This is an author produced version of a paper presented at the 10th International Workshop on Discrete Event Systems (WODES), Berlin, 30 August – 1 September 2010. This paper has been peer-reviewed but may not include the final publisher proof-corrections or pagination.

http://dx.doi.org/10.3182/20100830-3-DE-4013.00068

Access to the published version may require subscription. Published with permission from: IFAC
Modular specification of forbidden states for supervisory control

P. Magnusson * M. Fabian * K. Åkesson *

* Department of Signals and Systems Chalmers University of Technology, Gothenburg, Sweden
(e-mail: patrikm, fabian, knut at chalmers.se)

Abstract: A method for solving the forbidden state problem in the Supervisory Control Theory framework is presented. In many real-world applications both the plant and specification is given as a set of interacting automata or processes. In this work, we enable specification of forbidden states within such a modular structure. The aim with the method is to make each forbidden state combination uncontrollable. It is then possible to use efficient modular synthesis algorithms for calculation of a modular supervisor where the forbidden states are removed.

Keywords: discrete event systems, automata, modular control, supervisory control, formal specification, forbidden state problem

1. INTRODUCTION

Systems that may be abstracted to at all times occupy a single state from out of a finite set of states, and transit between these states on asynchronously and instantaneously occurring events are usefully modeled as discrete event systems, DESs. Examples include manufacturing systems and communication networks. The possible sequences of events may be described by regular languages and/or finite state automata.

The control of DESs arises since there is a possibility that not all sequences of events are desirable. The uncontrolled DES model, called the plant, needs to be restricted according to some specification. Synthesis of a supervisor that dynamically disables events in the plant based on a specification may be done according to the supervisory control theory, SCT, a formal framework presented in Ramadge and Wonham (1987b, 1989).

A subset of the events in the plant are not subject to disenablement, these are said to be uncontrollable. A supervisor must never try to disable uncontrollable events, it must be controllable. It is known that for every plant and specification there exists a unique controllable supervisor that restricts the sequences of events as little as possible, this supervisor is said to be minimally restrictive.

The straight-forward monolithic modeling, and hence synthesis, is intractable for industrial systems as these typically encompass enormous state-spaces due to the combinatorial state space explosion problem. One favorable way to overcome this problem is to employ a modular approach; the model then consists of a number of interacting sub-plants and sub-specifications, Wonham and Ramadge (1988); Queiroz and Cury (2000). Each sub-specification typically specifies the desired or forbidden behavior of only a small part of the global plant, which is favorable for modular synthesis. This then typically results in a number of sub-supervisors, each controlling its own small, but possibly overlapping, part of the plant. Highly efficient algorithms that benefit from modular modeling do exist, see for instance Åkesson et al. (2002); Queiroz and Cury (2000); Flordal (2006).

An important sub-problem of the supervisory control theory is the forbidden state problem. The importance of this problem stems from the fact that it is a safety problem; it is concerned with bad things never happening. The forbidden state problem appears with different terminologies within the literature. Supervision based on place invariants is a term from the Petri net community for specifying an upper limit for the sum of tokens in a subset to the total set of places. An extensive survey is given in Iordache and Antsaklis (2006). A common characteristic of the Petri net approaches described by Iordache and Antsaklis (2006) is a monolithic specification, the L and b matrices. Though this may result in a modular supervisor, as in the decentralized case described by Iordache and Antsaklis (2006), the specification task may still be hampered. Place invariants are very similar to predicate invariants in the automata community. Predicate invariants specify how some state combinations from sub-systems are to remain invariant during the process. Ramadge and Wonham (1987a) prove that a predicate composed (through conjunction and/or disjunction) of sub-predicates lends itself to a modular synthesis. Though the above described approaches employ a modular synthesis approach to the forbidden state problem, they do not explicitly treat the problem of modular specification of forbidden states tailor made for a modular synthesis approach.

This paper deals with modular specification of forbidden states, explicitly relying on specification decomposition, Komenda et al. (2008); in the hope to reap the benefits of a modular synthesis algorithm. The modular supervisor
is typically an interaction of several sub-supervisors of manageable size.

A brute force method to calculate a minimally restrictive supervisor is to compose sub-plants and possible sub-specifications, remove forbidden state combinations from the composition, and finally perform synthesis by removing additional states of the composition. Another method is to create additional sub-specifications. These specifications are sequences of events that reach all forbidden state combinations, in order to forbid the last state in each sequence. The sequences should not restrict the plant behavior, only track events. Simple removal of sub-plant and sub-specification states in the initial sub-systems is then the same as removing all state combinations where any of the sub-plant or the sub-specification state exists. This will not necessarily give a minimally restrictive supervisor, Åkesson et al. (2002).

The approach presented in this paper takes advantage of the fact that state combinations where a specification disables an uncontrollable event possible in the plant will be removed by the synthesis algorithm. Each forbidden state is therefore turned into a controllability problem. This is done by introducing uncontrollable events in the concerned sub-plants and sub-specifications. Adding the uncontrollable events is self-looped at the respective states in the sub-plants (and possibly in some sub-specifications). Adding the uncontrollability events creates a controllability problem so that the forbidden state combinations are removed with employment of a synthesis algorithm. This paper proofs the validity of the approach for forbidden state combinations with states from a subset of the sub-plants and zero or one sub-specification. Guidelines for how to handle states from a subset of both sub-plants and sub-specifications are given.

We assume dissimilar alphabets for all sub-automata, as among others pointed out by Åkesson et al. (2002). For clarity of presentation and without loss of generality, we assume that all given events are uncontrollable. We will introduce new events that are uncontrollable. We do not address the problem of synthesizing a non-blocking supervisor.

The next section presents the modeling formalism used. Sections 3 and 4 describe the method, the latter with formal proofs. Illustrative examples are given in Section 5. The paper ends with some conclusions.

2. PRELIMINARIES

This section presents the modeling formalism used in this paper.

Definition 1. Deterministic Finite Automaton
A deterministic finite automaton is a 4-tuple $A := (Q_A, \Sigma_A, \delta_A, i_A)$ where Q_A is the nonempty finite set of states; Σ_A is the nonempty finite set of events, the alphabet for the automaton; $\delta_A : Q_A \times \Sigma_A \to Q_A$ is the partial transition function and $i_A \in Q_A$ is the initial state.

Let $\delta_A(q, \sigma)! \equiv \neg{}(\delta_A(q, \sigma)!)$ denote that an event σ is defined (undefined) from a state q for an automaton A. The set of all finite sequences of events over an alphabet Σ_A including the empty sequence, ϵ, is denoted Σ_A^\ast. An element $s \in \Sigma_A^\ast$ is called a string. A language, $L(A)$, is the set of strings accepted from the initial state, defined by an automaton A. $\delta_A(q, \sigma)$ is equal to $\delta_A(i_A, t)$ where $t \in L(A)$, otherwise non-reachable.

Definition 2. Active event function
The active event function returns the set of events defined from a state. $\Gamma(q) := \{ \sigma \in \Sigma \mid \delta_A(q, \sigma)! \}$

Interaction of two automata may be modeled with full synchronous composition, FSC, Hoare (1985).

Definition 3. Full synchronous composition (FSC)
The full synchronous composition of two automata A and B is defined as $C := A||B$ where $Q_C := Q_A \times Q_B$; $\Sigma_C := \Sigma_A \cup \Sigma_B$; $i_C := (i_A, i_B)$ and $\delta_C((q_A, q_B), \sigma) := \{ (\delta_A(q_A, \sigma), \delta_B(q_B, \sigma)) \mid \sigma \in \Gamma_A(q_A) \cap \Gamma_B(q_B) \}

FSC models a way to supervise the behavior of an automaton P, plant, through an automaton S, specification. Automaton S disables events in automaton P. A common situation is that automaton P models some process and that automaton S models restrictions of this process.

Some of the events in an automaton P, $\Sigma_P \subseteq \Sigma_P$, are not subject to disablement. These are said to be uncontrollable. $L(S) \Sigma_P$ represents the concatenation of all strings in $L(S)$ with all events in Σ_P. S must never disable uncontrollable events, that is S must be controllable. This is captured by the notation of controllability.

Definition 4. Controllability
If $\Sigma_S \subseteq \Sigma_P$, S is controllable with respect to P and $\Sigma_P \subseteq \Sigma_P$, P is controllable with respect to S.

It follows directly from Definition 4 that some states may be regarded as uncontrollable.

Definition 5. Uncontrollable state
Let P be a plant and S a specification. $\exists t \in L(P||S)$. A state $p := \delta_{P||S}(i_P||S, t)$ is uncontrollable if there exists an uncontrollable event $u \in \Sigma_P \ni s.t. \delta_P(i_P, tu)! \land \neg \delta_{P||S}(i_P||S, tu)!$

Possible uncontrollable states in the composition $P||S$ prevents the specification $S = S_0$ from being a supervisor, it is not controllable. The plant may perform transitions that result in loss of synchronization between P and S_0. A controllable supervisor S_{n+1} may be synthesized through iterative removal of uncontrollable states in S_1, $S_1 = P||S_0$. It is known that every plant and specification has a minimally restrictive supervisor that restricts the sequences of events as little as possible, Ramadge and Wonham (1987b).

We end with defining some terms to simplify the further discussion.

Definition 6. Configuration
A configuration is a finite set of automata and is denoted by $A_J := \{ A_1, ..., A_n \}$. A sub-configuration B_J comprises a subset of automata from A_J, i.e., $B_J \subseteq A_J$. The FSC of a configuration is interpreted as $A := \{ A_1||...||A_n \}$.

Definition 7. Global, local, and sub-states
With the term local-state we will refer to a state in a
single automaton. With the term global-state we will refer
to a state in the FSC of a configuration. With the term sub-state we will refer to a state in the FSC of a sub-
configuration.

Let a configuration $B_i \subseteq A_i$. Assume there exists an automaton B_i in A_i. A global-state in B_i is a sub-state in A_i and a local-state $qB_i \in QB_i$ is a sub-state in both B_i and A_i.

3. MODULAR SPECIFICATION AND SYNTHESIS

A modular supervisory control problem may now be de-
scribed in terms of plant and specification configurations, $P_i := \{P_1, ..., P_n\}$ and $S_\i := \{S_1, ..., S_m\}$, respectively.

To add to this a specification that refers to local-states from different automata that should not appear together in the closed loop system of P_i and S_\i. We denote each specified combination of local-states as a forbidden sub-state.

The terms local-, sub- and global-state refer to the states of the type $(k > 0, l = 0)$, where k (l) is number of local sub-plant (sub-specification) states. The second and third subsection concern (k > 0, l = 1) and (k > 0, l > 1), respectively. The observant reader will see that the method modifies all sub-states into the type (k > 0, l = 1). We neglect sub-states of the type (k = 0, l > 0) as these only concern forbidden sub-specification state combinations.

4. MODULAR AUTOMATA EXTENSION

The basic idea of the method is to make each forbidden sub-state in $P_i \cup S_\i$ uncontrollable, so that the synthesis algorithm will remove it. This is achieved with introduction of an event α^i connected to each forbidden sub-state.

The superscript i is unique for each forbidden sub-state. The event α^i is uncontrollable and models the linking between the local-states, and only those local-states, that compose each forbidden sub-state.

We introduce the definition α^i-uncontrollability for strings that lead to states that are uncontrollable because of α^i.

Definition 8. α^i-uncontrollable

Let P be a plant and S a specification. $\exists \in L(P||S)$. A string t is α^i-uncontrollable if

$\delta_P (i_P, t\alpha^i)! \land \delta_P (i_P||S, t)! \land \neg \delta_P (i_P||S, t\alpha^i)!$

The significance of a state reached with an α^i-uncontrollable string is that it is uncontrollable and therefore removed in the synthesis algorithm. We will show that only the forbidden states are reached with α^i-uncontrollable strings.

We choose to describe the introduction of the α^i events into the automata in $P_i \cup S_\i$ within three subsections for ease of understanding. The first subsection concerns sub-states of the type $(k > 0, l = 0)$, where k (l) is number of local sub-plant (sub-specification) states. The second and third subsection concern (k > 0, l = 1) and (k > 0, l > 1), respectively. The observant reader will see that the method modifies all sub-states into the type (k > 0, l = 1). We neglect sub-states of the type (k = 0, l > 0) as these only concern forbidden sub-specification state combinations.

4.1 Sub-states of the type (k > 0, l = 0)

A forbidden sub-state $(p_1, p_2, ..., p, ..., p_k)$ in P_i concerns k local-states in k sub-plants, $p \in Q_P$ and $P \subseteq P_i$.

We propose that a unique event α^i is created for the forbidden sub-state. Each of the k local plant states are linked to this event through extension of the k sub-plants.

Definition 9. Plant extension

Let P be a plant. A local-state $p \in Q_P$ is linked to an event α^i through extension of P, denoted P_\i, such that $Q_\i := Q_P, \Sigma_\i := \Sigma_P \cup \{\alpha^i\}$, $\i_P := i_P$ and $\i_\i := \delta_P \cup \{p, \alpha^i, p\}$

An extended sub-plant P_\i replaces an initial given sub-plant P in a configuration P_i. An extension of an extended sub-plant replaces the extended sub-plant in a configuration and so forth. This latter concerns sub-plants that link to many α^i. We continue with composition of two extended automata.

Lemma 10. FSC of k sub-plants with and without extension according to Definition 9 will at most differ with a self-loop, event α^i, at the sub-state combined from the local sub-plant states with this self-loop.

Proof. The proof follows from the definition of FSC, Definition 3. Let $P := P_i||P_2$ and $P_\i := P_1||P_2$ then $Q_\i = Q_P, \Sigma_\i \setminus \Sigma_P = \{\alpha^i\}, \i_P = i_P$ and $\i_\i := \{p, \alpha^i, p\}$

Recall that FSC may make the forbidden sub-state non-reachable, no difference will then exist between P and P_\i.

A unique specification S_\i is created for the event α^i, as in Definition 11. Uncontrollability is enabled as S_\i always
disables the event α^i. The created specification is added to the configuration S_{α}.

Definition 11. Specification for an event α^i

$S_{\alpha}^i := \{ \{ q_{S_i} \}, \{ \alpha^i \}, \delta_{S_i}, q_{S_i} \}$ where $\neg \delta_{S_i}(q_{S_i}, \alpha^i)$!

The remainder part of this section is devoted to uncontrollable states in the composition of P and S_{α}^i, where P is the composition of the k, extended sub-plants.

Lemma 12. FSC of P and S_{α}^i allows all transitions in P besides the self-loop, event α^i, at the state $(p_1, p_2, ..., p_k)$.

Proof. The proof is immediate from the definition of FSC, see Definition 3. The composition $P||S_{\alpha}^i := \langle Q_P \times \{ q_{S_i} \}, \Sigma, \delta_{P||S_{\alpha}^i}, (i_P, q_{S_i}) \rangle$ where $\delta_{P||S_{\alpha}^i}((p, q), (i, \alpha)) = \{ (i_P, q_{S_i}), \sigma \in \Sigma_P (p,\sigma) \}$ undefined otherwise.

Note that $\delta_{P||S_{\alpha}^i}((p, q), \sigma)$ is undefined for all events not in $\Gamma_P(p)$; specifically, $\delta_{P||S_{\alpha}^i}((p, q), \sigma)$ is undefined for $\sigma = \alpha^i$, and thus for any string ending with α^i.

k sub-plants and one sub-specification have the event α^i in their alphabet. For clarity of presentation and without loss of generality, we assume $\Sigma_P = \emptyset$. Thus, the uncontrollable events to check for in the controllability theorem are $\{ \alpha^i \}$.

The forbidden state $(p_1, p_2, ..., p_k)$ in P is equal to $(p_1, p_2, ..., p_k, q_{S_i})$ in the synchronization $P||S_{\alpha}^i$, because $Q_{S_i} = \{ q_{S_i} \}$. We are now ready to connect the forbidden state with α^i-uncontrollability.

Theorem 13. Given P and S_{α}^i as defined in Definition 9 and 11, a string $t \in L(P||S_{\alpha})$ is α^i-uncontrollable if and only if $\delta_{P||S_{\alpha}}((i_P, q_{S_i}), t) = (p_1, p_2, ..., p_k, q_{S_i})$.

Proof. Only strings t to the forbidden state, $(p_1, p_2, ..., p_k)$, are α^i-uncontrollable candidates, from Lemma 10. t is α^i-uncontrollable because $\neg \delta_{P||S_{\alpha}}((i_P, q_{S_i}), \alpha^i)$, from Lemma 12.

All states reached with α^i-uncontrollable strings are removed in the succeeding synthesis algorithm.

4.2 Sub-states of the type $(k > 0, l = 1)$

A forbidden sub-state $(p_1, p_2, ..., p_k, q)$ in $P_{i} \cup S_{\alpha}$ concerns k local-states in k sub-plants and one local-state in one sub-specification, $p \in Q_P$ and $P \subseteq P_{i}$, $q \in Q_S$ and $S \subseteq S_{\alpha}$. We propose that a unique event α^i is created for the forbidden sub-state. All k sub-plants are extended as in Definition 9.

Definition 14. Specification extension

Let S be a specification. A local-state $q \in Q_S$ is linked to an event α^i through extension of S, denoted \tilde{S}, such that $\tilde{S} := \langle Q_S, \Sigma_{\tilde{S}}, \delta_{\tilde{S}}, i_S \rangle$ where $\Sigma_{\tilde{S}} = \Sigma_S \cup \{ \alpha^i \}$ and $\delta_{\tilde{S}}(p, \sigma) := \begin{cases} p & \text{undefined} \\ \sigma & \sigma = \alpha^i \land p \neq q \\ \delta_S(p, \sigma) & \text{otherwise} \end{cases}$

An extended sub-specification \tilde{S} replaces an initial given sub-specification S in a configuration S_{α}. We continue by comparing a specification S_{α} and a specification \tilde{S}.

A specification S_{α} may be seen as a special case of a specification \tilde{S} where $Q_{\tilde{S}} = \{ q_{S_i} \}$ and $\Gamma_{\tilde{S}}(q_{S_i}) = \emptyset$. Hence, we have a similar issue as in the former section, k sub-plants and one sub-specification with the event α^i in their alphabet.

Lemma 15. FSC of \tilde{S} and \tilde{S} allows all α^i events in $P||S$ besides in sub-states where it is not permitted in the local-state of the sub-specification.

Proof. The proof follows from Definition 3. $\tilde{S}||\tilde{S} := \langle Q_P \times Q_S, \Sigma, \delta_{\tilde{S}||\tilde{S}}, (i_P, i_S) \rangle$ where $\delta_{\tilde{S}||\tilde{S}}((i_P, q_{S_i}, i_S), \sigma) := \{ (i_P(q_{S_i}, \sigma), i_{S}(q_{S_i}, \sigma)) \}$ undefined otherwise.

We end with an extension of the proof in Theorem 13 in order to show the linking between α^i-uncontrollability and the forbidden state.

Theorem 16. Given P and S_{α} as defined in Definition 9 and 14, a string $t \in L(P||S_{\alpha})$ is α^i-uncontrollable if and only if $\delta_{\tilde{S}||\tilde{S}}((0, i_S), t) = (p_1, p_2, ..., p_k, q)$. Proof. $\delta_{\tilde{S}||\tilde{S}}((0, i_S), t) = (p_1, p_2, ..., p_k, q)$ if q disables α^i, from Theorem 13. There exist such states q in $P||S$, from Lemma 15. q is the single state in S that disables α^i, from Definition 14.

The subsequent synthesis algorithm removes all states reached with α^i-uncontrollable strings.

4.3 Sub-states of the type $(k > 0, l > 1)$

We believe that the previous two subsections handle the corpus of problems with forbidden states, but the most general sub-state still remains. The most general forbidden sub-state $(p_1, ..., p_l, q)$ in $P_{i} \cup S_{\alpha}$ concerns k local-states in k sub-plants and l local-states in l sub-specifications, $p \in Q_P$ and $P \subseteq P_{i}$, $q \in Q_S$ and $S \subseteq S_{\alpha}$. We propose that a unique event α^i is created for the forbidden sub-state. All k sub-plants are extended as in Definition 9.

The proposed automaton extension method for a single local specification state, Definition 14, is not applicable for sub-states with more than one local sub-specification state. FSC removes the self-loop, event α^i, from all sub-states where α^i is not in all local-states. This is the same as making all sub-state combinations uncontrollable where any of the forbidden local sub-specification states exists. This will most certainly not give a minimally restrictive supervisor.

For this reason we propose two alternative approaches for sub-states with more than one local sub-specification states that to some extent answer our intention to represent forbidden sub-states as uncontrollable states and still preserve modularity.

In a first approach, each local-state $q_1, ..., q_l$ is linked to an event α^i as in Definition 14. The extended sub-
specifications, \(S_1, ..., S_l \), are composed to a single sub-specification \(\hat{S} \) with prioritized synchronous composition, see Heymann (1990). All events are prioritized besides the event \(\alpha^i \). We will then have a forbidden sub-state of the type \((k > 0, l = 1)\). Sub-states of that type are processed in section 4.2.

A second approach requires modifications within the controllability verification part of the synthesis algorithm. The concerned sub-specifications are extended as in Definition 14, but not with the same event \(\alpha^i \) as before, instead with a unique event \(\alpha^i_j \), \(j = 1, ..., l \). All sub-states, besides one (zero), in the FSC of extended sub-specifications will always comprise at least one self-loop, event \(\alpha^i_j \). There is one (zero) sub-state without self-loops if our forbidden sub-state, \((q_1, ..., q_l)\), is reachable (non-reachable) in the FSC. The controllability verification part is implemented not to distinguish between events with and without index \(j \). The sub-state of our concern will be the single possible uncontrollable sub-state for the uncontrollable events \(\alpha^i \) and \(\alpha^i_j \). Section 4.2 is then a special case where only one value is needed for index \(j \).

To summarize the second approach, the forbidden sub-state with \(k + l \) local-states is reflected in \(k + l \) events in FSC and a single event in controllability verification.

5. EXAMPLES

The proposed method is illustrated with three examples. Two three state users from Ramadge and Wonham (1987b) compose sub-plants.

5.1 Mutual exclusion with two sub-plants

The task is to create a supervisor that prevents two machines from using a shared resource at the same time, a normal safety issue. Each machine is modeled as the automaton in figure 1. FSC of these two sub-plants gives the total plant. Both machines using the shared resource is then equal to the state \(UU \).

The problem may be solved as described in section 4.1. A self-loop with an uncontrollable event \(\alpha^i \) is added to the \(U \) state for each sub-plant. A specification automaton \(S_0^\alpha \) is created for the \(\alpha^i \) event, \(Q_{S_0^\alpha} = \{M\} \).

The synchronous composition of the sub-plants with and without the specification \(S_0^\alpha \) is seen in figure 2. The two cases are the same besides the self-loop with event \(\alpha^i \) that is present (disabled) in the case without (with) \(S_0^\alpha \). The state \(UUM \) is uncontrollable, thus removed in a succeeding synthesis algorithm.

5.2 Inclusion of local-state from a specification

A similar but somewhat harder problem arises when the machines may operate in two modes; manual and auto. Both machines may access the shared resource in the manual mode but not in the auto mode. Switching between the modes is only feasible in the idle state of a machine. This latter may be modeled as a three state user modified according to figure 3. A specification \(S \) for the switching may be modeled as in figure 4.

5.3 Arithmetic example with many users

The strength of the proposed method is colorfully illustrated with an arithmetic continuation of the example in section 5.1. What is the cost of synthesizing a supervisor that prevents all sub-states \((U_i, U_j)\) s.t. \(i \neq j \) in \(N \) users? We assert that a monolithic and modular synthesis
Fig. 4. Specification for how mode switch is allowed to occur. State; M: Manual, A: Auto. None of the events may be controlled from the supervisor, thus uncontrollable.

Fig. 5. Synchronization of two sub-plant automata as of figure 3 and one specification automaton as of figure 4 with addition of a α^i self-loop in the manual state. Lower part of automaton as in figure 2 but with a solid self-loop in state UUA. The dashed transition from state UUA is disabled as cause of synchronization with the specification, this gives an uncontrollable state.

The algorithm can be compared with respect to the number of states that it needs to take into consideration for calculation of the minimally restrictive supervisor. Thus, the cost is lower with fewer states.

N users have $N \cdot (N - 1)/2$ forbidden sub-states (U_i, U_j). We assume that a monolithic algorithm requires a specification where each sub-state is removed. This gives $3^N - N \cdot (N - 1)/2$ number of states to consider in the algorithm. A modular algorithm consists all sub-plants and sub-specifications that share uncontrollable events, Åkesson et al. (2002). One specification S^*_i is created for each sub-state. This gives $N \cdot (N - 1)/2 \cdot 3^2$ number of states to consider in the algorithm. See table 1.

We have used the implementation of modular synthesis from Åkesson et al. (2002), but any modular synthesis algorithm would benefit from our approach to modular specification of forbidden states.

6. CONCLUSIONS

We have shown how to specify forbidden state combinations within a set of modular plants and specifications. Each specified state combination is made uncontrollable.

Table 1. Number of states to consider in synthesis algorithms in order to synthesize supervisor for N users and no sub-states (U_i, U_j) s.t. $i \neq j$

<table>
<thead>
<tr>
<th>N</th>
<th>3</th>
<th>4</th>
<th>10</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mono</td>
<td>24</td>
<td>75</td>
<td>$\sim 6 e^3$</td>
<td>$\sim 1 e^23$</td>
</tr>
<tr>
<td>Modu</td>
<td>27</td>
<td>54</td>
<td>405</td>
<td>$\sim 1 e^3$</td>
</tr>
</tbody>
</table>

These uncontrollable states are removed by a modular synthesis algorithm, Åkesson et al. (2002). The algorithm returns a modular supervisor where the forbidden state combinations are removed. The focus in this paper has been on many modular plant states and zero or one modular specification state in the forbidden state combinations. Our modeling experience tells us that this constitutes the corpus of problems with forbidden states.

Future research concerns decreasing the number of events that make the forbidden state combinations uncontrollable, in order to minimize computer memory use. Hence, two forbidden state combinations (a, b) and (a, c) may use the same event α^i if $a \in A$ and $b, c \in B$, where A and B are two sub-plants. Future research also concerns a formalization of the ideas for the most general forbidden state type, given in this paper. See www.supemica.org for the latest implementation.

REFERENCES

