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On the Dimensionality of Multilevel Coded
Modulation in the High SNR Regime

Lotfollah Beygi, Student Member, IEEEErik Agrell, and Magnus Karlsson

Abstract—In this paper, the dimensionality of the multilevel —. V1
coded modulation (MLCM) scheme is addressed. This study is kg bits n bits
done for an MLCM scheme with a N-dimensional (ND) constel- <| o v
lation constructed from the Cartesian product of N identical 1D v |52 » 2 S
constellations in the high SNR regime. It is demonstrated tat — > 2 | k2 bis L R
multidimensional MLCM with Reed—Solomon code components k bits | H n symbols
has better trade-off between coding gain and complexity tha a )
1D scheme. Specifically, a 4D MLCM system gains 1.4 dB over w
a 1D MLCM system with lower complexity at a block error of ~ kngbits n bits

1075, The gain increases to 2.5 dB asymptotically.
Fig. 1. An ND MLCM with NL component codes or layers.

|. INTRODUCTION schemes with higher dimension in providing a better trade-

Multidimensional multilevel coded modulation (MLCM) off between complexity and coding gain.
schemes have received relatively little attention, in castt
to, e.g., multidimensional trellis coded modulation (TCN) Il. SYSTEM MODEL

EZISS]cﬁgfl?ecg:ggggi %e;;ieesrj]vl\;gﬁjlgr?;?gg?:q lfat tt'::i:eess ;'ii We consider anVD constellationC as a Cartesian product
' ’ ' of N 1D constellations with cardinalit2”. The MLCM

troduced as the constituent signal constellations for aiCML svstemn consists ofVT, lavers or component codes with the
scheme [3]. Although a 1-dimensional (1D) MLCM schemd’ ye P . .
o ) . .. Same block lengt but different code rate€?;, Hamming
can perform within 1 dB of capacity [4] [5], its Cor’nplexltydistances& and correcting capabilities; for layer i. An
resulting from the large block length of the component codeﬁlD set pa?titioning algorithm T according to Fig. 1) maps
diminishes its practical interest. The better trade-offateen :

. : - . ]YL encoded bits at each time instant to AiD symbol. In
complexity and performance provided by a mult|d|men3|onﬂ1e system model shown in Fig. 1, the DEMUX unit splits
MLCM scheme may therefore be more practical, e.g., i~ . P .
optical communications, the high data rates (10-40 Gbs)ematPe input bit vectort/ of length k: bits into NL different

low-complexity solutions very important [6]. vectorsUy,. .. Ung, of lengthsk,... knz, respectively, where

NL
In this paper, we exploit the Cartesian product constelrati 2= ki = k. The component codes G(...., CCy, encode
N . R these vectors int&VL row code vectord/, ..., Vaz, of length
which introduces a simpler set partitioning approach than . )
) : : . . n. We denote the normalized MED of the layeérby d;
dense lattices [3]. While there is no complexity comparlsog

between two MLCM schemes with different dimensions in [3 hormalizing with./2n 5, whereF, is the average bit energy

we show for the first time, to our knowledge, that a muItidi—ndn 's the spectral efficiency of the system). The channel

. model is a discrete-time memoryless additive white Gauassia
mensional MLCM scheme has a better performance than the . . . .

. . . ._noise channel with noise varian®g /2. A multistage decoder
1D one with the same complexity, which partly contradict

the result in [4]. Moreover, building on [3] and [7] a novelawsp) with soft or hard decision is applied in the MLCM

. L : 2 receiver.
simple set partitioning algorithm is introduced. Furtherm
an analytical expression for the asymptotic coding gainGAC lll. ACG OF MLCM sYSTEMS
of an MLCM scheme is derived, in which the ACG of MLCM  We define the ACG as the ratio between the required SNR
with affine component codes (see section III.C) is related & two systems that achieve the same, asymptotically low,
the minimum Euclidean distances (MED) of its layers. TheBLER. SystemF exploits a serially concatenated forward
the theoretic performance improvement due to the increaseeiror correction (FEC) and modulation units which operate
the dimension of the constituent constellation is computted independently and systemV is based on the MLCM ap-
addition, the performances of 1, 2, and 4-dimensional (1Broach. The two compared systems have the same information
2D, and 4D) MLCM schemes for some specific constellationst rate, pulse shape, bandwidth and delay. The component
are compared at practical SNR (block error rate (BLER)odes belong to the same family of codes and have the same
around10~°) through simulation. The results, both analyti®lock lengthn.
and numeric, show a high potential advantage of MLCM |[1].A-Soft decision decodingThe derivation of the upper

_ _ . bound on the BLER of a coded system follows the approach
L. Beygi, E. Agrell and M. Karlsson are with Chalmers Univsrsof

Technology. Research supported by the Swedish ResearaitiConder grant USEd in [8] _for a QAM signal set. Th? BLER of a system
2007-6223. with normalized MEDd between the different code vectors
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of length n with multiplicity A exploiting soft decision one can write)r = ﬁ Zf\fl 0;. For soft decision decoding,

decoding is obtained by, ~ AQ 1/77d2pb)7 where p, assuming large enough block length codes, we ignore the fact

is the signal to noise ratio per bitE(/N,) of the system that bothd arzl\gkdgre integers. It follows from the BD; that
and Q(z) £ %jm"o exp(_%ﬁ)dx_ By the boundQ(z) < oF = ﬁzz‘:l d—ﬁg, which substitute into ACG= #—fiA%m
I exp (—12?), which is quite tight asymptotically, we completes the proof for the soft decision case. One may use

/21 .. . .
~ __A 12 . . an analogous approach for hard decision decoding by using
have P ~ g7 exp (- 5d _npb)_ - At asymptotically high the approximation = |%51] ~ & —1 for large enough block
SNR, we compute the reduction in SNR by considering equal’ ' cod 42 2 btai 2
P, for the two different systems, with differept, d and A ength codes and (2) to obtain

but the same), and then taking the natural logarithm of both 1 X 2df2w
sides. Noting thaln ;21— is negligible for large SNRs, the O0F # —F > @ 3)
ACG between the two proposed systetsand.F is d3,/d%, _ =t
whered% = §xd2,, is the squared normalized MED betwee®n the other hand using the definition &f., we have
different code vectors of systef [4], d%, = min;{d;d?} is 2 2

/ M i & 242
the overall squared normalized MED between code vectors of ACG = ; iAdQ 3 dé” . (4)
systemM, dmin is the normalized MED between symbols in (t7 + Degin 07 dn
the signal constellation of systef, andé = is the minimum Substituting (3) into (4), the proof is complete. [
Hamming distance between code vectors of systém The theorem is general in the sense that it is independent of

I1l.B-Hard decision decodingThe asymptotic BLER of « andp, so it holds for both RS and BCH codes (or any other
a binary coded system consisting of a block code with ttedfine code). It is also independentwofand R (within certain
correcting capability, codeword lengtm, and a constellation limits; in particular,0 < R; < 1 for all component codes).
with normalized MEDd using hard decision decoding carFurthermore, this theorem holds for the MSD with soft and
be approximated very well [1, Eq. (7.5-7)] for high SNRhard decision decoding.

(1-p~1)by
1 n 1 5 IV. MULTIDIMENSIONAL SET PARTITIONING
b~ G (o) o (30 0 @

In general, an arbitrary labeling of the constellation spifab
Exploiting (1) and following the same approach as igan define the mapping functioh of the MLCM system in
the derivation of ACG for soft decision decoding, therig. 1, but Ungerboeck or block set partitioning [4] prowde
ACG between systemsM and F is dj  /d; _ where simpler implementations for the MSD. The 1D constellation
dy . = (tr + 1)dgy, and dj = mini—; _ np{(t; +1)d7}, A with a normalized MED ofl, and cardinality o2Z can be
wheret r is the correcting capability of systerA. set partitioned into two subsetd, and .4; with normalized
The optimal rate allocation, in terms of ACG, is givenMEDs of 2d,. Each of the subsetd, and.4; can be further
by maximizing dm for a soft decision decoding MSD.Set partitioned into subset4yg, Ao1, A1g, and.A;; and so on,
The maximum is obtained when the balanced distance rlup to L steps with subsetsl,, ., z; € {0,1},0 <i < L
(BDR) [4] is satisfiedd}, = d0;d7, 0 < i < NL. Simi- (the same notation as [4] and [3]). The set partitioning of an
larly, for a hard decision decoding MSD, according to (1)vD constellationC = AY, based on the subsets of the 1D

the minimization of the BLER is equivalent to maximizingconstellation4 and the (V — 1)D constellationC’ = AN—1,
dy ., =mini— _ np{(t; + 1)d7}. Therefore using the samecan be written as

approach as with the BDR, we obtain
Co :Ao XC(/JU.Al XCi

2 4 2 :
th—(tl+1)dl,0<l§NL (2) Cl :AOXCiUAlx(zé
I11.C-ACG with affine component codeaffine codes are a Coo = Ao xC, , Cio = Ay xCy
family of block codes having a linear relation between their Cor = AL xC, , Cii =A xC)

Hamming distances and code rates. RS and BCH codes [1, Ch. , ,
7] are special cases of affine codes. In general, foaffine Cooo = Aoo X Coo U Aor x Coy
codewith the lengthn, the minimum Hamming distancé Coo1 = Aoo x Co; U Ao x Cog
and code ratd® = k/n satisfyé = a + SR, wherea and 3
depend om but not onR or k. For example, for the (255)

RS codesg = 256 — 255R. _ _assuming that a set partitioning 6f into Cj, C}, C,... is
Theorem 1:The ACG of an MLCM system with affine ayajlable. ForV = 4, provided thatd is an ASK constellation
component coddes IS g|ven_E)3/ (forlsoftﬁ\Ls ngl as hard decisifheled by the natural binary code, this method generatés We
MSD) ACG = @z whered™ = g7 > 5= d; 7, set partitioning [2] approach for 4D QAM. Applying the above

Proof: The two coded systems and.M have the same recursive approach iVL steps, we can do set partitioning of
code rateRr = Ry = wp > iy Ri. Moreover, using the any ND constellation 4%).
affine code definition for systeth, 0 = o + SRx, we obtain  Example: For 64-ASK, which is the Cartesian product of
b = a+p (ﬁ SN Ri)- Similarly, for each layer of three 4-ASK constellations, the set partitioning is donesin

the MLCM system, exploiting the property of affine codessteps. The neighboring coefficients (see [9]) %re% % 3,
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2 4 4 8 8 8 i
2, 1 and<z, 15, 155 150 150 15 are the squared normalized
MEDs of layers 1, ..., 6. 10
V. COMPLEXITY AND PERFORMANCE COMPARISON 107}

In this section we show that even though the 1D turbo
coded MLCM designed based on the capacity rule can achieve
within about 1dB of the Shannon limit regardless of dimen- 107
sionality [4], multidimensional MLCM schemes introduce a
better trade-off between complexity and coding gain than 1D iigmtgm
schemes. 10°E| - +- SystemF

Wachsmannet al. investigated the dimensionality of
MLCM [4] for convolutional and turbo block component codes
by using examples with 4-ASK and 16-QAM constellations. Itig. 2. Performance comparison of three MLCM systems witrcR8ponent
is stated in [4] that for a fixed spectral efficiency (bits/gtxr), codes over GH(), n = 889 bits, hard decision MSD-All the systems have
the MLCM scheme with a 1D constellation (4-ASK) _ha%hg :ng 2523?; Z?f?c?e;%z g'%gt')i?;tsgg/fﬁfm symbol rates to support
0.25 dB higher power efficiency than the system with a
2D constellation (16-QAM), and also a lower complexity TABLE |
exploiting turbo Component COdeS. Here, we ShOW that thiSACG OF THREEMLCM SCHEMES WITH AFFINE COMPONENT CODES
gain is obtained at the cost of higher complexity.

BLER

—=—A4D-MLCM

75 8 8.5 9 9.5 1 10.5 11 115 12 125
Ey,/No

Finding the closestND symbol to the received vector | Constellation] {di,d2, ..., dnr} | ACG (dB) |
among the™ symbols inC = A" requires approximately 1D {1,2} 2.04
times the computational complexity of finding the closebt 2D {1,/2,2,2v2} 3.29
symbol in the constituerit”-point constellationd, neglecting 4D {1,v2,V2,2,2,2/2,2V/2, 4} 4.54

the N — 1 additions which one may need to compute the
ND MED from N 1D MEDs [2]. This complexity analysis 1y, 1 4 4B by exploiting 4D MLCM, with less complexity.

implies that one may compare the complexity of the receive, yever, this gain is limited to the high-SNR regime, and it
for two MLCM schemes with different dimensions by takingy;as ot apply to capacity-achieving codes.

into account solely the complexity of the component code

decoders per dimension. The evaluated 1D system in [4] uses VI. CONCLUSION

two turbo codes R, /R, = 0.52/0.98) of lengt2 N whereas A potential advantage of multidimensional MLCM in pro-
the 4D system uses three turbo codée® (R2/R3/Rs = viding better trade-off between complexity and coding was
0.29/0.75/0.96/1) not fourHy = 1) of length NV, in order shown for affine component codes. The results illustrate tha
to transmit at the same bit rate. For a turbo code usifigr practical SNRs, we can design 4D MLCM schemes with
convolutional component (CC) codes with block length lower complexity and higher power efficiency than with 1D
the decoder complexity’tc is mainly determined by the constellations.

complexity of its CCs decoders [10]. For a trellis decoding

structure, the complexity of the decoder depends on thekbloc REFERENCES
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