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Abstract—A multilevel coded modulation (MLCM) system in
the presence of nonlinear phase noise for fiber optical com-
munication is introduced. The proposed scheme exploits a 16-
point ring constellation with nonlinear post compensationof the
self phase modulation produced via the Kerr effect. A new set
partitioning based on the Ungerboeck approach is introduced
to maintain unequal error protection in amplitude and phase
direction. The rate allocation for the MLCM component codes
for different fiber lengths and transmit powers are done numer-
ically. Simulation results show that the proposed MLCM system
provides up to 2 dB gain over a forward error correcting scheme
for a block error rates around 10

−9, with the same overhead (7%)
and complexity.

I. I NTRODUCTION

In the past few years, significant attention has been devoted
to increasing the spectral efficiency of optical fiber links.Since
exploiting a high order constellation is inevitable to achieve
high spectral efficiency, intense efforts have been carriedout
to find an optimum signal constellation for data transmission
in the fiber optical channels [1], [2]. Previously known signal
constellations and channel coding techniques for the AWGN
channel should be tailored to the impairments introduced in
these links in order to achieve the high spectral efficiencies
promised by the Shannon theory [3], [4].

Among the fiber-induced impairments, nonlinear phase
noise (NLPN) shows a major effect particularly in long-
haul transmission [5], [6]. NLPN is caused by the interaction
between the signal and amplified spontaneous noise (ASE) via
the fiber Kerr nonlinearity [7]. Different approaches has been
investigated for combating the effect of NLPN, e.g., by optical
hardware methods [8]–[10] or by electronic compensation with
pre-distortion [11], [12] or post compensation [13], [14].

Lau and Kahn [14] derived a closed form expression for the
decision boundaries of a PSK constellation in the presence
of NLPN. Based on this analytical result, they proposed a
Maximum Likelihood (ML) detector for phase modulated
signals and a suboptimal detector for 16-QAM constellation.

Although this method performs close to optimal ML decod-
ing, the NLPN in long-haul dispersion-managed fiber links
seriously degrades the received signal in such a way that
reliable data transmission would be impossible for very long
fiber lengths. This means that the system has not only poor
performance at low SNR (linear regime) but also at the
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nonlinear high SNR regime. This issue motivates us to study
coded modulation techniques for this non-AWGN channel.

Considering the high data rates in optical communication
systems, the computational complexity plays a main role in
the design of coded modulation schemes for these systems.
Multilevel coded modulation (MLCM) [15] due to exploit-
ing multistage decoding (MSD) with hard and soft decision
decoding provides suitable trade-off between the complexity
and performance.

In this paper, we consider the nonlinear post compensator
proposed in [14] to compensate the degradation caused by
NLPN for a fiber link with distributed amplifiers. Since the Eu-
clidean distance is not a valid criterion in the design of channel
coding for non-Gaussian channel, we introduce a new set
partitioning algorithm for 16-point ring constellations based
on the Ungerboeck approach. In this method, we accomplish
the set partitioning in two steps; first in radius and then in
phase direction. Numerical optimization technique is usedto
find the optimum rate allocation for different layers, in terms
of minimizing the total block error rate (BLER).

The major difference between the proposed method and
previous approaches is in the design criterion. In contrastto
coded modulation schemes proposed in [16], [17], we take the
non-Gaussian noise into account in the design. In comparison
to the methods introduced in [18], [19] which suffer from
high complexity due to exploiting iterative or soft decoding,
the complexity of the proposed scheme can be lower than a
system with an independent forward error correction (FEC)
and modulation. We use FEC system to refer to such a system
in the rest of this paper.

Moreover, the symbol error rate (SER) of the uncoded 16-
point ring constellation for the suboptimal receiver of [14] in
the presence of NLPN is derived analytically. In addition, it
is demonstrated that the radii of the ring constellation canbe
chosen to achieve better performance in the highly nonlinear
regime in comparison to 16-QAM, which was shown before
by simulation [20].

Finally, the performance of the proposed scheme in fiber
optical channels with different lengths is evaluated through
simulation. The results show a significant performance gain
in using an MLCM scheme over a FEC system with the
same overhead. Interestingly, the MLCM scheme has a lower
complexity at BLER around10−9 and, at the same time, it
shows 2 dB performance improvement.
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Figure 1. An MLCM scheme for a fiber link with SPM produced via the
Kerr effect.
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Figure 2. 16-point ring constellation with Gray labeling corrupted by NLPN
for a fiber with L = 6000 km andPt = 0 dBm (using (2), after NLPN
compensator).

II. SYSTEM MODEL

We consider a fiber optical link with SPM produced via the
Kerr effect and a data transmission system exploiting a 16-
point constellation with four rings as seen in Fig. 2. In the rest
of paper, it is assumed that the exploited pulse shapeh(t) has
a unit energy (

∫∞
−∞ h2(t) dt = 1). The vector(r1, r2, r3, r4)

represents the radii distribution of this constellation insuch a
way that

∑4

i=1
r2i = 4Pt, wherePt is the average transmitted

power. According to the proposed block diagram of Fig. 1,
the MLCM unit produces complex I/Q symbolriejz , where
1 ≤ i ≤ 4 and z ∈ {0, π

2
, π, 3π

2
}. The optical I/Q modulator

(IQM), transforms the generated complex symbol to an I/Q
modulated signal.

The optical channel considered in this model is a fiber link
of total lengthL with distributed amplification, where the
fiber loss is completely compensated for by this amplification

[14]. The ASE noise generated by inline amplifiers is modeled
as complex zero-mean circularly symmetric Gaussian random
variables with variance

σ2 = 2nsphν∆ναL, (1)

in two polarizations, where∆ν = 42.7 GHz is the bandwidth
of the optical filter at the receiver,nsp = 1.41 [14] is
the spontaneous emission factor,hν is the photon energy,
which at wavelength of 1550 nm is1.28 × 10−19[J ] and
α = 0.25 dB/km is the attenuation coefficient. In this paper,
we consider only the noise within a receiver matched filter,
i.e., ignoring Kerr effect induced nonlinearity from out ofband
signals and noises similar to [13] and [14].

The pulse shape is nonreturn-to-zero (NRZ) with an MLCM
scheme of 42.7 Gsymbol/s to support an information bit rate of
160 Gb/s with7% added redundancy of the coded modulation
scheme. Moreover, due to the lack of an analytical expression
for the joint probability density function of the amplitude
and the phase of the received signal for a fiber channel with
chromatic dispersion and nonlinearity and besides for the
simplicity of the analysis, we neglect the effect of chromatic
dispersion.

We define the received amplituder as the amplitude of the
received electric field at the output of the coherent receiver,
divided byσ. The amplitude-dependent phase rotationθc(r)
(caused by SPM) of the received signal is removed by the
nonlinear maximum likelihood NLPN compensator of [14],
as shown in Fig. 1. Finally the compensated received signal
is used by an MLCM multistage decoder to extract the
transmitted information bits. Here, using the results of [14],
the joint probability density function (pdf) of the signal’s
normalized amplitude (r) and compensated phase (θ′) for a
transmitted symbol from anM -PSK constellation with initial
phaseθ0 and radius

√
ξ, is obtained by

fR,Θ′(r, θ′) =
fR(r, ξ)

2π
+

1

π

∞
∑

m=1

|Cm(r)|cos [m (θ′ − θ0)],

(2)

where

fR(r, ξ) = 2r exp
[

−
(

r2 + ρs
)]

I0 (2r
√
ρs) , (3)

is the Ricean pdf of the received amplitude andρs = ξ/σ2 is
the signal-to-noise ratio (SNR). The Fourier coefficientCm(r)
is [14]

Cm(r) =
r sec(

√
jmx)

sm
eρs

√
jmx tan

√
jmxe−

r2+α2
m

2sm Im

(

αmr

sm

)

,

where

x = γξL
ρs+1/2 , αm =

√
ρs sec

√

jmx, sm =
tan

√
jmx

2
√
jmx

,

Im(·) denotes themth-order modified Bessel function of the
first kind, andγ = 1.2 W−1km−1 is the nonlinear coefficient
of the fiber.



III. SER OF A UNCODED 16-POINT RING CONSTELLATION

Considering the NLPN impairment of the fiber optical
channel, the noise in the phase and radial direction will be
different. In this section, we analyze the SER of a 16-point
ring constellation exploiting the suboptimal decoder proposed
in [14]. In this detection method, the annular sector (a sector
in the area between the two concentric circles or a flat
ring-shaped area, see Fig. 2) is used instead of the exact
Voronoi region as the decision region in the detector. Sincethe
distribution of noise in the radial direction is Ricean, theML
decision boundaries between rings are obtained by intersecting
the two Ricean pdf’s

fR(µi, r
2
i ) = fR(µi, r

2
i+1),

where µi is the radius of circle which is the ML decision
boundary between ringsi and i + 1, normalized byσ. By
using I0(x) ≈ exp(x)/

√
2πx for high SNR (|x|≫ 1), we

obtain

µi =
ri + ri+1

2σ
+

1

2

ln ri − ln ri+1

ri − ri+1

σ; i = 1, . . . , 3

whereln is the natural logarithm. Here, we compute the prob-
ability of correct detection of a transmitted symbols = rie

j0

selected from ringi and initial phaseθ0 = 0 by

Pci = Pr
{

R ∈ [µi−1 µi) ∧Θ′ ∈ [−π

4

π

4
)
}

,

where i = 1, . . . , 4, µ0 = 0 and µ4 = ∞. This probability
can be computed by taking the integral of (2) over the annular
sector of the symbols in different ringsi. Therefore, using the
symmetry of the ring constellation, it is readily seen that the
total SER of the 16-point ring constellation is

SER= 1− 1

4

4
∑

i=1

Pci .

Eventually we obtain

SER= 1− 1

4

4
∑

i=1

(

Pri

4
+

∞
∑

m=1

2ηm,i

mπ
sin
(mπ

4

)

)

, (4)

where

Pri = Q
(√

2
ri
σ
,
√
2µi−1

)

−Q
(√

2
ri
σ
,
√
2µi

)

, (5)

ηm,i =

µi
∫

µi−1

|Cm(r)|dr,

andQ(x, y) is the MarcumQ function in (5), which is defined
by

Q (x, y) =

∞
∫

y

t exp

(

− t2 + x2

2

)

I0(xt)dt.

IV. OPTIMIZED MLCM SCHEME FORNLPN

We assume that the MLCM component codes are selected
from ti-error correcting Reed–Solomon (RS) codes [21, Ch. 7]
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Figure 3. The MLCM Encoder with four RS component codes with rates
R1, . . . , R4.
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Figure 4. Radius set partitioning of the ring constellation.

over the Galois fieldGF (28) with 28 elements and lengthn =
8× (28 − 1) bits. As shown in Fig. 3, a block of information
bits u is demultiplexed into four blocksu1, . . . , u4 in such
a way that the length ofui is nRi (1 ≤ i ≤ 4) whereRi

is the code rate of component codei. The component codes
RS-Enc1, . . . , RS-Enc4 encode the information bit blocks to
code vectorsv1, . . . , v4 with identical lengthn.

The labeling in Fig. 2 lets us map four bits to a symbol
from the 16-point ring constellation in two steps. For each bit
instancek, we have four bitsv1kv2kv3kv4k to be mapped to
a symbolsk. The mapping is done by selectingsk = ake

jzk ,
whereak ∈ {r1, . . . , r4} is determined byv1kv2k and zk ∈
{0, π

2
, π, 3π

2
} is determined byv3kv4k .

We proceed with the design of the MLCM scheme to protect
different layers unequally, i.e., the higher probability of error,
the higher error protection should be assigned. We need to
compute the average bit error probability of each layer to
clarify the amount of protection, based on the vulnerability
of each layer against error. The final step of the mapping
operation is to define the ring and phase selection units (as
shown in Fig. 3). This mapping is accomplished by the set
partitioning of the ring constellation in two steps.

A. Set partitioning in radial direction

The set partitioning in the radial direction is defined in
Fig. 4. The Ungerboeck set partitioning [22] approach is used
to choose one ring corresponding to the bitsv1kv2k . In layer 1,
corresponding to value ofv1, 0 or 1, one of the subsets
A1 = {r1, r3} or A2 = {r2, r4} is selected. Therefore the
average uncoded bit error probability of layer 1 is

P1 =
1

2
(Pr{âk ∈ A2 | ak ∈ A1}+ Pr{âk ∈ A1 | ak ∈ A2}) ,



where âk is the detected ring using a hard decision detector
for the transmitted symbol from ringak, and

Pr{âk ∈ A2 | ak ∈ A1} =
1

2
Pr{âk ∈ A2 | ak = r1}

+
1

2
Pr{âk ∈ A2 | ak ∈ r3}. (6)

The two terms in the right hand side of (6) can be easily
computed considering the Ricean distribution of the received
amplituder given in (3) and eventually we obtain

Pr{âk ∈ A2 | ak ∈ A1} =
1

2

1
∑

i=0

[

Q(
√
2
r2i+1

σ
,
√
2µ1)

−Q(
√
2
r2i+1

σ
,
√
2µ2) +Q(

√
2
r2i+1

σ
,
√
2µ3)

]

, (7)

and

Pr{âk ∈ A1 | ak ∈ A2} =
1

2

2
∑

i=1

[

1−Q(
√
2
r2i
σ

,
√
2µ1)

+Q(
√
2
r2i
σ

,
√
2µ2)−Q(

√
2
r2i
σ

,
√
2µ3)

]

. (8)

An analogous analysis can be applied to compute the average
uncoded bit error probability of layer 2

P2 =
1

2
Pr{âk 6= ak|ak ∈ A1}+

1

2
Pr{âk 6= ak|ak ∈ A2},

where

Pr{âk 6= ak | ak ∈ A1} =
1

2

[

Q(
√
2
r1
σ
,
√
2µ′

1)+

1−Q(
√
2
r3
σ
,
√
2µ′

1)
]

, (9)

and

Pr{âk 6= ak | ak ∈ A2} =
1

2

[

Q(
√
2
r2
σ
,
√
2µ′

2)+

1−Q(
√
2
r4
σ
,
√
2µ′

2)
]

. (10)

In (9) and (10),µ′
1 andµ′

2 are the radii of the circles which
are the ML decision boundaries between rings (1,3) and (2,4),
respectively.

B. Set partitioning in phase direction

The phase selection unit rotates the selected point from
each ring corresponding to the two bitsv3kv4k , using the
Ungerboeck set partitioning shown in Fig. 5. In the error
probability of layer 1 and 2 in the radial direction, the
nonlinearity does not have any significant contribution while
the dominant effect (especially at high SNR) in layer 3 and 4 is
due to NLPN. Following the same approach as in the previous
layers and using the symmetry of the ring constellation in the
phase direction, one may define two subsetsB1 = {0, π} and
B2 = {π

2
, 3π

2
} and hence

P3 =
1

4

4
∑

i=1

Pr{ẑk ∈ B2 | zk ∈ B1 ∧ ak = ri}, (11)
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Figure 5. Phase set partitioning of the ring constellation.

whereẑk is the detected phase using a hard decision detector
for the transmitted symbol with phasezk. The conditional pdf
fΘ′|R(θ

′ | r) can easily be computed by exploiting (2), (3) and
the Bayes’ rule, and then following an analogous approach as
in (6), (7) and (8), we obtain

Pr{ẑk ∈B2 | zk ∈ B1 ∧ ak = ri} =
1

2
+

1

Pri

∞
∑

m=1

2ηm,i

mπ

(

sin

(

3mπ

4

)

− sin
(mπ

4

)

)

. (12)

Finally, considering the symmetry of the constellation for
symbols inside each ring, the average bit error probabilityof
layer 4 is obtained by

P4 =
1

4

4
∑

i=1

Pr{ẑk 6= 0 | zk = 0 ∧ ak = ri}, (13)

where

Pr{ẑk 6= 0|zk = 0, ak = ri} =
1

2
− 1

Pri

∞
∑

m=1

2ηm,i

mπ
sin
(mπ

2

)

.

V. RATE ALLOCATION OF THE MLCM SCHEME

Increasing the minimum Euclidean distance between differ-
ent generated blocks of symbolss at the modulator output
(see Fig. 1) is the design rule of the MLCM approach [15] for
AWGN channels, while this criterion is not valid anymore to
reach the best performance in the channels with non-Gaussian
noise. Therefore, we proceed with the design of the MLCM
scheme by minimizing the total BLER of the system subject
to a given total rateR = 0.9294 (about 7% overhead). In
other words, one should find code ratesRi, i = 1, . . . , 4
that minimize the total BLER of the MLCM system. After
derivation of the uncoded bit error probability of the layers
P1, ..., P4, the BLER (a block containsk = 4nR information
bits) of the system can be computed by

Pe = 1−
4
∏

l=1

(1− PBl), (14)

wherePBl is the block error probability of layerl, which
containskl = nRl information bits, conditioned on the fact
that there is no error in layers1, . . . , l − 1 and

∑4

l=1
kl =



k; R = k
4n . By some algebraic manipulations, we obtain

Pe =

4
∑

l=1

PBl −
4
∑

i=1

4
∑

j=1

j 6=i

PBiPBj + . . . (15)

For moderate SNR(SER< 10−2), Pe can be approximated
very well by using only the first term of (15). Thus the problem
is reduced to minimizing

Pe ≈
4
∑

l=1

PBl, (16)

subject to the constraint1
4

∑4

l=1
Rl = R. We change the

code rate constraint to the correcting capability constraint, to
expressPBl as a function of the the correcting capabilitytl
of the component codel by the union bound. The BLER for
layer l = 1, . . . , 4 of an MLCM system with hard decision
MSD can be approximated based on the union bound

PBl ≤
n
∑

i=tl+1

(

n

i

)

P i
l (1 − Pl)

n−i. (17)

By substituting (17) into (16), eventually we obtain the total
BLER of the MLCM scheme

Pe =

4
∑

l=1

n
∑

i=tl+1

(

n

i

)

P i
l (1− Pl)

n−i. (18)

The minimization of (18) can be accomplished numerically
subject to

1

4

4
∑

l=1

tl = T, (19)

whereT = n(1−R)/4. Table I shows the result of the rate
allocation for the MLCM layers based on minimizing the total
BLER for hard decision MSD, by numerical optimization for
a fiber length of 6000 km.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
MLCM scheme for the fiber optical channel with specification
given in section II. For this purpose, we compare the BLER
performances of the MLCM scheme with a FEC system
considering the same total rateR = 0.929 and a 16-point ring
constellation. For a fair comparison, the component codes are
chosen from the RS codes over GF(28) with the same length
n = 2040 bits.

The Gray mapping in Fig. 2 for mapping four bits to a
constellation point is used for the FEC system. The radii of the
ring constellation are selected by a numerical search method
as (0.28, 0.66, 1.06, 1.53)

√
Pt to reach the minimum SER

for uncoded data transmission in the nonlinear regime (high
transmit power). Since this MLCM scheme can be applied to
arbitrary radii distributions, we leave this radii optimization
problem for future study.

The optimum rate allocation of the MLCM layers using [23]
is shown in Fig. 6 for distanceL = 5000 km. This simulation
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confirms that layer 1 is more vulnerable to errors at low SNR
while layer 3 needs more protection at high SNR. As seen in
Fig. 7, the MLCM scheme improves the performance of the
system in both the linear and non-linear regime. Surprisingly,
as seen in Figs. 6 and 7, MLCM outperforms not only in
coding gain but also in decreasing the complexity of system
in the nonlinear regime. For example at a transmit power of
2 dBm, R2 =1 and hence, MLCM solely needs three RS
component codes, while the FEC system requires to run one
RS component code four times for the same block length of
data (k = 4 × 1895 bits), moreover 2 dB coding gain can be
achieved by using the MLCM approach at this transmit power.
In the linear regime, e.g., at a transmit power of -1.5 dBm, the
MLCM system is superior to the FEC scheme by 2 dB with
almost the same complexity.

The performance comparison between a 16-QAM constel-
lation with equally spaced phase (changing the phase of the
symbols in the middle ring to be equally spaced on[0 2π))



Table I
RSCODE CORRECTING CAPABILITIES AND CODE RATES OF ANMLCM SYSTEM WITH HARD DECISIONMSD, TOTAL CODE RATER = 0.929, AND

16-POINT RING CONSTELLATION IN A FIBER LINK WITH L = 6000 KM .

Pt (dBm) –5 –2 2 4

{t1, . . . , t4} {24, 0, 11, 1} {12, 1, 21, 2} {2, 0, 32, 2} {2, 0, 32, 2}
{R1, . . . , R4} {0.81, 1, 0.91, 0.99} {0.91, 0.99, 0.84, 0.98} {0.98, 1, 0.77, 0.98} {0.98, 1, 0.75, 0.98}
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ring constellation for fiber lengths of 5000 and 6000 km.

[13] and the 16-point ring constellation is shown in Fig. 8.
As expected, 16-QAM outperforms the ring constellation at
low SNRs, while the ring constellation shows a significant
performance improvement in the nonlinear regime. The radii
distribution of the ring constellation is assumed fixed for all
the comparisons.

VII. C ONCLUSION

We designed a tailored MLCM system to a non-Gaussian
fiber optical channel with nonlinear phase noise. Unequal error
protection in the phase and radial direction is exploited to
optimize the performance (BLER) of the system. It is shown
that the MLCM system can give better performance with
lower complexity. Therefore the MLCM scheme provides the
possibility of reliable data transmission in a longer fiber or
at a higher spectral efficiency, i.e., increasing the order of
the constellation above 16 points for a fixed fiber length, in
comparison to a FEC system.

REFERENCES

[1] E. Agrell and M. Karlsson, “Power-efficient modulation formats in
coherent transmission systems,”J. Lightw. Technol., vol. 27, no. 22,
pp. 5115–5126, Nov. 2009.

[2] E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection
in optical fiber systems,”Opt. Express, vol. 16, no. 2, pp. 753–791, 2008.

[3] R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel,
“Capacity limits of optical fiber networks,”J. Lightw. Technol., vol. 28,
no. 4, pp. 662–701, Feb. 2010.

[4] A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the non-linear Shannon
limit,” J. Lightw. Technol., vol. 28, no. 4, pp. 423–433, Feb. 2010.

[5] J. Renaudier and G. Charlet, “Coherent detection for long haul trans-
mission systems,”IEEE Laser, Electro-Optics Society Annual Meeting,
pp. 214–215, Oct. 2007.

[6] W. T. Anderson, L. Liu, Y. Cai, A. Pilipetskii, J. X. Cai, M. Vaa,
M. Nissov, and D. Kovsh, “Modeling RZ-DPSK transmission-
simulations and measurements for an installed submarine system,” Op-
tical Fiber Communication Conference, CA, Mar. 2005, Paper OThC1.

[7] J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic commu-
nications systems using linear amplifiers,”IEEE Photon. Technol. Lett.,
vol. 15, no. 23, pp. 1351–1353, 1990.

[8] A. Mecozzi, “On the optimization of the gain distribution of transmission
lines with unequal amplifier spacing,”IEEE Photon. Technol. Lett.,
vol. 10, no. 7, pp. 1033–1035, July 1998.

[9] H. Wei and D. Plant, “Simultaneous nonlinearity suppression and wide-
band dispersion compensation using optical phase conjugation,” Opt.
Express, vol. 12, no. 9, pp. 1938–1958, 2004.

[10] A. P. T. Lau and J. M. Kahn, “Design of inline amplifier gains and
spacings to minimize the phase noise in optical transmission systems,”
J. Lightw. Technol., vol. 24, no. 3, pp. 1334–1341, 2006.

[11] X. Liu and D. A. Fishman, “A fast and reliable algorithm for electronic
pre-equalization of SPM and chromatic dispersion,”Optical Fiber Com-
munication Conference, 2006, Paper OThD4.

[12] R. Waegemans, S. Herbst, L. Holbein, P. Watts, P. Bayvel, C. Fürst,
and R. I. Killey, “10.7 Gb/s electronic predistortion transmitter using
commercial FPGAs and D/A converters implementing real-time DSP
for chromatic dispersion and SPM compensation,”Opt. Express, vol. 17,
no. 10, pp. 8630–8640, 2009.

[13] K. P. Ho and J. M. Kahn, “Electronic compensation technique to mitigate
nonlinear phase noise,”J. Lightw. Technol., vol. 22, no. 3, pp. 779–783,
Mar. 2004.

[14] A. P. T. Lau and J. M. Kahn, “Signal design and detection in presence
of nonlinear phase noise,”J. Lightw. Technol., vol. 25, no. 10, pp. 3008–
3016, Oct. 2007.

[15] H. Imai and S. Hirakawa, “A new multilevel coding methodusing error
correcting codes,”IEEE Trans. Inf. Theory, vol. 23, pp. 371–377, May
1977.

[16] I. B. Djordjevic, M. Cvijetic, L. Xu, and T. Wang, “UsingLDPC-
coded modulation and coherent detection for ultra highspeed optical
transmission,”J. Lightw. Technol., vol. 25, no. 11, pp. 3619–3625, Nov.
2007.

[17] H. Zhao, E. Agrell, and M. Karlsson, “Trellis-coded modulation in
PSK and DPSK communications,”European Conference on Optical
Communications, Sept. 2006.

[18] I. B. Djordjevic, H. G. Batshon, L. Xu, , and T. Wang, “Coded
polarization-multiplexed iterative polar modulation (PM-IPM) for be-
yond 400 Gb/s serial optical transmission,”Conference on Optical Fiber
Communication, Mar. 2010, Paper OMK2.

[19] H. G. Batshon, I. B. Djordjevic, L. L. Minkov, L. Xu, T. Wang, and
M. Cvijetic, “Proposal to achieve 1 Tb/s per wavelength transmission
using three-dimensional LDPC-coded modulation,”IEEE Photon. Tech-
nol. Lett., vol. 20, no. 9, pp. 721–723, May 2008.

[20] M. C. Niaz and L. Beygi, “Optimization of 16-QAM constellation in
the presence of nonlinear phase noise,”International Conference on
Frontiers of Information Technology, Pakistan, Dec. 2009.

[21] S. Lin and D. J. Costello, Jr.,Error Control Coding, 2nd ed. Prentice-
Hall, 2004.

[22] G. Ungerboeck, “Channel coding with multilevel/phasesignals,” IEEE
Trans. Inf. Theory, vol. 28, no. 1, pp. 55–67, Jan. 1982.

[23] L. Beygi, E. Agrell, M. Karlsson, and B. Makki, “A novel rate allocation
method for multilevel coded modulation,”IEEE Int. Symp. on Inf.
Theory, June 2010.


	copyright_notice_mall_ieee
	129304.pdf

