
CPL
Chalmers Publication Library

Institutional Repository of

Chalmers University of Technology

http://publications.lib.chalmers.se/cpl/

This is an author produced version of a paper presented at

the 10th International Workshop on Discrete Event Systems

(WODES), Berlin, 30 August – 1 September 2010.

This paper has been peer-reviewed but may not include the

final publisher proof-corrections or pagination.

http://dx.doi.org/10.3182/20100830-3-DE-4013.00068

Access to the published version may require subscription.

Published with permission from:

IFAC

http://dx.doi.org/10.3182/20100830-3-DE-4013.00068

Modular specification of forbidden states
for supervisory control ?

P. Magnusson ∗ M. Fabian ∗ K. Åkesson ∗

∗Department of Signals and Systems Chalmers University of
Technology, Gothenburg, Sweden

(e-mail: patrikm, fabian, knut at chalmers.se)

Abstract: A method for solving the forbidden state problem in the Supervisory Control Theory
framework is presented. In many real-world applications both the plant and specification is given
as a set of interacting automata or processes. In this work, we enable specification of forbidden
states within such a modular structure. The aim with the method is to make each forbidden
modular state combination uncontrollable. It is then possible to use efficient modular synthesis
algorithms for calculation of a modular supervisor where the forbidden states are removed.

Keywords: discrete event systems, automata, modular control, supervisory control, formal
specification, forbidden state problem

1. INTRODUCTION

Systems that may be abstracted to at all times occupy a
single state from out of a finite set of states, and transit be-
tween these states on asynchronously and instantaneously
occurring events are usefully modeled as discrete event
systems, DESs. Examples include manufacturing systems
and communication networks. The possible sequences of
events may be described by regular languages and/or finite
state automata.

The control of DESs arises since there is a possibility that
not all sequences of events are desirable. The uncontrolled
DES model, called the plant, needs to be restricted accord-
ing to some specification. Synthesis of a supervisor that
dynamically disables events in the plant based on a speci-
fication may be done according to the supervisory control
theory, SCT, a formal framework presented in Ramadge
and Wonham (1987b, 1989).

A subset of the events in the plant are not subject
to disablement, these are said to be uncontrollable. A
supervisor must never try to disable uncontrollable events,
it must be controllable. It is known that for every plant and
specification there exists a unique controllable supervisor
that restricts the sequences of events as little as possible,
this supervisor is said to be minimally restrictive.

The straight-forward monolithic modeling, and hence syn-
thesis, is intractable for industrial systems as these typ-
ically encompass enormous state-spaces due to the com-
binatorial state space explosion problem. One favorable
way to overcome this problem is to employ a modular ap-
proach; the model then consists of a number of interacting
sub-plants and sub-specifications, Wonham and Ramadge
(1988); Queiroz and Cury (2000). Each sub-specification
typically specifies the desired or forbidden behavior of

? Supported by the Swedish Research Council, grant number
90378601, and the European 7th Framework Programme, grant
agreement number 213734 (FLEXA).

only a small part of the global plant, which is favorable
for modular synthesis. This then typically results in a
number of sub-supervisors, each controlling its own small,
but possibly overlapping, part of the plant. Highly efficient
algorithms that benefit from modular modeling do exist,
see for instance Åkesson et al. (2002); Queiroz and Cury
(2000); Flordal (2006).

An important sub-problem of the supervisory control the-
ory is the forbidden state problem. The importance of this
problem stems from the fact that it is a safety problem; it is
concerned with bad things never happening. The forbidden
state problem appears with different terminologies within
the literature. Supervision based on place invariants is a
term from the Petri net community for specifying an upper
limit for the sum of tokens in a subset to the total set
of places. An extensive survey is given in Iordache and
Antsaklis (2006). A common characteristic of the Petri net
approaches described by Iordache and Antsaklis (2006) is a
monolithic specification, the L and bmatrices. Though this
may result in a modular supervisor, as in the decentral-
ized case described by Iordache and Antsaklis (2006), the
specification task may still be hampered. Place invariants
are very similar to predicate invariants in the automata
community. Predicate invariants specify how some state
combinations from sub-systems are to remain invariant
during the process. Ramadge and Wonham (1987a) prove
that a predicate composed (through conjunction and/or
disjunction) of sub-predicates lends itself to a modular
synthesis. Though the above described approaches employ
a modular synthesis approach to the forbidden state prob-
lem, they do not explicitly treat the problem of modular
specification of forbidden states tailor made for a modular
synthesis approach.

This paper deals with modular specification of forbidden
states, explicitly relying on specification decomposition,
Komenda et al. (2008), in the hope to reap the benefits of
a modular synthesis algorithm. The modular supervisor

is typically an interaction of several sub-supervisors of
manageable size.

A brute force method to calculate a minimally restrictive
supervisor is to compose sub-plants and possible sub-
specifications, remove forbidden state combinations from
the composition, and finally perform synthesis by remov-
ing additional states of the composition. Another method
is to create additional sub-specifications. These specifi-
cations are sequences of events that reach all forbidden
state combinations, in order to forbid the last state in
each sequence. The sequences should not restrict the plant
behavior, only track events. Simple removal of sub-plant
and sub-specification states in the initial sub-systems is
then the same as removing all state combinations where
any of the sub-plant or the sub-specification state exists.
This will not necessarily give a minimally restrictive su-
pervisor, Åkesson et al. (2002).

The approach presented in this paper takes advantage of
the fact that state combinations where a specification dis-
ables an uncontrollable event possible in the plant will be
removed by the synthesis algorithm. Each forbidden state
is therefore turned into a controllability problem. This
is done by introducing uncontrollable events in the con-
cerned sub-plants and sub-specifications. The introduced
events are self-looped at the respective states in the sub-
plants (and possibly in some sub-specifications). Adding
the events to the alphabets of the sub-specifications then
creates a controllability problem so that the forbidden
state combinations are removed with employment of a
synthesis algorithm. This paper proofs the validity of the
approach for forbidden state combinations with states
from a subset of the sub-plants and zero or one sub-
specification. Guidelines for how to handle states from a
subset of both sub-plants and sub-specifications are given.

We assume dissimilar alphabets for all sub-automata, as
among others pointed out by Åkesson et al. (2002). For
clarity of presentation and without loss of generality,
we assume that all given events are controllable. We
will introduce new events that are uncontrollable. We do
not address the problem of synthesizing a non-blocking
supervisor.

The next section presents the modeling formalism used.
Sections 3 and 4 describe the method, the latter with
formal proofs. Illustrative examples are given in Section
5. The paper ends with some conclusions.

2. PRELIMINARIES

This section presents conventions and notations for the
modeling formalism used in this paper.

Definition 1. Deterministic Finite Automaton
A deterministic finite automaton is a 4-tuple A :=
〈QA,ΣA, δA, iA〉 where QA is the nonempty finite set of
states; ΣA is the nonempty finite set of events, the alphabet
for the automaton; δA : QA × ΣA → QA is the partial
transition function and iA ∈ QA is the initial state.

Let δA (q, σ)! (¬δA (q, σ)!) denote that an event σ is defined
(undefined) from a state q for an automaton A. The set of
all finite sequences of events over an alphabet ΣA including
the empty sequence, ε, is denoted Σ∗A. An element s ∈ Σ∗A

is called a string. A language, L(A), is the set of strings
accepted from the initial state, defined by an automaton
A. δA (q, σs) is equal to δA (δA (q, σ) , s). A state p ∈ QA
is reachable if p = δA (iA, t) where t ∈ L(A), otherwise
non-reachable.

Definition 2. Active event function
The active event function returns the set of events defined
from a state. Γ (q) := {σ ∈ Σ | δ (q, σ)!}

Interaction of two automata may be modeled with full
synchronous composition, FSC, Hoare (1985).

Definition 3. Full synchronous composition (FSC)
The full synchronous composition of two automata A and
B is defined as C := A||B where QC := QA × QB ;
ΣC := ΣA ∪ ΣB ; iC := 〈iA, iB〉 and δC (〈qA, qB〉, σ) :=
〈δA (qA, σ) , δB (qB , σ)〉 σ ∈ ΓA (qA) ∩ ΓB (qB)
〈δA (qA, σ) , qB〉 σ ∈ ΓA (qA) \ ΣB
〈qA, δB (qB , σ)〉 σ ∈ ΓB (qB) \ ΣA
undefined otherwise

FSC models a way to supervise the behavior of an au-
tomaton P , plant, through an automaton S, specification.
Automaton S disables events in automaton P . A common
situation is that automaton P models some process and
that automaton S models restrictions of this process.

Some of the events in an automaton P , ΣuP ⊆ ΣP , are not
subject to disablement. These are said to be uncontrollable.
L(S)ΣuP represents the concatenation of all strings in L(S)
with all events in ΣuP . S must never disable uncontrollable
events, that is S must be controllable. This is captured by
the notation of controllability.

Definition 4. Controllability
If ΣS ⊆ ΣP , S is controllable with respect to P and ΣuP if
L(P ||S)ΣuP ∩ L(P) ⊆ L(P ||S)

It follows directly from Definition 4 that some states may
be regarded as uncontrollable.

Definition 5. Uncontrollable state
Let P be a plant and S a specification. ∃t ∈ L(P ||S). A
state p := δP ||S

(
iP ||S , t

)
is uncontrollable if there exists

an uncontrollable event
u ∈ ΣuP s.t. δP (iP , tu)! ∧ ¬δP ||S

(
iP ||S , tu

)
!

Possible uncontrollable states in the composition P ||S
prevents the specification S = S0 from being a supervisor,
it is not controllable. The plant may perform transitions
that result in loss of synchronization between P and
S0. A controllable supervisor Sn+1 may be synthesized
through iterative removal of uncontrollable states in Sn,
S1 = P ||S0. It is known that every plant and specification
has a minimally restrictive supervisor that restricts the
sequences of events as little as possible, Ramadge and
Wonham (1987b).

We end with defining some terms to simplify the further
discussion.

Definition 6. Configuration
A configuration is a finite set of automata and is denoted
by At := {A1, ..., An}. A sub-configuration Bt comprises
a subset of automata from At, i.e., Bt ⊆ At. The FSC of
a configuration is interpreted as A := A1||...||An.
Definition 7. Global, local, and sub-states
With the term local-state we will refer to a state in a

single automaton. With the term global-state we will refer
to a state in the FSC of a configuration. With the term
sub-state we will refer to a state in the FSC of a sub-
configuration.

Let a configuration Bt ⊆ At. Assume there exists an
automaton Bi in Bt. A global-state in Bt is a sub-state
in At and a local-state qBi ∈ QBi is a sub-state in both
Bt and At.

3. MODULAR SPECIFICATION AND SYNTHESIS

A modular supervisory control problem may now be de-
scribed in terms of plant and specification configurations,
Pt := {P1, ..., Pn} and St := {S1, ..., Sm}, respectively.
Add to this a specification that refers to local-states from
different automata that should not appear together in
the closed loop system of Pt and St. We denote each
specified combination of local-states as a forbidden sub-
state. The terms local-, sub- and global-state refer to the
FSC of configuration Pt ∪ St if nothing else is written.
P1, ..., Pn and S1, ..., Sm are denoted sub-plants and sub-
specifications, respectively.

The problem is then to synthesize the minimally restrictive
supervisor with respect to these conditions. There is a high
interest to keep the modularity of the system. A set of
local-states from different automata is per definition a sub-
state. It is most likely that this sub-state exists in many
global-states. All these global-states should then be non-
accessible in the supervised configuration Pt ∪ St.

Modular synthesis algorithms can be very efficient to re-
move uncontrollable states, Åkesson et al. (2002). The al-
gorithms make use of the modular structure of the systems
in order to return the minimally restrictive supervisor.
Some algorithms return sub-supervisors where the FSC of
these is minimally restrictive. In-depth discussion about
how a modular synthesis works is outside the scope of
this paper. We will only assume that the algorithms work
better with higher degree of system modularity.

The above gives the line of arguments for the proposed
method. The synthesis algorithms remove uncontrollable
states, so we make the forbidden states uncontrollable
and use already existing algorithms. Definition 5 shows
that a sub-state composed from one local plant state and
one local specification state is uncontrollable if the local
plant state may execute an uncontrollable event and this
event is disabled in the local-state of the specification, i.e.,
the specification cannot follow the plant. It is therefore
desirable to extend the automata for a sub-state with un-
controllable events so that the described situation occurs.

To conclude, we propose a pre-step to any already existing
modular synthesis algorithm in order to guarantee that the
algorithm removes all forbidden global-states and returns
a minimally restrictive supervisor.

4. MODULAR AUTOMATA EXTENSION

The basic idea of the method is to make each forbidden
sub-state in Pt ∪ St uncontrollable, so that the synthesis
algorithm will remove it. This is achieved with introduc-
tion of an event αi connected to each forbidden sub-state.

The superscript i is unique for each forbidden sub-state.
The event αi is uncontrollable and models the linking
between the local-states, and only those local-states, that
compose each forbidden sub-state.

We introduce the definition αi-uncontrollability for strings
that lead to states that are uncontrollable because of αi.

Definition 8. αi-uncontrollable
Let P be a plant and S a specification. ∃t ∈ L(P ||S). A
string t is αi-uncontrollable if
δP
(
iP , tα

i
)
! ∧ δP ||S

(
iP ||S , t

)
! ∧ ¬δP ||S

(
iP ||S , tα

i
)
!

The significance of a state reached with an αi-uncontrollable
string is that it is uncontrollable and therefore removed in
the synthesis algorithm. We will show that only the for-
bidden states are reached with αi-uncontrollable strings.

We choose to describe the introduction of the αi events
into the automata in Pt ∪ St within three subsections for
ease of understanding. The first subsection concerns sub-
states of the type (k > 0, l = 0), where k (l) is number of
local sub-plant (sub-specification) states. The second and
third subsection concern (k > 0, l = 1) and (k > 0, l > 1),
respectively. The observant reader will see that the method
modifies all sub-states into the type (k > 0, l = 1). We
neglect sub-states of the type (k = 0, l > 0) as these only
concern forbidden sub-specification state combinations.

4.1 Sub-states of the type (k > 0, l = 0)

A forbidden sub-state 〈p1, p2, ..., p, ..., pk〉 in Pt concerns
k local-states in k sub-plants, p ∈ QP and P ⊆ Pt. We
propose that a unique event αi is created for the forbidden
sub-state. Each of the k local plant states are linked to this
event through extension of the k sub-plants.

Definition 9. Plant extension
Let P be a plant. A local-state p ∈ QP is linked to an event
αi through extension of P , denoted P̊ , such that QP̊ :=

QP , ΣP̊ := ΣP ∪̇{αi}, iP̊ := iP and δP̊ := δP ∪̇
{
〈p, αi, p〉

}
An extended sub-plant P̊ replaces an initial given sub-
plant P in a configuration Pt. An extension of an extended
sub-plant replaces the extended sub-plant in a configura-
tion and so forth. This latter concerns sub-plants that link
to many αi. We continue with composition of two extended
automata.

Lemma 10. FSC of k sub-plants with and without exten-
sion according to Definition 9 will at most differ with a
self-loop, event αi, at the sub-state combined from the
local sub-plant states with this self-loop.
Proof. The proof follows from the definition of FSC, Defi-
nition 3. Let P := P1||P2 and P̊ := P̊1||P̊2 then
QP̊ = QP , ΣP̊ \ΣP =

{
αi
}

, iP̊ = iP and δP̊ (〈p1, p2〉, σ) :=
〈p1, p2〉 σ = αi ∧ αi ∈ ΓP̊1

(p1) ∩ ΓP̊2
(p2)

undefined σ = αi ∧ αi /∈ ΓP̊1
(p1) ∩ ΓP̊2

(p2)
δP (〈p1, p2〉, σ) otherwise

Recall that FSC may make the forbidden sub-state non-
reachable, no difference will then exist between P and P̊ .

A unique specification Siα is created for the event αi, as
in Definition 11. Uncontrollability is enabled as Siα always

disables the event αi. The created specification is added
to the configuration St.

Definition 11. Specification for an event αi

Siα :=
〈{
qSiα
}
,
{
αi
}
, δSiα , qSiα

〉
where ¬δSiα(qSiα , α

i)!

The remainder part of this section is devoted to uncon-
trollable states in the composition of P̊ and Siα, where P̊
is the composition of the k, extended, sub-plants.

Lemma 12. FSC of P̊ and Siα allows all transitions in P̊
besides the self-loop, event αi, at the state 〈p1, p2, ..., pk〉.
Proof. The proof is immediate from the definition of FSC,
see Definition 3. The composition

P̊ ||Siα :=
〈
QP̊ ×

{
qSiα
}
, Σ̊, δP̊ ||Siα

, 〈iP̊ , qSiα〉
〉

where

δP̊ ||Siα

(
〈pP̊ , qSiα〉, σ

)
:=

{ 〈
δP
(
pP̊ , σ

)
, qSiα

〉
σ ∈ ΓP

(
pP̊
)

undefined otherwise

Note that δP̊ ||Siα
(〈p, q〉, σ) is undefined for all events not in

ΓP (p); specifically, δP̊ ||Siα
(〈p, q〉, σ) is undefined for σ = αi,

and thus for any string ending with αi.

k sub-plants and one sub-specification have the event αi in
their alphabet. For clarity of presentation and without loss
of generality, we assume ΣuP = ∅. Thus, the uncontrollable
events to check for in the controllability theorem are

{
αi
}

.

The forbidden state 〈p1, p2, ..., pk〉 in P̊ is equal to

〈p1, p2, ..., pk, qSiα〉 in the synchronization P̊ ||Siα, because
QSiα = {qSiα}. We are now ready to connect the forbidden

state with αi-uncontrollability.

Theorem 13. Given P̊ and Siα as defined in Definition 9

and 11, a string t ∈ L(P̊ ||Siα) is αi-uncontrollable if and
only if δP̊ ||Siα

(
〈iP̊ , qSiα〉, t

)
= 〈p1, p2, ..., pk, qSiα〉.

Proof. Only strings t to the forbidden state, 〈p1, p2, ..., pk〉,
are αi-uncontrollable candidates, from Lemma 10. t is
αi-uncontrollable because ¬δP̊ ||Siα

(
〈iP̊ , qSiα〉, tα

i
)
!, from

Lemma 12.

All states reached with αi-uncontrollable strings are re-
moved in the succeeding synthesis algorithm.

4.2 Sub-states of the type (k > 0, l = 1)

A forbidden sub-state 〈p1, p2, ...p, ..., pk, q〉 in Pt ∪ St
concerns k local-states in k sub-plants and one local-state
in one sub-specification, p ∈ QP and P ⊆ Pt, q ∈ QS and
S ⊆ St. We propose that a unique event αi is created for
the forbidden sub-state. All k sub-plants are extended as
in Definition 9. The initially given sub-specification S is
also linked to the event αi through extension of S.

Definition 14. Specification extension
Let S be a specification. A local-state q ∈ QS is linked to
an event αi through extension of S, denoted S̊, such that
S̊ :=

〈
QS ,ΣS̊ , δS̊ , iS

〉
where ΣS̊ = ΣS∪̇{αi} and

δS̊ (p, σ) :=

 p σ = αi ∧ p 6= q
undefined σ = αi ∧ p = q
δS (p, σ) otherwise

An extended sub-specification S̊ replaces an initial given
sub-specification S in a configuration St. We continue by
comparing a specification Siα and a specification S̊.

A specification Siα may be seen as a special case of a

specification S̊ where QS̊ =
{
qSiα
}

and ΓSiα
(
qSiα
)

= ∅.
Hence, we have a similar issue as in the former section, k
sub-plants and one sub-specification with the event αi in
their alphabet.

Lemma 15. FSC of P̊ and S̊ allows all αi events in P̊ ||S
besides in sub-states where it is not permitted in the local-
state of the sub-specification.
Proof. The proof follows from Definition 3. P̊ ||S̊ :=〈
QP̊ ×QS̊ , Σ̊, δP̊ ||S̊ , 〈iP̊ , iS̊〉

〉
where

δP̊ ||S̊
(
〈qP̊ , qS̊〉, σ

)
:=

〈
δP̊ (qP̊ , σ), δS̊(qS̊ , σ)

〉
σ ∈ ΓP̊

(
qP̊
)
∩ ΓS̊

(
qS̊
)〈

δP̊ (qP̊ , σ), qS̊
〉

σ ∈ ΓP̊
(
qP̊
)
\ ΓS̊

(
qS̊
)

undefined otherwise

and explicitly for σ = αi, δP̊ ||S̊
(
〈qP̊ , qS̊〉, αi

)
:={

〈qP̊ , qS̊〉 αi ∈ ΓP̊
(
qP̊
)
∩ ΓS̊

(
qS̊
)

undefined otherwise

We end with an extension of the proof in Theorem 13 in
order to show the linking between αi-uncontrollability and
the forbidden state.

Theorem 16. Given P̊ and S̊ as defined in Definition 9 and
14, a string t ∈ L(P̊ ||S̊) is αi-uncontrollable if and only if
δP̊ ||S̊

(
〈iP̊ , iS̊〉, t

)
= 〈p1, p2, ..., pk, q〉.

Proof. δP̊ ||S̊
(
〈iP̊ , iS̊〉, t

)
= 〈p1, p2, ..., pk, q〉 if q disables αi,

from Theorem 13. There exist such states q in P̊ ||S̊, from

Lemma 15. q is the single state in S̊ that disables αi, from
Definition 14.

The subsequent synthesis algorithm removes all states
reached with αi-uncontrollable strings.

4.3 Sub-states of the type (k > 0, l > 1)

We believe that the previous two subsections handle the
corpus of problems with forbidden states, but the most
general sub-state still remains. The most general forbidden
sub-state 〈p1, ..., p, ..., pk, q1, ..., q, ..., ql〉 in Pt ∪ St con-
cerns k local-states in k sub-plants and l local-states in
l sub-specifications, p ∈ QP and P ⊆ Pt, q ∈ QS and
S ⊆ St. We propose that a unique event αi is created for
the forbidden sub-state. All k sub-plants are extended as
in Definition 9.

The proposed automaton extension method for a single
local specification state, Definition 14, is not applicable
for sub-states with more than one local sub-specification
state. FSC removes the self-loop, event αi, from all sub-
states where αi is not in all local-states. This is the same
as making all sub-state combinations uncontrollable where
any of the forbidden local sub-specification states exists.
This will most certainly not give a minimally restrictive
supervisor.

For this reason we propose two alternative approaches
for sub-states with more then one local sub-specification
states that to some extent answer our intention to repre-
sent forbidden sub-states as uncontrollable states and still
preserve modularity.

In a first approach, each local-state q1, ..., ql is linked
to an event αi as in Definition 14. The extended sub-

specifications, S̊1, ..., S̊l, are composed to a single sub-
specification S̊ with prioritized synchronous composition,
see Heymann (1990). All events are prioritized besides the
event αi. We will then have a forbidden sub-state of the
type (k > 0, l = 1). Sub-states of that type are processed
in section 4.2.

A second approach requires modifications within the con-
trollability verification part of the synthesis algorithm. The
concerned sub-specifications are extended as in Definition
14, but not with the same event αi as before, instead
with a unique event αij j := 1, ..., l. All sub-states, besides
one (zero), in the FSC of extended sub-specifications will
always comprise at least one self-loop, event αij . There
is one (zero) sub-state without self-loops if our forbidden
sub-state, 〈q1, ..., ql〉, is reachable (non-reachable) in the
FSC. The controllability verification part is implemented
not to distinguish between events with and without index
j. The sub-state of our concern will be the single possible
uncontrollable sub-state for the uncontrollable events αi

and αij . Section 4.2 is then a special case where only one
value is needed for index j.

To summarize the second approach, the forbidden sub-
state with k + l local-states is reflected in 1 + l events in
FSC and a single event in controllability verification.

5. EXAMPLES

The proposed method is illustrated with three examples.
Two three state users from Ramadge and Wonham (1987b)
compose sub-plants.

5.1 Mutual exclusion with two sub-plants

The task is to create a supervisor that prevents two
machines from using a shared resource at the same time,
a normal safety issue. Each machine is modeled as the
automaton in figure 1. FSC of these two sub-plants gives
the total plant. Both machines using the shared resource
is then equal to the state UU .

The problem may be solved as described in section 4.1. A
self-loop with an uncontrollable event αi is added to the
U state for each sub-plant. A specification automaton Siα
is created for the αi event, QSiα = {M}.
The synchronous composition of the sub-plants with and
without the specification Siα is seen in figure 2. The two
cases are the same besides the self-loop with event αi that
is present (disabled) in the case without (with) Siα. The
state UUM is uncontrollable, thus removed in a succeeding
synthesis algorithm.

5.2 Inclusion of local-state from a specification

A similar but somewhat harder problem arises when the
machines may operate in two modes; manual and auto.
Both machines may access the shared resource in the
manual mode but not in the auto mode. Switching between
the modes is only feasible in the idle state of a machine.
This latter may be modeled as a three state user modified
according to figure 3. A specification S for the switching
may be modeled as in figure 4.

I

R U

!aj

bj

!cj

Fig. 1. Sub-plant with states; I: idle, R: request, U : use.
The supervisor may neither disable access request
event aj nor leaving event cj , so these are modeled
as uncontrollable events. Access event bj is modeled
as controllable.

IIM

IRM

IUM

RIM

RRM

RUM

UIM

URM

UUM

IIA

IRA

IUA

RIA

RRA

RUA

UIA

URA

UUA

!a1

b1
!c1

!a1

b1!c1

!a1

b1
!c1

!a2 b2

!c2

!a2 b2

!c2

!a2 b2

!c2

!αi

!a1

b1 !c1

!a1

b1
!c1

!a1

b1 !c1

!a2 b2

!c2

!a2 b2

!c2

!a2 b2

!c2

!αi

Fig. 2. Synchronization of two sub-plant automata as of
figure 1 and one specification automaton for the αi

event. The dashed transition is disabled as cause of
synchronization with the specification. Thus, the state
UUM is uncontrollable.

The task is to create a supervisor that prevents two
machines from using a shared resource at the same time
in auto mode and permits the two machines to use the
shared resource at the same time in manual mode.

The problem may be solved as described in section 4.2.
The sub-plants undergo the same extensions as in the last
subsection. The αi event is added as a self-loop to the
manual state, the allowed state, in the specification.

Synchronization of the sub-plants and the specification S̊
is seen in figures 5 and 2. The state UUA is uncontrollable
in relation to the synchronization of the two sub-plants.
The self-loop with event αi in state UUM may be purged
from the synthesized supervisor.

I

R U

!!aj

bj

!!cj

!αi

!toAuto, !toMan

Fig. 3. Modification of automaton in figure 1 in order to
only allow mode switch in state I.

5.3 Arithmetic example with many users

The strength of the proposed method is colorfully illus-
trated with an arithmetic continuation of the example in
section 5.1. What is the cost of synthesizing a supervisor
that prevents all sub-states 〈Ui, Uj〉 s.t. i 6= j in N
users? We assert that a monolithic and modular synthesis

M A

!toAuto
!toMan

!toMan

!toAuto

Fig. 4. Specification for how mode switch is allowed to
occur. State; M : Manual, A: Auto. None of the
events may be controlled from the supervisor, thus
uncontrollable.

IIM

IRM

IUM

RIM

RRM

RUM

UIM

URM

UUM

IIA

IRA

IUA

RIA

RRA

RUA

UIA

URA

UUA

!a1

b1
!c1

!a1

b1!c1

!a1

b1
!c1

!a2 b2

!c2

!a2 b2

!c2

!a2 b2

!c2

!αi!αi

!toAuto

!toMan

!toMan

!toAuto

!a1

b1 !c1

!a1

b1
!c1

!a1

b1
!c1

!a2 b2

!c2

!a2 b2

!c2

!a2 b2

!c2

!αi

Fig. 5. Synchronization of two sub-plant automata as of
figure 3 and one specification automaton as of figure
4 with addition of a αi self-loop in the manual state.
Lower part of automaton as in figure 2 but with a solid
self-loop in state UUM . The dashed transition from
state UUA is disabled as cause of synchronization
with the specification, this gives an uncontrollable
state.

algorithm can be compared with respect to the number of
states that it needs to take into consideration for calcula-
tion of the minimally restrictive supervisor. Thus, the cost
is lower with fewer states.

N users have N · (N − 1)/2 forbidden sub-states 〈Ui, Uj〉.
We assume that a monolithic algorithm requires a specifi-
cation where each sub-state is removed. This gives 3N−N ·
(N − 1)/2 number of states to consider in the algorithm.
A modular algorithm composes all sub-plants and sub-
specifications that share uncontrollable events, Åkesson
et al. (2002). One specification Siα is created for each sub-
state. This gives N · (N − 1)/2 · 32 number of states to
consider in the algorithm. See table 1.

We have used the implementation of modular synthesis
from Åkesson et al. (2002), but any modular synthesis
algorithm would benefit from our approach to modular
specification of forbidden states.

6. CONCLUSIONS

We have shown how to specify forbidden state combina-
tions within a set of modular plants and specifications.
Each specified state combination is made uncontrollable.

Table 1. Number of states to consider in
synthesis algorithms in order to synthesize
supervisor for N users and no sub-states

〈Ui, Uj〉 s.t. i 6= j

N 3 4 10 50

Monolithic 24 75 ∼ 6e3 ∼ 7e23
Modular 27 54 405 ∼ 1e3

These uncontrollable states are removed by a modular
synthesis algorithm, Åkesson et al. (2002). The algorithm
returns a modular supervisor where the forbidden state
combinations are removed. The focus in this paper has
been on many modular plant states and zero or one modu-
lar specification state in the forbidden state combinations.
Our modeling experience tells us that this constitutes the
corpus of problems with forbidden states.

Future research concerns decreasing the number of events
that make the forbidden state combinations uncontrol-
lable, in order to minimize computer memory use. Hence,
two forbidden state combinations (a, b) and (a, c) may
use the same event αi if a ∈ A and b, c ∈ B, where A
and B are two sub-plants. Future research also concerns a
formalization of the ideas for the most general forbidden
state type, given in this paper. See www.supremica.org for
the latest implementation.

REFERENCES

Åkesson, K., Flordal, H., and Fabian, M. (2002). Ex-
ploiting Modularity for Synthesis and Verification of
Supervisors. In 15th Triennial World Congress of the
International Federation of Automatic Control.

Flordal, H. (2006). Compositional Approaches in Supervi-
sory Control with Application to Automatic Generation
of Robot Interlocking Policies. PhD Thesis, Chalmers.

Heymann, M. (1990). Concurrency and Discrete Event
Control. IEEE Control Systems Magazine, 10(4), 103–
112.

Hoare, C.A.R. (1985). Communicating Sequential Pro-
cesses. Prentice-Hall International Series in Computer
Science.

Iordache, M.V. and Antsaklis, P.J. (2006). Supervision
Based on Place Invariants: A Survey. Discrete Event
Dynamic Systems, 16(4), 451–492.

Komenda, J., van Schuppen, J., Gaudin, B., and Marc-
hand, H. (2008). Supervisory control of modular systems
with global specification languages. Automatica, 44(4),
1127–1134.

Queiroz, M.H. and Cury, J.E.R. (2000). Modular Super-
visory Control of Large Scale Discrete Event Systems,
103–110. Kluwer Academic Publishers.

Ramadge, P.J. and Wonham, W.M. (1987a). Modular
Feedback Logic for Discrete Event Systems. SIAM
Journal on Control and Optimization, 25(5), 1202–1218.

Ramadge, P.J. and Wonham, W.M. (1987b). Supervisory
control of a class of discrete event processes. SIAM
Journal of Control and Optimization, 25(1), 206–230.

Ramadge, P.J. and Wonham, W.M. (1989). The Control
of Discrete Event Systems. Proc. of IEEE, 77(1), 81–89.

Wonham, W.M. and Ramadge, P.J. (1988). Modular
Supervisory Control of Discrete-Event Systems. Math-
ematics of Control Signals and Systems, 1(1), 13–30.

	Prepage_conf_cpl
	129265

