ yx =
H̃ y

Ẽx

, Ỹ xy = − H̃ x

Ẽy

(3)
0 1801
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2.3 Inverse transformation by contour
integration in complex plane

The inverse Fourier transformation is not straightforward,
because the desired modal solutions are represented by
singularities in the spectral-domain expressions for the
field. However, by changing the contour of integration in
the complex kxky plane, it is possible to avoid numerical
difficulties caused by the presence of the poles. In the case
of PEC/PMC strips and corrugations, the poles are
located on two lines [18, 19], and therefore the approach
from [20] is adopted. In the case of the bed-of-nails
structure, the poles are located on concentric circles and
we have applied the integration in the polar coordinate
system [21].

For the 1D periodic type, the analysis is completed by the
inverse transformation, whereas for the 2D periodic type, we
need to account for the boundary condition on the single
non-periodic ridge or strip.

2.4 Single ridge/strip boundary
condition

The ridge/strip itself is for the 2D surface type introduced
into the analysis via an infinite transmission line current
with propagation constant keff that is evaluated by using
the approach described in [22]. This approach is as
follows. The transmission line current is approximated as
a travelling wave current of the form Jy(x

′)e−jkeff y′ , where
keff is the unknown propagation constant, y ′ is the
position at the ridge or strip and Jy(x

′) is an assumed
expression for the transverse distribution across the ridge
or strip of the longitudinal current. Thus, we assume that
the current is entirely longitudinal, with a known current
distribution. The simplest assumption for Jy(x

′) is to
assume that it is constant over the width, but it will give
better results if the known singularities of the current at
the sharp strip edges or 908 ridge wedges are included in
Jy(x

′) [23], see also Section 4.3. These assumptions on
the travelling wave current may not be ideally correct for
the ridge, in which case we may expect some transverse
current components that continue down on both sides of
the ridge, and not even for a wide strip, in which case we
may also expect transverse current components. Still, we
will use these approximations in the present work and
study their accuracy by comparison with the numerical
CST solution. An alternative would have been to
compute the current distribution by expanding it in terms
of several known functions (i.e. basis functions) with
unknown coefficients, and solve for these coefficients
using the MoM.

By transforming Jy(x
′) to the spectral domain and inserting

it into the inverse transform for the y-directed electric field, it
is possible to find the field on the ridge itself. Enforcing the
boundary condition that the Jy(x

′)-weighted electric field is
zero across the ridge (this corresponds to the Galerkin’s
02 IET
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method when applying the MoM), the following
characteristic equation is finally obtained

∫1

−1

�̃�G
EJ

yy (keff , kx) · J̃
2
y (kx) · dkx = 0 (4)

Here �̃�G
EJ

yy (keff , kx) is the spectral domain Green’s function for
a y-directed source located just above the periodic texture in
our waveguide. J̃ y(kx) is the Fourier transform of Jy(x).
From this equation it is possible to determine the
propagation constant keff of the ridge current, and
thereafter we can evaluate the modal field of the 2D
periodic-type gap waveguide.

3 1D periodic-type structure
3.1 Ideal PEC/PMC strip grids

Let us first consider the ideal case where the lower surface
consists of PEC and PMC strips with a period much
smaller than the wavelength. The source is assumed to be a
vertical (z-directed) electric source located just below the
upper plate, as shown in Fig. 2.

The boundary conditions for this geometry are

Ẽy = 0, H̃ y = 0, at z = 0 (5a)

Ẽx = M̃y, Ey = −M̃x at z = h (5b)

The first two boundary conditions are actually the asymptotic
boundary conditions for the PEC/PMC strips [18, 19]. Mx

and My are horizontal magnetic replacement currents,
which can be expressed using our actual vertical
(z-directed) electric current source Jz by using (5) from
Section 2.2 in [24]

M̃x =
ky

k0/h0

J̃ z, M̃y = − kx

k0/h0

J̃ z (6)

where h0 is the free-space impedance.

Figure 2 Electric current source between parallel plates in
which the lower plate is a PEC/PMC strip grid, that is, an
ideal soft and hard surface
Microw. Antennas Propag., 2010, Vol. 4, Iss. 11, pp. 1799–1810
doi: 10.1049/iet-map.2009.0399
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Finally, we obtain the following expressions for the H̃ x

and H̃ y fields, which are the main fields of interest in our
case

�̃�G
HJ

xz = H̃ x = j
ky

k2
0 − k2

y

− k2
x

kz

sin(kzz)

cos(kzh)
+ kz

cos(kzz)

sin(kzh)

[ ]
(7a)

�̃�G
HJ

yz = H̃ y = j
1

k2
0 − k2

y

(k2
0 − k2

y )
kx

kz

sin(kzz)

cos(kzh)

[ ]
(7b)

The poles of the spectral-domain Green’s functions
correspond to propagation constants of waveguide modes.
From these expressions, we notice that there exist classical
global-type parallel-plate modes determined by the nulls of
the functions cos(kzh) ¼ 0 and sin(kzh) ¼ 0. Furthermore,
we have an additional guiding mode defined by
k2

0 − k2
y = 0. The latter is a so-called grating wave or strip

wave that propagates along the strips. We have evaluated
the transverse field variation as explained after (1). The
result is depicted in Fig. 3, showing the x-component of
the magnetic field just below the upper plate for a gap
height of 3.5 mm and a frequency of 10 GHz. We
understand from the graph that the fields that propagate in
this mode follow the strips, and that they are strongly
confined to the strips that are located directly below the
source (the rate of the field decay is more than 100 dB/l),
thus effectively forming a narrow transmission line within
the oversized waveguide (the figure shows the H-field
distribution just below the upper PEC surface both for
y ¼ 1l0 and for y ¼ 5l0). This is in spite of the fact that
the source radiates omnidirectionally, and that it is located
just below the upper waveguide plate (i.e. the PEC plane).
Note that the field does not decay with the distance from
the source, and thereby we have obtained a narrow
confined transmission line mode within the parallel-plate
waveguide.

Figure 3 Hx field evaluated at the upper surface in a plane
transverse to the strip direction at two distances 1l and 5l
away from the z-directed electric current source
T Microw. Antennas Propag., 2010, Vol. 4, Iss. 11, pp. 1799–181
i: 10.1049/iet-map.2009.0399
The produced confinement is a consequence of the fact that
the characteristic equation k2

0 − k2
y = 0 does not depend

on the kx value. A simple explanation for this behaviour lies
in the property of the PEC/PMC strips, which in the
x-direction behave as a soft surface and prevent the
propagation of waves, whereas in the y-direction they act as
a hard surface and therefore support wave propagation.

3.2 Corrugations

The same approach can be repeated for a practical case in
which the PEC/PMC strips are realised as a corrugated
surface as shown in Fig. 4. The properties of the
corrugations are described using a spectral surface
admittance Ỹ yx defined as

Ỹ yx =
H̃

corr
y

Ẽ
corr

x

= j
1

k0h0

P

W

����������
1rk

2
0 − k2

y

√
cot d

����������
1rk

2
0 − k2

y

√( )
(8)

where 1r is the permittivity of the medium inside the
corrugations and d is the height of the corrugations. P and
W represent the period and the width of the corrugations,
respectively. This expression is derived in [19] with the
assumption that the period of the corrugations is much
smaller than the operating wavelength [18]. The following
expressions for the H̃ x and H̃ y fields can be obtained

�̃�G
HJ

xz = j
ky

DSW

− k2
x

kz

sin(kzz)

cos(kzh)
+ kz

cos(kzz)

sin(kzh)

[

− jk0h0Ỹ yx

cos(kzz)

cos(kzh)

]
(9a)

�̃�G
HJ

yz = j
1

DSW

(k2
0 − k2

y )
kx

kz

sin(kzz)

cos(kzh)

[

+ jk0h0 kxỸ yx

cos(kzz)

cos(kzh)

]
(9b)

where DSW is defined as

DSW = k2
0 − k2

y − jk0h0 kzỸ yx tan(kzh) (10)

Apart from the classical global-type parallel-plate modes, like
in the ideal PEC/PMC strip grid case, we again have a local
confined gap wave that follows the corrugations, defined by

Figure 4 Parallel-plate waveguide with one plate replaced
by longitudinal corrugations
0 1803
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DSW ¼ 0, that is, by

k2
0 − k2

y − jk0h0 kzỸ yx tan(kzh) = 0 (11)

As an example, let us consider a waveguide that is designed to
work in the frequency band around 10 GHz. The gap height
of the considered waveguide is 3.5 mm. The corrugations are
filled with dielectric material having permittivity 1r ¼ 4.0,
the width of corrugations is 1.7 mm and the period is
2 mm (W/P ¼ 0.85). This means that the depth of the
corrugations is 4.33 mm, being defined by the so-called
hard boundary condition

d = l0

4
�������
1r − 1

√ (12)

The dispersion diagram for this case is computed by the
present approach and presented in Fig. 5. It is computed
for the soft x-direction for which there should be no wave
propagation. The desired cut-off band can be observed
between 8.66 and 10.85 GHz. The dispersion diagram
computed using CST Microwave Studio [13] is also shown
and confirms the results obtained by the present approach.
It can be observed in [18] that the surface wave bandgap of
the open corrugated surface ranges from 8.66 to
17.32 GHz (i.e. from fSOFT to 2fSOFT), which is a much
larger stop bandwidth than the cut-off bandwidth of the
parallel-plates. This can be explained by taking a closer
look at (9) for the soft direction (ky ¼ 0). By combining (8)
and (11), the following is obtained

k2
0 +

���
1r

√
k0

P

W
cot

���
1r

√
k0d

( )
· kz tan(kzh) = 0 (13)

Using a small argument approximation and the fact that at
the cut-off frequency kz ¼ k0, the characteristic equation in

Figure 5 Dispersion diagram for the parallel-plate
waveguide with corrugations obtained for the soft
direction (x)
04 IET
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(11) can be reduced to the following approximate form

l2
cut−off + p2 h

���
1r

√ P

W
· lcut−off − 4p21rdh

P

W
= 0 (14)

which gives the following upper cut-off wavelength

lcut−off =
1

2
p2 · h · ���

1r

√ · P

W
· −1 +

�������������
1 + 16

p2

d

h

W

P

√[ ]
(15)

This gives for the present example an upper cut-off frequency
at 11.45 GHz, compared to a numerically computed value of
10.85 GHz.

The complete dispersion diagrams have been determined
by the present plane-wave approach for different
dimensions of the corrugated surface, different gap heights
and different permittivity in the grooves. The results
are plotted in Fig. 6, showing both the lower and higher

Figure 6 Lower and upper cut-off frequencies for the
parallel-plate waveguide with one corrugated surface for
different dimensions and permittivities

Lower cut-off frequency is approximately equal to the soft
frequency
Microw. Antennas Propag., 2010, Vol. 4, Iss. 11, pp. 1799–1810
doi: 10.1049/iet-map.2009.0399
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cut-off frequencies. The soft frequency (i.e. the approximate
lower cut-off frequency) was fixed by appropriately selecting
the depth d and permittivity 1r of the corrugations
d = lsof t/4

���
1r

√( )
, whereas the upper cut-off frequency was

determined by computation. The diagrams show how the
dimensions and permittivity can be changed in order to
obtain a reasonable bandwidth. In other words, by selecting
a smaller height for the waveguide gap and a larger W/P
ratio, it is possible to enlarge the cut-off bandwidth.

The transverse field distributions in the soft direction
perpendicular to the corrugations and in the hard direction
along the corrugations were computed using the spectral-
domain approach when excited by a vertical short dipole
located below the upper waveguide plate (i.e. below the
PEC plate), and are presented in various ways in Figs. 7–9

Figure 7 Plot of the transversal magnetic fields Hx and Hy

for the parallel-plate waveguide with corrugated surface
obtained by the spectral-domain approach (solid lines)
and by CST Microwave Studio (dashed lines)

Figure 8 Lateral Hx field distribution at y ¼ 1l0 and
y ¼ 4.5l0 excited by z-directed electric source at y ¼ 0
inside the parallel-plate waveguide with one corrugated
surface

Hard frequency is at 10 GHz
T Microw. Antennas Propag., 2010, Vol. 4, Iss. 11, pp. 1799–181
i: 10.1049/iet-map.2009.0399
for the following dimensions: h ¼ 3.5 mm, d ¼ 4.33 mm,
1r ¼ 4 and W/P ¼ 0.85.

The results for two observation points are plotted in Fig. 7
as a function of frequency. One observation point is located
4.5l0 (l0 is defined by hard boundary condition, (12))
away from the source in the direction along the
corrugations (Hx component is plotted), and the other is
located 1l0 away from the source in the direction
perpendicular to corrugations (Hy component is plotted).
For comparison, the results obtained using CST
Microwave Studio are also given, as already computed and
presented in [9], showing good agreement.

The field distribution in the transverse plane at two
distances from the source in the direction along the
corrugations is presented in Fig. 8, for two frequencies. We
see that the rate of the field decay away from the ridge is
approximately 70 dB/l, proving that the field is very tightly
confined to the corrugations that are located just below the
source. Furthermore, at the hard frequency of 10 GHz (12)
there is no widening of the lateral H-field distribution
along the guiding corrugations, corresponding to almost
ideal 1D wave propagation. At 9.5 GHz (as well as at other
nearby frequencies) the lateral H-field distribution widens
slightly since the pole position in the complex plane is now
a function of both the kx and ky variables, corresponding to
a 2D wave propagation. In Fig. 9 the gap height h is
chosen as a parameter, and the field distributions are
evaluated at the hard frequency (10 GHz). As expected, it
can be seen that when the gap height h is reduced, the
lateral field distribution becomes even more confined.

To provide a rough idea concerning the quality of the local
guiding properties of the waveguide with the corrugations,
Tables 1 and 2 give a comparison of the lateral field decay

Figure 9 Lateral Hx field distribution at y ¼ 4.5l0 excited by
z-directed electric source at y ¼ 0 inside the parallel-plate
waveguide with one corrugated surface evaluated at
10 GHz

Parameter is the gap height h
0 1805
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rate for some waveguide gap heights and frequencies. The
results show very high decay rates even when the frequency
is moved from the central hard frequency and when the
gap width is increased. For comparison the results for ideal
PEC/PMC waveguide are also given in the tables.

4 2D periodic type structure
The spectral Green’s functions for the 2D periodic type
without the ridge or strip can be derived in the same way
as for the 1D periodic type in Section 3, but by using the
general anisotropic surface admittance introduced in
Section 2.2. The result is
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where

C1 = jkxkykz(Ỹ yx − Ỹ xy) (17a)

C2 =−b2h0 k0 tan(kzh)Ỹ xyỸ yx − jkz(k2
xỸ yx + k2

y Ỹ xy) (17b)

Table 1 H-field decay rate in the waveguide with
corrugations as a function of waveguide height; at hard
frequency f ¼ 10 GHz, observation point at y ¼ 4.5l0

h ¼ 2 mm h ¼ 3.5 mm h ¼ 5 mm

corrugated
waveguide

103 dB/l0 72 dB/l0 53 /l0

ideal
PEC/PMC
waveguide

185 dB/l0 117 dB/l0 82 dB/l0

Table 2 H-field decay rate in the waveguide with
corrugations as a function of frequency, gap height
h ¼ 3.5 mm, observation point at y ¼ 4.5l0

f ¼ 9.5 GHz f ¼ 10 GHz f ¼ 10.5 GHz

corrugated
waveguide

60 dB/l0 72 dB/l0 47 dB/l0

ideal PEC/
PMC
waveguide

116.7 dB/l0 116.9 dB/l0 117.2 dB/l0
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We will now evaluate some results for our two special cases,
when the lower surface is a PMC and a bed-of-nails.

4.1 Ideal PMC

The PMC is a special case of the above general surface
impedance case, giving

Ỹ yx = Ỹ xy = 0 (18)

DSW = − 1

h0

cot(kzh) (19)

The cut-off frequency of the lowest mode is defined
with (2p/l)h ¼ p/2, that is, there are no waveguide
modes present if the gap of the waveguide is smaller than
l/4. The fields excited in such a waveguide will be
discussed below, as an ideal case of the 2D periodic type
of waveguide.

4.2 Bed-of-nails structure

The bed-of-nails is a very promising surface for use in gap
waveguides. It is 2D periodic and can therefore exhibit cut-
off property in all directions of wave propagation between
the two plates. The topology of the surface is shown in
Fig. 10. It consists of metallic pins attached to a ground
plane, and the pins can be embedded in a dielectric
medium. In practice, the dielectric is not necessary and it is
actually unwanted at high frequencies due to losses, but in
our analysis we shall take into account the same dielectric
as in the 1D periodic case (corrugations) for comparison
reasons.

Figure 10 Illustration of two parallel plates for use in a
single-ridge/strip gap waveguide, wherein one of the
plates has a high surface impedance realised by a bed-
of-nails
Microw. Antennas Propag., 2010, Vol. 4, Iss. 11, pp. 1799–1810
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The homogenisation method in [3] is based on modelling
the pins structure as a uniaxial medium whose permittivity
may be characterised by the permittivity tensor

1 = 101r(x̂x̂ + ŷŷ + 1zz(l, kz, P, rw)ẑẑ) (20)

Note that the z-component of the permittivity tensor
depends on the direction of the incoming plane wave,
on the periodicity of the structure P and on the radius of
the wires rw [3]. The model predicts that such a wire
medium can support three different types of modes:
transverse electromagnetic (TEM), transverse magnetic
(TM) and transverse electric (TE) modes (relative to the
direction of the pins, i.e. the z-direction). Using the TE–
TM decomposition of the electric point source and
by imposing the appropriate boundary conditions at
all the interfaces, it is possible to obtain the reflection
coefficients for both polarisations. For the TM case, the
result [3] is

GTM =−
kdiek2

p tan(khd )−b2gTM tanh(gTMd )+1g0(k2
p+b2)

kdiek2
p tan(khd )−b2gTM tanh(gTMd )−1g0(k2
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(21)

Here kdie is the wavenumber in the pins medium with
permittivity 1r, kp is the plasma wavenumber of the pins
lattice (k2

p = 1/a2[2p/(ln(a/2pb) + 0.5275)]), b2 = k2
x +
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. In the TE

case, the electric field is perpendicular to the pins and
not affected by them. Consequently, we are left only with
the dielectric slab and the reflection coefficient can be found
to be
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The surface impedances of the bed-of-nails structure for these
two polarisations are now found to be
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We shall first analyse the behaviour of the surface modes
appearing in the parallel-plate waveguide partly filled with
the wire medium. As before, the surface waves are defined
with the equation DSW ¼ 0. The analysed structure is
similar to the one used for the corrugated case. The
permittivity of the dielectric slab is 4.0 and the thickness
of the bed-of-nails structure is 4.33 mm (the same as
before). The period of the metallic pins is 3.75 mm and
Microw. Antennas Propag., 2010, Vol. 4, Iss. 11, pp. 1799–181
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the diameter of the pins is 0.375 mm. The gap height is
again 3.5 mm.

As expected, the dispersion plot in Fig. 11 shows that
surface wave propagation is possible in all directions for
frequencies outside the stopband which is now between 8.6
and 11.1 GHz. Using CST Microwave Studio to model
the actual non-homogeneous pin surface, the predicted
bandgap is between 8.4 and 11.1 GHz. The comparison of
Figs. 5 and 11 gives us foundation to consider the bed-of-
nails structure as a kind of 2D corrugated surface.

In the same way as for the corrugations, it is possible to
derive an approximate expression for the cut-off frequencies
of the waveguide partly filled with bed-of-nails. The lower
cut-off frequency is the soft frequency, and the higher cut-
off wavelength is approximated with the expression

lcut−off =
1

2
p

2 · h · ���
1r

√ · −1 +
����������
1 + 16

p2

d

h

√[ ]
(24)

It is important to be aware that these approximations for the
cut-off wavelengths are valid only asymptotically for small
periods approaching zero, so they may not necessarily agree
with the numerical results in [11].

Fig. 12 shows the transversal magnetic field magnitude
with respect to frequency for parallel-plate waveguide
shown. The observation point was located 3l0 in x-
direction and 1l0 in y-direction away from the source
point, where l0 is taken at the central frequency of
10 GHz. As before, the source is a short vertical dipole
located below the upper waveguide plate. For comparison
the results obtained using CST MW Studio are also
plotted. The stopband properties of the bed-of-nails surface
are clearly visible, and the results obtained by two analysis
methods agree well.

Figure 11 Dispersion diagram for the parallel-plate
waveguide with bed-of-nails structure inserted (pins are in
the dielectric medium 1r ¼ 4)
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4.3 Transmission line formed by ridge
or strip

The solution method for this case (depicted in Fig. 13) was
described generally in Section 2.4. The computed
propagation constant is compared to the result obtained
using CST Microwave Studio in Fig. 14. These were
computed for the actual non-homogenised geometry, with
the geometrical parameters being the same as in the
previous subsection with the addition of the ridge with a
width of w ¼ 7.5 mm. We see that the propagation
coefficient of the transmission line mode is relatively close
to the light line (kef/k0 ¼ 1), showing that the considered
mode is a quasi-TEM mode. It is important to notice that
due to the presence of the dielectric the computed
propagation coefficient crosses the light line (kef /k0 ¼ 1)
which would not have been the case if there was no
dielectric in the pins structure.

Furthermore, Fig. 15 shows the plot of the TM field (Hy

component) computed 0.5 mm above the ridge. The lateral
decay for this case is approximately 70 dB/l0 at the central
frequency of 10 GHz which is comparable with the
corrugated structure. Also, the agreement with CST results
is very good, except for the little offset between the curves.

Figure 12 Plot of the transversal magnetic field for the
parallel-plate waveguide with bed-of-nails surface (the
medium surrounding the pins is a dielectric with 1r ¼ 4).

Figure 13 Single-ridge type waveguide (the periodic texture
is the pins surface)
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This offset is expected due to the edge condition included
in the assumed x-variation of the current distribution, and
the omission of the transverse current components on the
ridge. We first tried to use a uniform current distribution,

Figure 15 Comparison between spectral-domain approach
and CST Microwave Studio for the lateral Hy field
distribution (y ¼ 3l0 and the field is computed 0.5 mm
above the ridge)

Figure 14 Propagation constant of the fundamental mode
of the example ridge gap waveguide, computed with the
present method and with CST Microwave Studio

Table 3 H-field lateral decay rate computed with spectral-
domain approach in the single-ridge waveguide with bed-
of-nails and an ideal PMC structure, as a function of
waveguide height; frequency f ¼ 10 GHz

h ¼ 2 mm h ¼ 3.5 mm h ¼ 5 mm

bed-of-nails
structure

91 dB/l0 70 dB/l0 56 dB/l0

ideal PMC
structure

120 dB/l0 92 dB/l0 81 dB/l0
Microw. Antennas Propag., 2010, Vol. 4, Iss. 11, pp. 1799–1810
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but then the discrepancy was larger. The present results are
obtained using the edge condition of a 908 wedge, as
explained in Section 2.4.

Tables 3 and 4 give a comparison of the lateral field decay
rate for different gap heights and frequencies. The decay rates
show that the bed-of-nails structure can also very tightly
confine the field only to the guiding ridge proving excellent
properties of this type of waveguides.

5 Conclusions
This paper has presented an analytical and a numerical
analysis using the Green’s function approach for parallel-
plates with one wall replaced by a metamaterial-based
periodic texture. The periodic structure is designed in such
a way that the ordinary global parallel-plate modes are in
cut-off, thus forcing the electromagnetic fields to propagate
only along one or more guiding ridges or strips. For this
reason we have performed the analysis for these different
types of periodic structures: ideal PEC/PMC strip grid (i.e.
an ideal soft and hard surface), longitudinal metal
corrugations, an ideal PMC and a bed-of-nails (being a
good representation of an isotropic artificial magnetic
conductor). The two former cases have 1D periodicity in
the surface, whereas the latter two have 2D periodicity.

The Green’s functions were derived in the plane-wave
spectral domain using homogeneous asymptotic boundary
conditions. Since the poles of the obtained spectral Green’s
functions correspond to waveguide modes, it was possible
to analyse the dispersion properties of these modes and
compute the field distributions. The computed dispersion
diagrams proved the existence of parallel-plate stopbands
within which guiding in only one direction is allowed (1D
periodic type gap waveguide), or only along the inserted
guiding ridge or strip (2D periodic-type gap waveguide).

For the 1D periodic type, it was shown that the guiding of
waves exists only in the direction parallel with the
corrugations, and that the waves are ideally confined only at
the hard frequency when the corrugations work as a PEC/

PMC strip grid. Nevertheless, depending on the
dimensions, we achieved very large lateral decay rates away
from the guiding ridges, having values between 50 and

Table 4 H-field lateral decay rate computed with spectral-
domain approach in the single-ridge waveguide with bed-of-
nails and an ideal PMC structure, as a function of frequency;
gap height h ¼ 3.5 mm

f ¼ 9.5 GHz f ¼ 10 GHz f ¼ 10.5 GHz

bed-of-nails
structure

73 dB/l0 70 dB/l0 67 dB/l0

ideal PMC
structure

87 dB/l0 92 dB/l0 97 dB/l0
T Microw. Antennas Propag., 2010, Vol. 4, Iss. 11, pp. 1799–181
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120 dB/l. Furthermore, to allow simpler evaluation of the
stopbands, practical expressions were derived for the lower
and upper cut-off frequencies of the parallel-plate stopband
in the transverse (soft) direction.

By locating a single ridge or strip within a parallel-plate
structure with a 2D periodicity, we could formulate a
dispersion equation in integral form by satisfying the
boundary conditions on the ridge or strip. The plotted
dispersion diagram revealed the presence of confined quasi-
TEM mode within the stopband of the 2D periodic parallel-
plate structure. The modal fields were computed showing
lateral decay rates away from the guiding ridge of between 50
and 120 dB. In the same way as for the 1D periodic surface
type, analytic expressions for the cut-off frequencies of the
stopband were derived, valid asymptotically in the limit of
vanishing period of the 2D periodic texture.

The computation of the dispersion diagram for the 2D
periodic case was done by approximating the currents on
the ridge to be entirely longitudinal. In reality, there may
be a small asymmetric transverse component. Still, the
results were in quite good agreement with solutions
obtained using the general commercial CST solver. There
is a need to study the current distribution further, for
example, by expanding the current in a complete basis
function series and by determining the coefficients using
the moment method. Then, the spectral Green’s functions
will be needed, as presented in this paper.

The presented method and Green’s functions were verified
through comparison with the results obtained by a general
electromagnetic solver, showing good agreement. Therefore
the developed formulation of Green’s functions can be used
as a basis of an efficient moment method program for
analysing gap waveguide circuits and antennas, in a manner
similar to that for analysing microstrip structures.
Consequently, this method results in a significantly
increased computational efficiency compared to the general
electromagnetic solvers based on FEM or FDTD methods.
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