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The goal of this paper is to investigate the effect of channel side information on increasing the achievable rates of continuous
power-limited non-Gaussian channels. We focus on the case where (1) there is imperfect channel quality information available
to the transmitter and the receiver and (2) while the channel gain is continuously varying, there are few cross-region changes,
and the noise characteristics remain in each detection region for a long time. The results are presented for two scenarios,
namely, reliable and unreliable region detection. Considering short- and long-term power constraints, the capacity bounds are
found for log-normal and two different Nakagami-based channel distributions, and for both Max-Lloyd and equal probability
quantization approaches. Then, the optimal gain partitioning approach, maximizing the achievable rates, is determined. Finally,
general equations for the channel capacity bounds and optimal channel partitioning in the case of unreliable region detection
are presented. Interestingly, the results show that, for high SNR’s, it is possible to determine a power-independent optimal gain
partitioning approach maximizing the capacity lower bound which, in both scenarios, is identical for both short- and long-term
power constraints.

1. Introduction

As shown by Shannon [1], having perfect knowledge about
the channel, the Shannon capacity is achieved via updating
the transmission power and rate relative to channel quality.
However, assuming perfect channel information at the
transmitter and receiver is an overly optimistic assumption,
which does not match with reality [2–6]. Often, the receiver
channel side information (CSI) is limited to knowledge of
what SNR interval the channel quality belongs to, that is,
the CSI is quantized to the best modulation and coding
scheme (MCS) (see [3–6]). Then, implementing predefined
coding and modulation selection tables, the transmitter
is informed about the acceptable transmission rates via
a limited number of feedback bits. This is a suboptimal
but practical approach, and the considerable throughput
improvement has led adaptive modulation with imperfect
channel state information to be a major issue in, for example,
the 3rd Generation Partnership Project (3GPP) [7] and some
standards like UMTS/WCDMA [8].

Started by Shannon [1], Dobrushin [9], and Wolfowits
[10], there have been several attempts during the last
decades to deal with channel capacity in the presence of
side information; Goldsmith and Varaiya [11] presented a
coding strategy for achieving the channel capacity in the
presence of perfect channel knowledge at the transmitter
and receiver. Caire and Shamai [12], and Das and Narayan
[13] investigated different classes of channels with memory
and side information at the transmitter and receiver. Further,
Tatikonda [14] presented a new model of feedback channels
which generalized the Verdu and Han [15] capacity formula
for channels without feedback. Lapidoth and Shamai [16]
examined the effect of side information imprecision in the
capacity of fading channels. Also, Skoglund and Jöngren
[17] presented numerical results verifying the effect of
channel quality information quantization on the capacity
of multiple-antenna systems. Lau et al. [18] worked on
the capacity of memoryless and block-fading channels with
partial channel state feedback and proposed a Max-Lloyd-
like algorithm to find the capacity. Considering memoryless
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feedback channel, Yüksel and Tatikonda [19] obtained
the capacity of Markov channel with causal deterministic
quantized state feedback. Moreover, there have been some
other works such as [20–22] dealing with feedback capacity
in Markov channels.

Research in the field of feedback channel capacity
has received more attention in the recent years: Jafar
[23] provided a common form of capacity expression for
the cases where causal or noncausal side information is
available to the transmitter. Kim et al. [24] found the
upper and lower bounds on the reliability function of the
additive white Gaussian noise channels in noisy feedback
channels. Moreover, Martins and Weissman [25] proposed
some coding strategies for reliable communication over
additive white Gaussian channel in the presence of feedback
corrupted by quantization or additive bounded noise and
analyzed the channel capacity in this case. Dabora and
Goldsmith [26] found the capacity region of the discrete-
time, time-varying broadcast channel with memory in two
different cases of feedback knowledge. Permuter et al. [27]
determined the capacity region of finite-state multiple-
access channel in the presence or absence of feedback
information. Finally, Tatikonda and Mitter [28] developed
a general framework for channels with memory and feed-
back.

Particularly, in presence of noise-free quantized channel
SNR information at the transmitter and perfect knowledge
at the receiver, Liu et al. [29] have recently obtained the
achievable rates of slow fading channels using optimal
channel SNR quantization and power allocation. In their
work, in order to have error-free data transmission, the
channel SNR is assumed to be constant, equal to its worst
case (consequently, we denote it “the worst case approach.”)
within each quantization interval. This is a simple practical
approach which results in Gaussian input distributions
reaching the maximum reliable rates if the channel remains
fixed for a long time so that the ergodic capacity is achieved.
Later, Kim and Skoglund [30] showed that the worst case
is, in fact, the best value which can be considered in each
quantization region maximizing the total achievable rates.
Also, the same approach, but with noisy feedback channel,
has been investigated in [31]. However, it is obvious that the
proposed rates reduce to a lower bound of channel capacity
in the cases where the channel SNR is not fixed but changes
within each quantization region for a long time. Moreover,
the results are based on perfect CSI at the receiver which is
not a valid assumption in practice. Finally, as illustrated in
the following, in the above approach no data is transmitted
in one of the quantization regions which deteriorates the
transmission performance.

Most analyses of digital communication systems are
based on the additive Gaussian noise channel. However,
experimental measurements have confirmed the presence of
non-Gaussian noise in many communication channels such
as underwater acoustic channels [32], narrowband cellular
networks, for example, GSM [33], or urban/indoor mobile
and portable radio channels [34]. This effect, which is mainly
due to crosstalk or other types of additive interference,
has been studied from different practical and theoretical

points of view; Pinsker et al. [35] analyzed the sensitivity
of channel capacity to additive non-Gaussian noise. Further,
The authors in [36] studied the higher order asymptotics
of mutual information for nonlinear channels experiencing
non-Gaussian noise. The authors in [37, 38] provided some
upper bounds on the capacity of non-Gaussian channels.
Then, considering Gaussian input distributions, The authors
in [39] investigated the effect of nearest neighbor decoding
on the achievable rates of non-Gaussian channels. Moreover,
Das [40], Tchamkerten [41], and Smith [42] obtained
some sufficient conditions on the noise characteristics which
guarantee the presence and some properties of the capacity-
achieving input distributions. Finally, among more practical
works, we can mention [33, 34, 43–46] in which different
topics, such as channel estimation [33], multiuser detection
[34], equalizer design [43, 44], sequence detection [45] and
decoder design [46], have been studied in non-Gaussian
channels.

Based on this perspective, this work attempts to analyze
the maximum achievable rates of a continuous power-
limited non-Gaussian channel in the presence of channel
side information. Here, motivated by practical adaptive
modulation systems, we focus on the case where (1) there
is imperfect channel quality information (CQI) available
to the transmitter and receiver, and (2) while the channel
gain is continuously varying, there are rare abrupt cross-
region changes in the channel conditions, and the noise (and
interference) characteristics remain in each detection region
for some time so that it is meaningful to send CQI feedback.
This case is motivated by the aforementioned practical MCS
transmission schemes, and it will also serve as a lower bound
of the performance of a system with perfect receiver CSI and
quantized transmitter CSI.

As it will be seen, our proposed bounds lead to higher
achievable rates in comparison to the worst case approach
discussed above. Furthermore, in contrast to the worst case
approach, data transmission is done in all states, improving
the transmission performance. The results are presented in
two scenarios, namely, reliable and unreliable region detec-
tion. In the first scenario, considering short- and long-term
power constraints, the channel capacity bounds are obtained
for log-normal and two (μ = 2 and μ = 3) Nakagami-
based distributions, and for two (equal probability and Max-
Lloyd [47]) quantization approaches. Further, we propose
a method for determining the optimal gain partitioning
approach maximizing the proposed achievable rates which
is tested for the three mentioned distributions. Moreover,
the general equations for the capacity bounds and optimal
channel partitioning maximizing the achievable rates in the
case of unreliable region detection are presented in the last
part and are illustrated in more details via some examples.
The results show that, for high SNR’s, it is possible to
determine a power-independent optimal gain partitioning
approach maximizing the capacity lower bound which, in
both scenarios, is identical for both short- and long-term
power constraints.

The rest of the paper is organized as follows. In
Section 2, the problem statement is presented. Based on our
channel model, the bounds of channel capacity with no side
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Figure 1: Channel model: (a) original model, (b) new representa-
tion of channel model, (c) channel with feedback.

information and in the presence of imperfect channel state
information at the transmitter and receiver are presented
in Sections 3 and 4, respectively. Then, considering error-
free region detection, the optimal partitioning approach
maximizing the achievable rates is obtained in Section 5.
In Section 6, the channel capacity bounds, optimal channel
partitioning, and power allocation are obtained in the
presence of unreliable channel state information available at
the transmitter and the receiver. Finally, Section 7 concludes
the paper.

2. Problem Statement

We consider the general non-Gaussian communication
channel, depicted in Figure 1(a), in which V is a zero-
mean non-Gaussian colored noise. To be able to verify the
effect of different fading conditions, we assume that the
noise can be modeled as V = ZG in which Z : N (0, δ2)

is a white Gaussian random variable, and G = 1/U is
an independent fading random variable modeling different
fading conditions (we denote G as channel gain (CG) in
the following). This is because, as illustrated in [11], log-
normal and Nakagami distributions of the variable U can
model severe and nonsevere fading channels, respectively.
In this way, as illustrated in Figure 1(b), the channel can be
represented as

Y = X + ZG, (1)

where Y denotes the channel output in response to the
communicating message X. It should be mentioned that for
the log-normal and two (μ = 2 and μ = 3) Nakagami
distributions of U , considered here, the properties of the
random variable G is given by

log-normal (all results are presented in natural logarithm
basis):
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where fG(g), FG(g), and EG2 are the probability density
function (pdf), cumulative distribution function (cdf), and
power of the random variable G,w is the second parameter
of Nakagami distributions, γ is the log-normal distribution
parameter, and Γ(·) and erf(·) denote the standard Gamma
and error functions, respectively. Moreover, EX2 ≤ P repre-
sents the input power constraint which can be interpreted in
two different ways, namely, short and long term. Let Xl, l =
1, . . . ,L be a collection of different random variables each
of which is selected at different conditions with probability
pl . The short-term power constraint requires that, for every
single Xl, the power allocated cannot exceed P, that is,

Pl ≤ P, l = 1, . . . ,L, (5)

where Pl = EX2
l is the power of input variable Xl. This

constraint is normally considered when the transmission
powers are limited by the hardware, for example, amplifiers,
properties. Under the more relaxed long-term (battery-
limited) power constraint, the transmitter can adapt the
power based on channel conditions such that the average
transmission power does not exceed P, that is,

L∑

l=1

plPl ≤ P. (6)

In order to verify the effect of imperfect channel quality
information, we have considered the model of Figure 1(c).
In this model, the receiver first finds the quantization region
in which the gain realizations fall. Then, considering 2N

quantization regions, the quantization indices are sent back
to the transmitter via N bits feedback. In the following, first
the lower and upper bounds of channel capacity with no side
information are presented, and then they will be determined
for two different quantizers (equal probability and Max-
Lloyd), assuming that the quantization regions are correctly
detected and fed back to the transmitter. Further, note that all
results are based on the assumption that, while there are in-
region variations, the channel gain G stays at each region for
a long enough time so that it is meaningful to send channel
quality feedback.

3. Channel Capacity Bounds without Side
Information at Transmitter and Receiver

With no side information about the channel quality, the
capacity of a power-limited channel can be written as

C = max
fX (x); EX2≤P

I(X;Y ) = max
fX (x); EX2≤P

{h(Y )− h(Y | X)}

= max
fX (x); EX2≤P

{h(Y )− h(ZG)},
(7)

where maximization is done over the input pdf fX (x) and
EX2 ≤ P represents the input power constraint. However,
since in general (due to the gain pdf) it is difficult to
determine the channel capacity in this case, we find a lower
and an upper bound to the maximum achievable mutual
information I(X;Y ).

Similar to the method presented in [2], the lower bound
of the mutual information I(X;Y ) = h(X) − h(X | Y ), is
found by fixing the input distribution entropy and upper
bounding the second term. Hence, the input distribution
is selected to be zero-mean Gaussian of power P (which
is not necessarily the optimal one maximizing the mutual
information) and then, an upper bound of the term h(X | Y )
is determined. Therefore, for any known value of α, one can
write
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= 1
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2
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)
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where (a)–(c) follow from the facts that

(a) adding a known random variable does not change the
mutual information,

(b) conditioning reduces the differential entropy, and

(c) for a fixed power, Gaussian distribution maximizes
the differential entropy.

Since (8) is valid for any known value of α, it is selected
such that αY becomes the linear minimum mean square
error estimate of X in terms of Y . Therefore, since X,G, and
Z are independent and X and Z are zero mean, we have
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According to (8) and (10), the channel capacity is lower
bounded by
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On the other hand, the upper bound of achievable rates
is simply found based on the following consequences:

I(X;Y ) = h(Y )− h(Y | X)

≤ 1
2

log
(
2πe

(
P + δ2EG2))− h(ZG),

(12)

which again follows from the fact that for a fixed power,
EY 2 = P + δ2EG2, the Gaussian distribution maximizes
the differential entropy and h(ZG) can be determined
numerically. Figure 2 shows the lower and upper bounds
of channel capacity for the three mentioned channel gain
distributions (w = 1, γ = 1) along with the case where there
is full knowledge about the channel gain at the transmitter
and receiver (as we know, full knowledge channel capacity is
obtained by C = (1/2)EG{ln(1 + P(g)/δ2g2} in which P(g)
is power allocation function optimally determined according
to the considered power constraint). As it can be seen, having
full knowledge, the channel capacity under the short- and
long-term power constraints are so close that they are hardly
distinguishable from each other. While focusing on lower
bound of achievable rates, the proposed bounds are applied
in the next section to verify the effect of quantized channel
gain information on the channel capacity.

4. Channel Capacity Bounds: Predefined
Quantization and Reliable Region Detection

Considering the case of error-free quantization region detec-
tion, the channel capacity in the presence of a predefined N-
bits quantizer can be formulated as

C = max
fX|Q(x)

I(X;Y | Q) = max
fX|Q(x)
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where qi and pi, i = 1, . . . , 2N , are the quantization outputs
and their selection probabilities, respectively, and maximiza-
tion is again done over fXi (x), i = 1, . . . , 2N which are the
2N input distributions considered for different quantization
regions. Note that the last equality is a consequence of the
quantizer predefinition (which is the case considered in this
section) while, in general, the optimization should be done
over both input distributions and the quantizer.

For a given quantization region i, the channel model will
change to Figure 3 in which the channel gain will change
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with no knowledge about the in-region variations at the
transmitter and the receiver. Therefore, based on Figure 3
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where Ei = EG2
i = (1/pi)

∫
Si g

2 fG(g)dg denotes the channel
gain power for the ith quantization interval, and EX2

i = Ti
is the input power allocated to the ith input distribution.
Considering N = 1 and 2 bits equal probability quantization
and short-term power constraint, that is, Ti = P, i =
1, . . . , 2N , the bounds of channel capacity relative the lower
bound of no knowledge case have been obtained for the
three mentioned gain distributions, as illustrated in Figure 4.
Note that in N-bits equal probability quantization the
distribution is partitioned into 2N subspaces that have the
same probabilities. The parameters of the distributions (2)–
(4) are set to

w = 1, δ2 = 1, γ = 1. (17)

While the short-term power constraint leads to uniform
power distribution, the achievable rates can be increased by
optimal power allocation under long-term power constraint
condition. In this way, there are 2N input distributions
selected based on the received channel information and,
since the quantization region information at the transmitter
and receiver is assumed to be error-free, the input power
constraint, EX2 = P, changes to

2N∑
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Figure 4: Increase in achievable rate bounds relative the “no
knowledge” lower bound using 1 and 2 bits equal probability
quantization, short-term power constraint.

Consequently, considering the lower bound of channel
capacity, the optimal input power allocation can be found
by maximization of (16) with the constraint (18), that is,
maximization of

θ =
2N∑

i=1

pi log
(

1 +
Ti
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)⎞
⎠ + ρ

2N∑

i=1

Tipi, (19)

over N unknown values of Ti and the Lagrange multiplier
ρ determined by the input power constraint. Taking the
derivatives of (19) with respect to Ti’s and setting them equal
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Figure 5: Increase in achievable rates relative the “no knowledge” lower bound using Max-Lloyd and equal probability quantizations. (a)
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to zero yields the following set of equations:
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which, due to the fact that Ti’s are nonnegative, is the famous
water-filling problem [48]. In order to find the constant λ,

one can write
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As shown in Figure 5, considering long-term power
constraint and the three mentioned gain distributions, the
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lower bounds of the capacity relative the lower bound of “no
knowledge” case have been found for the cases where N =
1, 2, and 3 bits Max-Lloyd or equal probability quantizers are
implemented for channel quantization.

As an alternative lower bound, the worst case approach
may be used, which has been proven to be optimal under
block fading assumption [30]. However, we show that our
proposed lower bound outperforms this approach under
outage-free condition. Considering the worst (highest) value
(in [29, 30], Y = UX + N has been considered as the
channel model and so, the worst case corresponds to ai−1

in each region Si : [ai−1,ai]) of the channel gain in each
quantization interval Si : [ai−1,ai] results in transmission
rate of
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i is the power allocated to the ith input

distribution X′i and again the optimal power allocation is
obtained by

T′i + δ2a2
i =

−1
ρ′
= ε, (24)

where ρ′ = −1/ε is the Lagrange multiplier constant [30].
Now, based on the fact that

∀i : Ei = 1
pi

∫ ai

ai−1

g2 fG
(
g
)
dg ≤ 1

pi

∫ ai

ai−1

a2
i fG

(
g
)
dg = a2

i ,

(25)

for a given total power P, quantization regions Si and a set
of strictly positive powers {T′k | k ∈ K ,

∑
k∈K pkT′k = P}

optimally allocated based on (24), we have

R2 = 1
2

2N∑

i=1

pi log

(
1 +

T′i
δ2a2

i

)

(a)= 1
2

∑

k∈K
pk log

(
1 +

T′k
δ2a2

k

)

(b)≤ 1
2

∑

k∈K
pk log

(
1 +

T′k
δ2Ek

)

(c)≤ 1
2

2N∑

i=1

pi log
(

1 +
Ti
δ2Ei

)
= R1,

(26)

where R1 is the lower bound obtained in (16) and Ti’s are
determined based on (20). Here, (a) is obtained by removing
the zero-power terms, (b) is based on (25), and (c) follows
from the fact that, although being an acceptable power
distribution, {T′k | k ∈ K} is not necessarily the optimal
power allocation strategy determined by (20). Hence, it
is concluded that, under long-term power constraint and
for every given total power, our proposed lower bound
results in higher transmission rate in comparison to the
worst case approach. Based on (25), it is obvious that the
conclusion is also valid when the same powers are allocated

to corresponding input distributions, for example, for the
short-term power constraint. Finally, note that, since the
main focus of this work is on the capacity lower bounds, we
do not discuss the upper bounds any further.

5. Optimal Design of Channel Quantization:
Reliable Quantization Region Detection

5.1. Long-Term Power Constraint. Under the long-term
power constraint, in order to design an optimal quantizer
reaching the maximum lower bound of capacity, one can
consider (19) in which

pi =
∫ ai

ai−1

fG
(
g
)
dg , Ei = 1

pi

∫ ai

ai−1

g2 fG
(
g
)
dg (27)

are functions of quantization boundaries ai, i = 0, . . . , 2N

(a0 = 0, a2N = ∞).
While the optimal power allocation constraint given by

(20) is still valid, taking derivative with respect to ai, it can be
written as

∂θ
∂ai
= ∂pi
∂ai

log
(

1 +
Ti
δ2Ei

)
+
∂pi+1

∂ai
log

(
1 +

Ti+1

δ2Ei+1

)

+ pi
−Tiδ2(∂Ei/∂ai)/δ4E2

i

1 + Ti/δ2Ei

+ pi+1
−Ti+1δ2(∂Ei+1/∂ai)/δ4E2

i+1

1 + Ti+1/δ2Ei+1

+ ρTi
∂pi
∂ai

+ ρTi+1
∂pi+1

∂ai

(28)

which, considering the following properties, can be simpli-
fied to(30)

∂pi
∂ai
= fG(ai)

∂pi+1

∂ai
= − fG(ai)

∂Ei
∂ai
= a2

i fG(ai)pi − fG(ai)σi
p2
i

∂Ei+1

∂ai
= −a

2
i fG(ai)pi+1 + fG(ai)σi+1

p2
i+1

σi =
∫ ai

ai−1

g2 fG
(
g
)
dg

(29)

log
(

1 +
Ti
δ2Ei

)
− log

(
1 +

Ti+1

δ2Ei+1

)
− Ti
Ei

(
a2
i − Ei

)

Ti + δ2Ei

+
Ti+1

Ei+1

(
a2
i − Ei+1

)

Ti+1 + δ2Ei+1
+ ρTi − ρTi+1 = 0.

(30)

Furthermore, since for every positive Ti, we have

Ti + δ2Ei = −1
ρ

, (31)
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Equation (30) can be further simplified to

log
Ei+1

Ei
= ρa2

i

(
Ti+1

Ei+1
− Ti
Ei

)
, (32)

which can be rewritten as

log
Ei+1

Ei
= −a2

i

(
1
Ei+1

− 1
Ei

)
. (33)

Equation (33) shows that, under a long-term power
constraint, the quantization boundaries can be determined
independent of individual and total input powers if the
optimal Ti’s are all strictly positive. It is worth noting that,
using the worst case approach the optimal quantization
boundaries will depend on the total input power [29].

The quantization boundaries and the input powers
can be found using Max-Lloyd-like algorithms [30] or
numerically. Algorithm 1 illustrates an example of an effi-
cient numerical method maximizing the capacity lower
bound under long-term power constraint. Although time
consuming, the algorithm has been shown to be efficient in
complex optimization problems dealing with, large number
of optimization parameters [49]. Also, note that, with some
straightforward modifications, the algorithm can be applied
for other optimization problems as well.

Considering 1- and 2-bit quantization and the three
mentioned channel gain distributions, the optimal quanti-
zation boundaries maximizing the capacity lower bounds
have been determined for various input powers which can
be reviewed in Tables 1, 2, and 3. As it can be seen,
(except the case of log-normal gain distribution and 2-bit
quantization, in which up to input power 30 still one of the
input transmitters remains off) when the power is increased
above the threshold where all Ti’s are strictly positive, the
optimal quantization boundaries become independent of
input power and are determined based just on the channel
gain distribution. Moreover, in order to get better insight
of the effect of optimal quantization, considering 1- and 2-
bit quantization optimized for input power 15, the increase
in channel capacity lower bounds relative the lower bound
of no knowledge case, that is, (11), have been found for
the three gain distributions as presented in Figure 6. Based
on the Figures 4, 5, and 6, it can be concluded that, while
channel side information results in significant rate increment
in severe fading conditions (log-normal pdf), as the fading
severity decreases (Nakagami μ = 2 and μ = 3 pdfs)
the effect of side information and adaptive transmission
is also reduced. Also, the figure shows that, considering
different fading conditions, it is possible to reach near-
full-knowledge performance using 2-bit channel quality
information feedback. Finally, considering 2-bit feedback
and various gain distributions, Figure 7 demonstrates the
superiority of the proposed lower bound in comparison to
the worst case approach even when transmission outage is
permitted [30]. In this case, the optimal channel gain is
found to be some value in the middle of the region if it falls
in the last quantization interval, leading to slightly higher
rates in comparison to (23). However, there is always positive
outage probability in data transmission. This does not

Table 1: Optimal quantization boundaries, reliable quantization
region detection, long-term power constraint, and CG distribution:
Nakagami, μ = 2, w = 1.

Input power 1 bit Input power 2 bits

0.5 1.044 0.5 0.738, 0.935, 1.162

1 1.169 1 0.781, 1.022, 1.331

2 1.322 2 0.823, 1.118, 1.563

≥2.7 1.394 3 0.855, 1.193, 1.728

5 0.888, 1.276, 1.972

≥9.6 0.922, 1.373, 2.327

Table 2: Optimal quantization boundaries, reliable quantization
region detection, long-term power constraint, and CG distribution:
Nakagami, μ = 3, w = 1.

Input power 1 bit Input power 2 bits

0.5 1.060 0.5 0.782, 0.961, 1.165

1 1.178 1 0.822, 1.041, 1.327

≥1.3 1.220 2 0.863, 1.135, 1.535

3 0.885, 1.190, 1.688

≥3.7 0.898, 1.216, 1.766

Table 3: Optimal quantization boundaries, reliable quantization
region detection, long-term power constraint, and CG distribution:
Log-normal, γ = 1.

Input power 1 bit Input power 2 bits

0.5 0.656 0.5 0.236, 0.487, 0.868

1 0.784 1 0.271, 0.575, 1.079

2 0.937 2 0.306, 0.670, 1.331

3 1.040 3 0.328, 0.738, 1.523

5 1.183 5 0.357, 0.819, 1.778

10 1.403 10 0.396, 0.958, 2.223

≥12.8 1.488 15 0.421, 1.034, 2.508

happen in our approach which increases the transmission
reliability.

5.2. Short-Term Power Constraint. Under the short-term
power constraint, the optimization criterion is simplified to

θ =
2N∑

i=1

pi log
(

1 +
P
δ2Ei

)
(34)

which, taking the derivative with respect to ai, leads to

log

(
ξi
ξi+1

)
= a2

i

(
ξi − 1
ξiEi

− ξi+1 − 1
ξi+1Ei+1

)
+

1
ξi
− 1
ξi+1

,

ξi = 1 +
P

δ2Ei
.

(35)

Here, it is obvious that, in general, the optimal quantiza-
tion boundaries are not independent of total input power.
However, using the approximation 1 + P/δ2Ei ≈ P/δ2Ei,
(35) can be simplified to (33) which shows that, for high
SNR’s, the optimal quantization can be obtained by (33)
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(I) For a given power P, consider M, for example, M = 20, randomly generated gain vectors am = [a0,m a1,m · · · a2N ,m],
a0,m = 0 < a1,m ≤ · · · ≤ a2N ,m = ∞.

(II) For each vector, find the optimal power allocation and the capacity lower bound cm based on (16), (18) and (20)–(22).
(III) Determine the vector which results in highest capacity lower bound, that is, al where cm ≤ cl, for all m = 1, . . . ,M.
(IV) a1 ← al.
(V) Generate t�M, for example, t = 5, new vectors anew

m , m = 1, . . . , t, around a1. These vectors should also satisfy the
constraints introduced in (I).

(VI) am+1 ← anew
m , m = 1, . . . , t.

(VII) Regenerate the remaining vectors am,m = t + 2, . . . ,M randomly such that a0,m = 0 < a1,m ≤ · · · ≤ a2N ,m = ∞,
for all m = t + 2, . . . ,M.

(VIII) Go to (II) and continue until convergence.

Algorithm 1: Capacity lower bound optimization.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

Input power

30D
iff

er
en

ce
of

ra
te

fr
om

“n
o

kn
ow

le
dg

e”
ca

se

(a) Nakagami, μ = 2

0
0.05

0.1
0.15

0.2
0.25

0 5 10 15 20 25

Input power

30D
iff

er
en

ce
of

ra
te

fr
om

“n
o

kn
ow

le
dg

e”
ca

se

(b) Nakagami, μ = 3

0
0.02
0.04
0.06
0.08

0.1

1 bit
2 bits
Full knowledge

0 5 10 15 20 25

Input power

30D
iff

er
en

ce
of

ra
te

fr
om

“n
o

kn
ow

le
dg

e”
ca

se

(c) Log−normal

Figure 6: Increase in channel capacity relative the “no knowledge”
lower bound using optimal quantization.

independent of whether the power constraint is short term
or long term. For more comparison, considering the three
channel gain distributions, the quantization boundaries have
been determined for different powers based on (35) which
can be reviewed in Table 4. As it can be seen, as the input
power increases, the quantization boundaries converge to the
ones obtained under long-term power constraint.

Table 4: Optimal quantization boundaries, reliable quantization
region detection, and short-term power constraint.

pdf, input power 1 bit 2 bits

Nakagami μ = 2, P = 1 1.244 0.843, 1.192, 1.859

Nakagami μ = 2, P = 5 1.350 0.897, 1.307, 2.127

Nakagami μ = 2, P = 10 1.376 0.912, 1.340, 2.212

Nakagami μ = 2, P = 15 1.384 0.916, 1.355, 2.252

Nakagami μ = 3, P = 1 1.153 0.852, 1.126, 1.591

Nakagami μ = 3, P = 5 1.205 0.887, 1.188, 1.708

Nakagami μ = 3, P = 10 1.214 0.894, 1.207, 1.744

Nakagami μ = 3, P = 15 1.217 0.896, 1.209, 1.745

Log-normal, P = 1 0.861 0.332, 0.756, 1.739

Log-normal, P = 5 1.190 0.403, 0.983, 2.398

Log-normal, P = 10 1.313 0.417, 1.023, 2.458

Log-normal, P = 15 1.370 0.419, 1.032, 2.459

6. Channel Capacity Bounds: Unreliable
Quantization Region Detection

In contrast to the previous case, where there are 2N

different desired input distributions, each of which selected
specifically based on their corresponding channel gain quan-
tization, in the presence of quantization region detection
error, the transmitter and the receiver may be wrongly
informed about the channel gain and so, for a given
input distribution Xj , any of the partitioned channel gain
distributions, fGi (g) = (1/pi) fG(g), g ∈ Si, i = 1, . . . , 2N ,
may be selected. In this case, the capacity can be written as

C = max
2N∑

j=1

p
(
Xj

)
I
(
Xj ;Yj | q̂ j

)
, (36)

where p(Xj ) is the probability of jth input selection, Yj =
Xj + ZĜj is the channel output in response to the jth
input distribution passing through the channel having gain
distribution Ĝ j , and q̂ j denotes the unreliable quantization
region detection information available to the transmitter and
the receiver. As illustrated in Figure 8, considering the 2N

nonoverlapping channel gain distributions mentioned in the
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Figure 7: Comparison between the two proposed channel capacity
lower bounds.

previous section, given an input distribution index j, the
channel gain distribution is changed to

fĜ j

(
g
) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
(
1 | j)
p1

fG
(
g
)

g ∈ S1

p
(
2 | j)
p2

fG
(
g
)

g ∈ S2

...

p
(
2N | j)
p2N

fG
(
g
)

g ∈ S2N ,

(37)

where again pi =
∫
Si fG(g)dg is probability of the ith

quantization interval and p(i | j) is the probability of
being in the ith quantization region when the jth input

· · ·

YjXj

^Gj

f
^Gj

(g) =

+

×

p (2| j)
p2

fG(g)gεS2

p (2N | j)
p2N

fG(g)gεS2N

Z : N (0, δ2)

p (1| j)
p1

fG(g)gεS1

Figure 8: Channel model for a givenXj in the presence of unreliable
quantization region detection.

distribution is selected. In this way, for a given Xj , it can be
written as

EĜ2
j =

∫
⋃
k Sk

g2 fĜ j

(
g
)
dg

=
2N∑

k=1

p
(
k | j)
pk

∫

Sk
g2 fG

(
g
)
dg

=
2N∑

k=1

p
(
k | j)Ek ,

Ek = 1
pk

∫

Sk
g2 fG

(
g
)
dg

(38)

and so, according to (11) and (12), it follows that

1
2

log

(
1 +

Tj

δ2
∑2N

k=1 p
(
k | j)Ek

)

≤ I
(
Xj ;Yj | q̂ j

)

≤ 1
2

log

⎛
⎝2πe

⎛
⎝Tj + δ2

2N∑

k=1

p
(
k | j)Ek

⎞
⎠
⎞
⎠− h

(
ZĜj

)
.

(39)

Therefore, the total achievable rate is bounded to

1
2

2N∑

j=1

p
(
Xj

)
log

(
1 +

Tj

δ2
∑2N

k=1 p
(
k | j)Ek

)

≤ C

≤
2N∑

j=1

p
(
Xj

)
⎛
⎝1

2
log

⎛
⎝2πe

⎛
⎝Tj + δ2

2N∑

k=1

p
(
k | j)Ek

⎞
⎠
⎞
⎠

−h
(
ZĜj

)
⎞
⎠.

(40)
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Again, in order to find the optimal input power allocation
maximizing the capacity lower bound, on which it is focused,
we introduce the Lagrangian

θ=
2N∑

j=1

p
(
Xj

)
log

(
1+

Tj

δ2
∑2N

k=1 p
(
k | j)Ek

)⎞
⎠+ρ

2N∑

j=1

Tj p
(
Xj

)

(41)

which, taking the derivative with respect to Tj , leads to the
same water-filling results, that is,

Tj + δ2
2N∑

k=1

p
(
k | j)Ek = −1

ρ
= λ

λ = 1
∑

j; Tj>0 p
(
Xj

)
⎛
⎝P + δ2

∑

j; Tj>0

p
(
Xj

) 2N∑

k=1

p
(
k | j)Ek

⎞
⎠.

(42)

Equation (41) can also be considered as the optimization
criterion finding the optimal channel quantization bound-
aries maximizing the lower bound; based on the facts that

∂p
(
Xj

)

∂ai
= ∂

∂ai

2N∑

k=1

p
(
j | k)pk =

2N∑

k=1

p
(
j | k)∂pk

∂ai

= {
p
(
j | i)− p

(
j | i + 1

)}
fg (ai)

∂

∂ai

2N∑

k=1

p
(
k | j)Ek = ∂

∂ai

2N∑

k=1

p
(
j | k)pkEk
p
(
Xj

)

=
{
p
(
j | i)− p

(
j | i + 1

)}
fg (ai)

p
(
Xj

)

×
⎧⎨
⎩a

2
i −

2N∑

k=1

p
(
k | j)Ek

⎫⎬
⎭,

(43)

setting the ∂θ/∂ai equal to zero, for every i, it follows that

2N∑

j=1

ψji log

(
1 +

Tj

δ2
∑2N

k=1 p
(
k | j)Ek

)

+
2N∑

j=1

−Tjψji

[
a2
i −

∑2N

k=1 p
(
k | j)Ek

]
(
Tj + δ2

∑2N
k=1 p

(
k | j)Ek

)(∑2N
k=1 p

(
k | j)Ek

)

+ ρ
2N∑

j=1

Tjψji = 0

ψji = p
(
j | i)− p

(
j | i + 1

)

(44)
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Figure 9: Channel capacity lower bound versus detection error
probability. Quantization region detection model: (46).

which, considering Tj + δ2
∑2N

k=1 p(k | j)Ek = −1/ρ = λ for
high input powers, is simplified to

2N∑

j=1

[
p
(
j | i)− p

(
j | i + 1

)]
log

⎛
⎝

2N∑

k=1

p
(
k | j)Ek

⎞
⎠

= −a2
i

2N∑

j=1

p
(
j | i)− p

(
j | i + 1

)
∑2N

k=1 p
(
k | j)Ek

.

(45)

These equations, along with (42), provide the nonlinear
equations determining the optimal quantization boundaries
and input power allocation maximizing the proposed lower
bound of achievable rates under long-term power constraint
and for any gain detector. Finally, removing the last term of
(41), the same approach can be implemented for optimizing
the quantization boundaries under short-term power con-
straint, and we do not discuss it any further.

It is obvious that, under unreliable quantization region
detection conditions, the achievable rates are functions of the
channel detector which can be optimized as well. However,
for simplicity and just as illustrative examples, we have
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Figure 10: Channel capacity lower bound versus detection error
probability. Quantization region detection model: p(i | j) =
P
mij
e (1− Pe)(N−mij ).

considered two different unreliable detection models. The
first one is a symmetric model mathematically given by

P
(
i | j) =

⎧⎪⎨
⎪⎩

1− Pe j = i

Pe
2N − 1

j /= i.
(46)

Although simple, the model can still give us insight about
the channel capacity bounds for the case of unreliable
quantization region detection. Considering 1- and 2-bit
quantization and different values of detection error prob-
ability Pe, the quantization intervals maximizing the lower
bound are found for Nakagami (μ = 2) channel gain
distribution which can be seen in Tables 5, 6, and 7. Again,
the tables emphasize that, for high input powers, the optimal
quantization boundaries become independent of the input
power allocation, in harmony with (45). Also, considering
fixed input powers P = 15 and P = 20, the effect of
detection error probabilities, Pe, on the lower bound of
channel capacity has been investigated for two Nakagami
distributions, as illustrated in Figure 9. As can be seen, the
minimum of achievable rates for 1- and 2 bit quantization
occurs at the points Pe = 0.5 and Pe = 0.75 (the maximum
entropy points of the detection error model), respectively,
which, considering Figures 2 and 9, correspond to the case
of no channel information. For more clarity, the same
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Figure 11: Power-independent optimal quantization boundaries
for different values of error probability in the detection model, CG
distribution: Nakagami, μ = 2.

Table 5: Optimal quantization boundaries, unreliable quantization
region detection, long-term power constraint, and CG distribution:
Nakagami, μ = 2,w = 1, Pe = 0.1.

Input power 1 bit Input power 2 bits

0.5 1.063 0.5 0.895, 1.013, 1.147

1 1.182 1 0.937, 1.094, 1.296

1.5 1.268 2 0.970, 1.181, 1.501

≥1.9 1.405 3 1.025, 1.303, 1.550

≥4.8 1.044, 1.403, 2.007

figure is plotted for the case where the detection error
probability is modeled as p(i | j) = P

mij
e (1 − Pe)

(N−mij )

where mij is the number of different bits between the binary
representations of the ith and the jth quantization indices
(Figure 10). Here, for 1- and 2 bit quantization and for
both distributions, the minimum achievable rates, which are
associated with no knowledge case, are obtained at Pe =
0.5. This is again the point that leads to maximum entropy
of the detection model. Finally, Figure 11 summarizes the
optimal 2-bit power-independent quantization boundaries
of Tables 1 and 5–7. The figure shows that, increasing
the quantization region detection error probability, the
quantization boundaries converge together. This result is
valid for the other distributions also.

7. Conclusion

The aim of this paper is to investigate the effect of channel
side information on the achievable rates of continuous
power-limited non-Gaussian channels. Lower and upper
bounds of channel capacity are determined for the case
where (1) there is quantized channel state information
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Table 6: Optimal quantization boundaries, unreliable quantization
region detection, long-term power constraint, and CG distribution:
Nakagami, μ = 2, w = 1, Pe = 0.2.

Input power 1 bit Input power 2 bits

0.5 0.955 0.5 0.730, 0.818, 0.890

0.75 1.091 1 0.910, 1.026, 1.166

1 1.239 2 1.115, 1.352, 1.391

≥1.3 1.410 3 1.116, 1.404, 1.776

≥3.2 1.118, 1.408, 1.836

Table 7: Optimal quantization boundaries, unreliable quantization
region detection, long-term power constraint, and CG distribution:
Nakagami, μ = 2, w = 1, Pe = 0.3.

Input power 1 bit Input power 2 bits

0.5 1.091 0.5 0.709, 0.811, 0.910

0.7 1.356 1 0.808, 0.954, 1.116

≥0.8 1.412 2 1.179, 1.405, 1.576

≥2.2 1.181, 1.412, 1.721

available at the transmitter and receiver, respectively, and (2)
having in-region variations, the channel gain remains in the
same quantization region for a long time. The results are
found for two scenarios. In the first scenario, it is supposed
that the channel gain quantization region information is
correctly detected and fed back to the transmitter. In this
case, first the channel capacity bounds were found for
two different Max-Lloyd and equal probability quantization
approaches and three different log-normal and Nakagami-
based distributions and then, the optimal quantizations
maximizing the bounds of achievable rates were obtained.
In the second scenario, the quantization region detection
is not reliable, and so the transmitter and the receiver may
be wrongly informed about the channel status. In this case,
the general formula for the capacity bounds and the optimal
quantizations were presented which were evaluated via some
simulations.

In summary, the results emphasize the following points.

(i) The proposed lower bound leads to higher achievable
rates in comparison to the worst case approach
which has been previously developed for block
fading channels and can be considered as a lower
bound for this channel condition also. Moreover,
considering different fading conditions, it is possible
to reach near-full-knowledge performance using 2-
bit channel quality information feedback.

(ii) For high SNR’s, it is possible to determine a power-
independent optimal quantization maximizing the
capacity lower bound which is identical for both
short- and long-term power constraints.

(iii) While channel side information results in signifi-
cant rate increment in severe fading conditions, as
the fading severity decreases the effect of channel
side information and adaptive transmission is also
reduced.

(iv) Increasing the detection error probability, the quan-
tization boundaries converge together reducing the
effect of channel side information.

Finally, considering the effect of feedback signaling
overhead on the optimization problems is left for the future.
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