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On the Dimensionality of Multilevel Coded
Modulation in the High SNR Regime

Lotfollah Beygi, Student Member, IEEE,Erik Agrell, and Magnus Karlsson

Abstract—In this paper, the dimensionality of the multilevel
coded modulation (MLCM) scheme is addressed. This study is
done for an MLCM scheme with a N -dimensional (ND) constel-
lation constructed from the Cartesian product of N identical 1D
constellations in the high SNR regime. It is demonstrated that
multidimensional MLCM with Reed–Solomon code components
has better trade-off between coding gain and complexity than a
1D scheme. Specifically, a 4D MLCM system gains 1.4 dB over
a 1D MLCM system with lower complexity at a block error of
10

−6. The gain increases to 2.5 dB asymptotically.

I. I NTRODUCTION

Multidimensional multilevel coded modulation (MLCM)
schemes have received relatively little attention, in contrast
to, e.g., multidimensional trellis coded modulation (TCM)[1,
Ch.8] [2]. Recently, dense multidimensional lattices suchas
the Schläfli, Gosset, Barnes-Wall, and Leech lattices werein-
troduced as the constituent signal constellations for an MLCM
scheme [3]. Although a 1-dimensional (1D) MLCM scheme
can perform within 1 dB of capacity [4] [5], its complexity
resulting from the large block length of the component codes,
diminishes its practical interest. The better trade-off between
complexity and performance provided by a multidimensional
MLCM scheme may therefore be more practical, e.g., in
optical communications, the high data rates (10-40 Gbs) make
low-complexity solutions very important [6].

In this paper, we exploit the Cartesian product constellation
which introduces a simpler set partitioning approach than
dense lattices [3]. While there is no complexity comparison
between two MLCM schemes with different dimensions in [3],
we show for the first time, to our knowledge, that a multidi-
mensional MLCM scheme has a better performance than the
1D one with the same complexity, which partly contradicts
the result in [4]. Moreover, building on [3] and [7] a novel
simple set partitioning algorithm is introduced. Furthermore,
an analytical expression for the asymptotic coding gain (ACG)
of an MLCM scheme is derived, in which the ACG of MLCM
with affine component codes (see section III.C) is related to
the minimum Euclidean distances (MED) of its layers. Then,
the theoretic performance improvement due to the increase in
the dimension of the constituent constellation is computed. In
addition, the performances of 1, 2, and 4-dimensional (1D,
2D, and 4D) MLCM schemes for some specific constellations
are compared at practical SNR (block error rate (BLER)
around10−6) through simulation. The results, both analytic
and numeric, show a high potential advantage of MLCM
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Fig. 1. AnND MLCM with NL component codes or layers.

schemes with higher dimension in providing a better trade-
off between complexity and coding gain.

II. SYSTEM MODEL

We consider anND constellationC as a Cartesian product
of N 1D constellations with cardinality2L. The MLCM
system consists ofNL layers or component codes with the
same block lengthn but different code ratesRi, Hamming
distancesδi, and correcting capabilitiesti for layer i. An
ND set partitioning algorithm (T according to Fig. 1) maps
NL encoded bits at each time instant to anND symbol. In
the system model shown in Fig. 1, the DEMUX unit splits
the input bit vectorU of length k bits into NL different
vectorsU1,. . . ,UNL of lengthsk1,. . . ,kNL, respectively, where
∑NL

l=1
kl = k. The component codes CC1, . . ., CCNL encode

these vectors intoNL row code vectorsV1, . . . ,VNL of length
n. We denote the normalized MED of the layeri by di
(normalizing with

√
2ηEb, whereEb is the average bit energy

and η is the spectral efficiency of the system). The channel
model is a discrete-time memoryless additive white Gaussian
noise channel with noise varianceN0/2. A multistage decoder
(MSD) with soft or hard decision is applied in the MLCM
receiver.

III. ACG OF MLCM SYSTEMS

We define the ACG as the ratio between the required SNR
of two systems that achieve the same, asymptotically low,
BLER. SystemF exploits a serially concatenated forward
error correction (FEC) and modulation units which operate
independently and systemM is based on the MLCM ap-
proach. The two compared systems have the same information
bit rate, pulse shape, bandwidth and delay. The component
codes belong to the same family of codes and have the same
block lengthn.

III.A-Soft decision decoding: The derivation of the upper
bound on the BLER of a coded system follows the approach
used in [8] for a QAM signal set. The BLER of a system
with normalized MEDd between the different code vectors
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of length n with multiplicity A exploiting soft decision
decoding is obtained byPe ≈ AQ

(

√

ηd2ρb

)

, where ρb

is the signal to noise ratio per bit (Eb/N0) of the system
andQ(x) , 1√

2π

∫∞
x

exp(− 1

2
x2)dx. By the boundQ(x) ≤

1

x
√
2π

exp
(

− 1

2
x2

)

, which is quite tight asymptotically, we

havePe ≈ A
d
√
2πηρb

exp
(

− 1

2
d2ηρb

)

. At asymptotically high
SNR, we compute the reduction in SNR by considering equal
Pe for the two different systems, with differentρb, d andA
but the sameη, and then taking the natural logarithm of both
sides. Noting thatln A

d
√
2πηρb

is negligible for large SNRs, the
ACG between the two proposed systemsM andF is d2M/d2F ,
whered2F = δFd

2
min is the squared normalized MED between

different code vectors of systemF [4], d2M = mini{δid2i } is
the overall squared normalized MED between code vectors of
systemM, dmin is the normalized MED between symbols in
the signal constellation of systemF , andδF is the minimum
Hamming distance between code vectors of systemF .

III.B-Hard decision decoding: The asymptotic BLER of
a binary coded system consisting of a block code with the
correcting capabilityt, codeword lengthn, and a constellation
with normalized MEDd using hard decision decoding can
be approximated very well [1, Eq. (7.5-7)] for high SNR
(1− p ≈ 1) by

Pe ≈
1

(d
√
2ηπρb)t+1

(

n

t+ 1

)

exp

(

−1

2
(t+ 1)d2ηρb

)

. (1)

Exploiting (1) and following the same approach as in
the derivation of ACG for soft decision decoding, the
ACG between systemsM and F is d2hM

/d2hF
where

d2hF
= (tF + 1)d2min and d2hM

= mini=1,...,NL{(ti + 1)d2i },
wheretF is the correcting capability of systemF .

The optimal rate allocation, in terms of ACG, is given
by maximizing dM for a soft decision decoding MSD.
The maximum is obtained when the balanced distance rule
(BDR) [4] is satisfiedd2M = δid

2
i , 0 < i ≤ NL. Simi-

larly, for a hard decision decoding MSD, according to (1),
the minimization of the BLER is equivalent to maximizing
d2hM

= mini=1,...,NL{(ti + 1)d2i }. Therefore using the same
approach as with the BDR, we obtain

d2hM
= (ti + 1)d2i , 0 < i ≤ NL. (2)

III.C-ACG with affine component codes: Affine codes are a
family of block codes having a linear relation between their
Hamming distances and code rates. RS and BCH codes [1, Ch.
7] are special cases of affine codes. In general, for anaffine
code with the lengthn, the minimum Hamming distanceδ
and code rateR = k/n satisfy δ = α + βR, whereα andβ
depend onn but not onR or k. For example, for the (255,k)
RS codes,δ = 256− 255R.

Theorem 1:The ACG of an MLCM system with affine
component codes is given by (for soft as well as hard decision
MSD) ACG= d̄2

d2

min
, whered̄−2 = 1

NL

∑NL
i=1

d−2

i ,

Proof: The two coded systemsF andM have the same
code rateRF = RM = 1

NL

∑NL
i=1

Ri. Moreover, using the
affine code definition for systemF , δF = α+ βRF , we obtain
δF = α + β

(

1

NL

∑NL
i=1

Ri

)

. Similarly, for each layer of
the MLCM system, exploiting the property of affine codes,

one can writeδF = 1

NL

∑NL
i=1

δi. For soft decision decoding,
assuming large enough block length codes, we ignore the fact
that bothδ andk are integers. It follows from the BDR that
δF = 1

NL

∑NL
i=1

d2

M

d2

i

, which substitute into ACG= d2

M

δFd2

min
completes the proof for the soft decision case. One may use
an analogous approach for hard decision decoding by using
the approximationt =

⌊

δ−1

2

⌋

≈ δ
2
− 1 for large enough block

length codes and (2) to obtain

δF ≈ 1

NL

NL
∑

i=1

2d2hM

d2i
. (3)

On the other hand using the definition ofdhF
, we have

ACG =
d2hM

(tF + 1)d2min

≈
2d2hM

δFd2min

. (4)

Substituting (3) into (4), the proof is complete.
The theorem is general in the sense that it is independent of

α andβ, so it holds for both RS and BCH codes (or any other
affine code). It is also independent ofn andR (within certain
limits; in particular,0 ≤ Ri ≤ 1 for all component codes).
Furthermore, this theorem holds for the MSD with soft and
hard decision decoding.

IV. M ULTIDIMENSIONAL SET PARTITIONING

In general, an arbitrary labeling of the constellation symbols
can define the mapping functionT of the MLCM system in
Fig. 1, but Ungerboeck or block set partitioning [4] provides
simpler implementations for the MSD. The 1D constellation
A with a normalized MED ofd0 and cardinality of2L can be
set partitioned into two subsetsA0 andA1 with normalized
MEDs of 2d0. Each of the subsetsA0 andA1 can be further
set partitioned into subsetsA00, A01, A10, andA11 and so on,
up to L steps with subsetsAx1,...,xL

, xi ∈ {0, 1}, 0 < i ≤ L
(the same notation as [4] and [3]). The set partitioning of an
ND constellationC = AN , based on the subsets of the 1D
constellationA and the (N − 1)D constellationC′ = AN−1,
can be written as

C0 = A0 × C′
0 ∪ A1 × C′

1

C1 = A0 × C′
1 ∪ A1 × C′

0

C00 = A0 × C′
0 , C10 = A0 × C′

1

C01 = A1 × C′
1 , C11 = A1 × C′

0

C000 = A00 × C′
00 ∪ A01 × C′

01

C001 = A00 × C′
01 ∪ A01 × C′

00

...

assuming that a set partitioning ofC′ into C′
0, C′

1, C′
00,. . . is

available. ForN = 4, provided thatA is an ASK constellation
labeled by the natural binary code, this method generates Wei’s
set partitioning [2] approach for 4D QAM. Applying the above
recursive approach inNL steps, we can do set partitioning of
anyND constellation (AN ).

Example: For 64-ASK3, which is the Cartesian product of
three 4-ASK constellations, the set partitioning is done in6
steps. The neighboring coefficients (see [9]) are9

2
, 9

2
, 81

16
, 3,
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2, 1 and 2

15
, 4

15
, 4

15
, 8

15
, 8

15
, 8

15
are the squared normalized

MEDs of layers 1, . . . , 6.

V. COMPLEXITY AND PERFORMANCE COMPARISON

In this section we show that even though the 1D turbo
coded MLCM designed based on the capacity rule can achieve
within about 1dB of the Shannon limit regardless of dimen-
sionality [4], multidimensional MLCM schemes introduce a
better trade-off between complexity and coding gain than 1D
schemes.

Wachsmann et al. investigated the dimensionality of
MLCM [4] for convolutional and turbo block component codes
by using examples with 4-ASK and 16-QAM constellations. It
is stated in [4] that for a fixed spectral efficiency (bits/sec/Hz),
the MLCM scheme with a 1D constellation (4-ASK) has
0.25 dB higher power efficiency than the system with a
2D constellation (16-QAM), and also a lower complexity
exploiting turbo component codes. Here, we show that this
gain is obtained at the cost of higher complexity.

Finding the closestND symbol to the received vector
among the2NL symbols inC = AN requires approximatelyN
times the computational complexity of finding the closest1D
symbol in the constituent2L-point constellationA, neglecting
the N − 1 additions which one may need to compute the
ND MED from N 1D MEDs [2]. This complexity analysis
implies that one may compare the complexity of the receivers
for two MLCM schemes with different dimensions by taking
into account solely the complexity of the component code
decoders per dimension. The evaluated 1D system in [4] uses
two turbo codes (R1/R2 = 0.52/0.98) of length2N whereas
the 4D system uses three turbo codes (R1/R2/R3/R4 =
0.29/0.75/0.96/1) not four (R4 = 1) of length N , in order
to transmit at the same bit rate. For a turbo code using
convolutional component (CC) codes with block lengthN ,
the decoder complexityCTC is mainly determined by the
complexity of its CCs decoders [10]. For a trellis decoding
structure, the complexity of the decoder depends on the block
length linearly [1, Ch. 8]. Therefore, the complexity of the1D
MLCM scheme (2CTC per dimension) is higher than the 2D
one (3

2
CTC per dimension). The conclusion in [4] about the

MLCM scheme with CC codes (not turbo) shows the benefit
of using a 2D constellation instead of a 1D one, which is
consistent with our results for affine block codes.

The ACG of three MLCM schemes with 256-ASK4 (4D),
16-ASK2 (2D) and 4-ASK (1D) constellations, computed
using Theorem 1, is seen in Table I. Surprisedly the ACG
can be improved by 1.25 dB by increasing the dimension
by a factor 2, while for a fixed data delay, due to the same
number of component code decoders in each dimension, the
complexity is almost the same. This gain, which by Theorem
1 can be proved to be exactly 4/3 (1.25 dB), is independent of
the rateR, code vector lengthn, and even of the code type,
as long as it is affine. In practical SNRs, the minimization of
the BLER for the 4D MLCM system (see [9]) introduces only
five component codes, while the 1D scheme needs component
code in all its layers. This leads to 2,3

2
, and 5

4
decoders per

dimension for 1D, 2D, and 4D MLCM schemes, respectively.
As seen in Fig. 2, the performance of the system is improved
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Fig. 2. Performance comparison of three MLCM systems with RScomponent
codes over GF(27), n = 889 bits, hard decision MSD-All the systems have
the same average code rateR = 0.929, but different symbol rates to support
the same spectral efficiencyη = 3.72 bits/sec/Hz.

TABLE I
ACG OF THREEMLCM SCHEMES WITH AFFINE COMPONENT CODES

Constellation {d1, d2, . . . , dNL} ACG (dB)

1D {1, 2} 2.04
2D {1,

√
2, 2, 2

√
2} 3.29

4D {1,
√
2,
√
2, 2, 2, 2

√
2, 2

√
2, 4} 4.54

by 1.4 dB by exploiting 4D MLCM, with less complexity.
However, this gain is limited to the high-SNR regime, and it
does not apply to capacity-achieving codes.

VI. CONCLUSION

A potential advantage of multidimensional MLCM in pro-
viding better trade-off between complexity and coding was
shown for affine component codes. The results illustrate that
for practical SNRs, we can design 4D MLCM schemes with
lower complexity and higher power efficiency than with 1D
constellations.
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