
EFFICIENT SYMBOLIC SUPERVISORY SYNTHESIS AND GUARD
GENERATION

Evaluating Partitioning Techniques for the State-space Exploration

Z. Fei, S. Miremadi
Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden

zhennan@chalmers.se, miremads@chalmers.se

K. Åkesson, B. Lennartson
Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden

knut@chalmers.se, bengt.lennartson@chalmers.se

Keywords: Supervisory control theory, deterministic finite automata, symbolic representation, reachability search, propo-

sitional formula.

Abstract: The supervisory control theory (SCT) is a model-based framework, which automatically synthesizes a super-

visor that restricts a plant to be controlled based on specifications to be fulfilled. Two main problems, typically

encountered in industrial applications, prevent SCT from having a major breakthrough. First, the supervisor

which is synthesized automatically from the given plant and specification models might be incomprehensible

to the users. To tackle this problem, an approach was recently presented to extract compact propositional

formulae (guards) from the supervisor, represented symbolically by binary decision diagrams (BDD). These

guards are then attached to the original models, which results in a modular and comprehensible representation

of the supervisor. However, this approach, which computes the supervisor symbolically in the conjunctive way,

might lead to another problem: the state-space explosion, because of the large number of intermediate BDD

nodes during computation. To alleviate this problem, we introduce in this paper an alternative approach that is

based on the disjunctive partitioning technique, including a set of selection heuristics. Then this approach is

adapted to the guard generation procedure. Finally, the efficiency of the presented approach is demonstrated

on a set of benchmark examples.

1 INTRODUCTION

The analysis of reactive systems has been paid much
attention by researchers and scientists in the computer
science community. One of the classic methods to an-
alyze reactive systems is utilizing formal verification
techniques, such as model checking, to verify whether
the system always fulfill specifications. Nevertheless,
from the control engineering point of view, instead of
verifying the correctness of the system, a controller
which guarantees that the system behaves according
to specifications is preferred. The Supervisory Con-
trol Theory (SCT) (Ramadge and Wonham, 1987; Ra-
madge and Wonham, 1989; Cassandras and Lafor-
tune, 2008) provides such a control-theoretic frame-
work to design a device, called the supervisor, for
reactive systems referred as discrete event systems
(DESs). Given a model of the system to be controlled,
the plant, and the intended behavior, the specifica-

tion, the supervisor can be automatically synthesized,

guaranteeing that the closed-loop system fulfills given
specifications. SCT has been applied for various ap-
plications in different areas such as automated manu-
facturing lines and embedded systems (Balemi et al.,
1993; Feng et al., 2007; Shoaei et al., 2010).

Generally, a supervisor is a function that, given
a set of events, restricts the plant to execute desired
events according to the specification. A typical issue
is how to realize such a control function efficiently
and represent it appropriately. Since the synthesis
task involves a series of reachability computations,
as the DES becoming more complicated, the tradi-
tional explicit state-space traversal algorithm may be
intractable due to the space-state explosion problem.
By using binary decision diagrams (BDDs) (Akers,
1978; Bryant, 1992), the supervisor can be repre-
sented and computed symbolically such that the state-
space explosion problem is alleviated to some extent.
However, the symbolic computation is not a silver
bullet. Transforming from the traditional explicit stat-



space traversal algorithm into a BDD-based compu-
tation scheme does not guarantee that the algorithm
will become remarkably efficient. Thus numerous re-
search has been performed to improve the efficiency
of symbolic computations. In this paper, we mainly
focus on partitioning techniques, which decompose
the state-space into a set of structural components and
utilize these partitioned components to realize effi-
cient reachability computations.

Everything has its pros and cons. With BDD-
based traversal algorithms, some larger DESs could
be solved without causing the state-space explosion.
Meanwhile, another problem is arising from the BDD
representation of the resultant supervisor. Since the
original models have been reformulated and encoded,
it is cumbersome for the users to relate each state with
the corresponding BDD variables. Therefore, it is
more convenient and natural to represent the super-
visor in a form similar to the models. In (Miremadi,
2010), a promising approach is presented, where a set
of minimal and tractable logic expressions, referred
to as guards, are extracted from the supervisor and at-
tached to the original models of the closed-loop sys-
tem. However, this approach computes the supervi-
sor symbolically based on the conjunctive partition-
ing technique. This might lead to the state-space ex-
plosion, because of the large number of intermediate
BDD nodes during computation.

The main contribution of this paper is adapting a
symbolic supervisory synthesis approach to the guard
generation procedure, to make it applicable for indus-
trially interesting applications. The approach auto-
matically synthesizes a supervisor by taking the ad-
vantage of the disjunctive partitioning technique. The
monolithic state-space is then splitted into a set of
simpler components and the reachability search is
performed structurally with a set of heuristic deci-
sions. Moreover, the guard generation procedure is
tailored to use the partitioned structure to extract the
simplified guards and attach them to the original mod-
els. Finally, a comparison of algorithm efficiency be-
tween two partitioning techniques is made by apply-
ing them to a set of benchmark examples.

The paper is organized as follows: For the readers
who might be unfamiliar with the supervisory control
theory, Section 2 gives an informal and brief explana-
tion. Section 3 provides some preliminaries that are
used throughout the paper. The symbolic supervisory
synthesis and the guard generation procedure will be
discussed in detail in Section 4 and 5. In Section 6,
we apply what we have discussed and implemented
to several real case studies. Finally we end up with
the evaluation of two used partitioning techniques in
Section 6.2 and some conclusions in Section 7.

2 MOTIVATING EXAMPLE

For readers who might be unfamiliar with the super-
visory control theory (SCT), the following simple ex-
ample gives a brief overview and states what exact
problem this paper is about to solve.

Consider a resource booking problem where two
industrial robots need to book two resources in oppo-
site order to carry out their tasks. To avoid collisions,
a constraint requires that two robots are not allowed
to occupy two zones simultaneously.

Fig. 1 shows one way to model the system as the
state machines, or automata. Fig.1a and 1b depict the
robot (plant) models and Fig. 1c and 1d depict the re-
source (specification) models. The states having an
incoming arrow from outside denote the beginning
of the task, while the states having double circles,
called marked states, denote the accomplishment of
the task. The event useA

R1
means that Robot A uses

Resource 1. The other events can be interpreted sim-
ilarly. The goal of the SCT is to automatically syn-
thesize a minimally restrictive supervisor from these
modular models. Traditionally, to do this, the algo-
rithm starts with the composition (formally described
in Section 3.1) of all the automata as the initial candi-
date supervisor S0 (Fig.1e), where unreachable states
have been excluded. Then the undesirable states will
be removed iteratively. Generally, undesirable states
can either be blocking or uncontrollable. A state is
blocking when no marked state can be reached, while
uncontrollable states are defined in Section 3.1. In
Fig.1e, we have one blocking state 〈qA

2 ,q
B
2 ,q

C
2 ,q

D
2 〉,

which depicts the situation where Robot A has booked
Resource 1 and is trying to book Resource 2, while
Robot B has booked Resource 2 and is trying to book
Resource 1. In such case, none of the robots can do
other movements, which is a deadlock situation. Af-
ter removing the blocking state together with the as-
sociated transitions, a nonblocking supervisor is pro-
duced.

It can be observed that for such a simple example,
the composed automaton contains 12 states (unreach-
able states from the initial state have been removed).
With the system getting more complicated, the com-
posed automaton will become significantly larger. To
alleviate this problem, a well known strategy is to rep-
resent the state space symbolically by using Binary

Decision Diagrams (BDDs). In (Miremadi, 2010),
based on this principle, an alternative approach is pre-
sented, where guards are generated to prevent the con-
trolled system to reach undesirable states. The advan-
tage of this approach is that it never constructs the
composed automaton, which means that an incom-
prehensible BDD representation of the supervisor is



0qA
1

qA
2

qA
3

useA
R1

useA
R2

(a) A.

qB
1

qB
2

qB
3

useB
R2

useB
R1

(b) B.

qC
1

qC
2

useA
R1

useA
R2

useB
R1

(c) C.

qD
1

qD
2

useB
R2

useB
R1

useA
R2

(d) D.

〈qA
1 ,q

B
1 ,q

C
1 ,q

D
1 〉

〈qA
2 ,q

B
1 ,q

C
2 ,q

D
1 〉 〈qA

1 ,q
B
2 ,q

C
1 ,q

D
2 〉

〈qA
3 ,q

B
1 ,q

C
1 ,q

D
1 〉 〈qA

1 ,q
B
3 ,q

C
1 ,q

D
1 〉〈qA

2 ,q
B
2 ,q

C
2 ,q

D
2 〉

〈qA
3 ,q

B
2 ,q

C
1 ,q

D
2 〉 〈qA

2 ,q
B
3 ,q

C
2 ,q

D
1 〉

〈qA
3 ,q

B
3 ,q

C
1 ,q

D
1 〉

useA
R1

useB
R2

useA
R2

useB
R2 useB

R1

useA
R1

useB
R2

useA
R1

useB
R1

useA
R2

(e) S0.

Figure 1: Example. 1a-1b) Robot automata A and B,
1c-1d) resource automata C and D, and (1e) a super-
visor candidate S0.

avoided. Instead, the approach characterizes a super-
visor by a set of minimal guards that are attached to
the original models to represent the supervisor behav-
ior. Fig.2 shows the application of the guard genera-
tion to the example, where the variables vA, vB, vC, vD

are introduced to hold the current states of the corre-
sponding automata.

The intention of this paper is to improve the guard
generation procedure by introducing an alternative
symbolic approach. This approach, which is based on
the disjunctive partitioning technique, partitions the
transition function into a set of simple but structural
components. These components, having the disjunc-
tive connection relation between each other, therefore
can be used to search the state-space without con-
structing a total transition function for the composed
automaton. Besides, to keep the intermediate number
of BDD nodes as small as possible, the approach in-
cludes a set of selection heuristics to search the state-

space in a structural way.

qA
1

qA
2

qA
3

useA
R1

vB 6= qB
2

useA
R2

(a) A.

qB
1

qB
2

qB
3

useB
R2

vC = qC
1

useB
R1

(b) B.

qC
1

qC
2

useA
R1

vB 6= qB
2useA

R2

useB
R1

(c) C.

qD
1

qD
2

useB
R2

vC = qC
1useB

R1

useA
R2

(d) D.

Figure 2: Guards representing the behavior of the su-
pervisor for the example.

3 PRELIMINARIES

This section provides some preliminaries which are
used throughout the rest of the paper.

3.1 Supervisory Control Theory

Generally, a DES can either be described by textual
expressions, such as regular expressions or graphi-
cally by for instance Petri nets or automata. For this
paper, we focus on deterministic finite automata.

A deterministic finite automaton is a five-tuple
(Q,Σ,δ,qinit ,Qm), where Q is a finite set of states,
qinit ∈ Q is the initial state, Qm ⊆ Q is the set of
marked or accepting states, and the alphabet Σ is the
finite set of events. The transitions of the states are
expressed by the partial transition function δ, where
δ(q,σ) = q́ means that there exists a transition labeled
by event σ∈ Σ from the source-state state q∈Q to the
target-state state q́ ∈ Q.

In SCT, the events in the alphabet, Σ can either be
controllable or uncontrollable. Therefore, Σ can be di-
vided into two disjoint subsets, the controllable event
set Σc, and the uncontrollable event set, Σu. The su-
pervisor is only allowed to restrict controllable events
from occurring in the plant.

The goal of SCT is to automatically synthesize a
maximally permissive supervisor, restricting the be-
havior of the plant to fulfill the given specification.
Generally, the plant or the specification could be mod-
ularly expressed by a number of sub-plants or sub-
specifications. The composition of two or more au-
tomata is realized by the full synchronous operator
‖, defined in (Hoare, 1985). For instance, if the



plant is given as a number of sub-plants P1, . . . ,Pn,
the plant P is computed by synchronizing the sub-
plants P = P1 ‖ . . . ‖ Pn. More specifically, let Ai =
(Qi,Σi,δi,qi

init ,Q
i
m), i = 1,2 be two automata. The

full synchronous composition of A1 and A2 results in

A1 ‖ A2 = (Q1‖2,Σ1 ∪Σ2,δ1‖2,q
1‖2
init ,Q

1
m ×Q2

m), where

Q1‖2 ⊆ Q1 ×Q2 and q
1‖2
init = (q1

init ,q
2
init). The compos-

ite transition function δ1‖2 is defined as follows.

δ1‖2((q1,q2),σ) =














δ1(q1,σ)×δ2(q2,σ) if σ ∈ Σ1 ∩Σ2

δ1(q1,σ)×{q2} if σ ∈ Σ1\Σ2

{q1}×δ2(q2,σ) if σ ∈ Σ2\Σ1

undefined otherwise

(1)

Additionally, given a plant P and a specification
Sp, two properties (Ramadge and Wonham, 1987; Ra-
madge and Wonham, 1989; Cassandras and Lafor-
tune, 2008) that the supervisor has or should have are:

1. Controllability: The supervisor S is never allowed
to disable any uncontrollable event that might be
generated by the plant P. Let Σu be the set of un-
controllable event set. A state qu is said to be an
uncontrollable state if it is enabled by the plant P,
while disabled by the supervisor S.

2. Non-blocking: This is a progress property en-
forced by the supervisor S, which guarantees that
at least one marked state is always reachable in
the closed-loop system, S ‖ P.

3.2 Binary Decision Diagrams

Binary decision diagrams (BDDs), used for repre-
senting Boolean functions, can be extended to sym-
bolically represent states, events and transitions of au-
tomata. In contrast to explicit representations, which
might be computationally expensive in terms of time
and memory, BDDs often generate compact and op-
eration efficient representations.

A binary decision diagram is a directed acyclic
graph (DAG) consisting of two kinds of nodes: de-

cision nodes and terminal nodes. Given a set of
Boolean variables V , a BDD is a Boolean func-
tion f : 2V → {0,1} which can be recursively ex-
pressed using Shannon’s decomposition (Shannon
and Weaver, 1949). Besides, a variable v1 has a lower
(higher) order than variable v2 if v1 is closer (further)
to the root and is denoted by v1 ≺ v2. The variable or-
dering will impact the number of BDD nodes. How-
ever, finding an optimal variable ordering of a BDD is
an NP-complete problem (Bollig and Wegener, 1996).
In this paper, a simple but powerful heuristic based on

Table 1: Set operations on the characteristic func-
tions.

Sets/Operations Characteristic function

/0 0
U 1
t ∈ S χt

S ↔ 1
S1 ⊆ S2 (χS1

→ χS2
)↔ 1

U\S ¬χS

S1 ∪S2 χS1
∨χS2

S1 ∩S2 χS1
∧χS2

Aloul’s Force algorithm (Aloul et al., 2003) is used to
compute a suitable static variable ordering.

Symbolic Representation of Automata

The BDD data structure can be extended to also rep-
resent models such as automata. The key point is to
make use of characteristic functions.

Given a finite state set U as universe, for every
S ⊆ U , the characteristic function can be defined as
follows:

χS(α) =
{1 α∈S

0 α/∈S
.

Set operations can be equivalently carried on cor-
responding characteristic functions. For example,
S1 ∪ S2, (S1,S2 ⊆ U) can be mapped equivalently to
χS1

∨χS2
, since S1 ∪S2 = {α ∈U | α ∈ S1 ∨α ∈ S2}.

Table 1 shows more operations on characteristic func-
tions.

The elements of a finite set can be expressed as
a Boolean vector. So a set with n elements, re-
quires a Boolean vector of length ⌈log2 n⌉. Just like
the case of coding the states in a set, binary encod-
ing of the transition function δ follows the same rule
but with the difference that the transition function
distinguishes between source-states and target states.
Hence, we need two Boolean vectors with different
sets of Boolean variables to express the domain of
source-states and target-states respectively.

4 BDD-BASED PARTITIONING

COMPUTATION

As mentioned above, one of the challenges to apply
SCT in industry is the state-space explosion problem
when synthesizing the supervisor. After adopting Bi-
nary Decision Diagrams, the problem can be allevi-
ated to some extent. But that’s not enough, since the
intuitive total representation of the transition function
might still be huge. Two partitioning techniques are
discussed in this section.



4.1 Safe-state synthesis

The safe-state algorithm, an efficient supervisor syn-
thesis algorithm, formally defined in (Vahidi et al.,
2006), is used in this paper. The algorithm creates the
supervisor by first building the candidate S0= P ‖ Sp,
then removing states from QS0 until the remaining
safe states are both nonblocking and controllable.

As Algorithm 1 shows, given a set of forbidden
states Qx, the algorithm computes the set of safe states
QS by iteratively removing the blocking states (Re-
strictedBackward in line 5) and the uncontrollable
states (UncontrollableBackward in line 6). Note that
after the termination of the algorithm, not all of the
safe states are reachable from the initial state. There-
fore, a forward reachability search is needed to ex-
clude the safe states which are not reachable. The
safe-state algorithm is discussed in more detail in
(Vahidi et al., 2006).

Algorithm 1 The Safe State Synthesis

1: input : Qx,Q
S0

2: let X0 := Qx,k := 0
3: repeat

4: k := k+1
5: Q′ := RestrictedBackward(Qm,Xk−1)
6: Q′′ :=UncontrollableBackward(QS0\Q′)
7: Xk := Xk−1 ∪ (Q′′)
8: until Xk = Xk−1

9: return QS0\Xk

4.2 Efficient State Space Search

Not surprisingly, the backward and forward reacha-
bility searches turn out to be the bottle-neck of the
algorithm presented above. The problem with the in-
tuitive reachability is that for the large and compli-
cated modular DES, the BDD representation of the
total transition function δSp‖P is often too large to be
constructed. The natural way to tackle the complex-
ity of the transfer function is to split it into a set of
less complex partial functions with a connection be-
tween them. Such methods are based on conjunctive
and disjunctive partitioning techniques.

Conjunctive Representation

Conjunctive partitioning, introduced in (Burch et al.,
1991; Burch et al., 1994), is an approach to repre-
sent synchronous digital circuits where all transitions
happen simultaneously. In the context of DES, the
conjunctive partitioning of the full synchronous com-
position can be achieved by adding self-loops to the

automata for events that are not included in their orig-
inal alphabets. This leads to a situation where all au-
tomata have equal alphabet. Therefore, the conjunc-

tive transition function δ̂i for the automaton Ai and the
total transition function can be defined as follows:

δ̂i(qi,σ) =







δi(qi,σ) if δi(qi,σ)
qi if σ /∈ Σi

undefied otherwise

(2)

δ =
∧

1≤i≤n

δ̂i (3)

By making use of the above equations (2) and (3),
we can search the state-space without constructing
the total transition function. Algorithm 2 applies this
technique for the forward reachability search. Assum-
ing that the automaton set A = {A1, . . . ,An} and the
state q = 〈q1,q2, . . . ,qn〉, the algorithm explores the
target state q́ by performing each conjunctive transi-

tion function δ̂i with arguments (the local state qi and
the event σ ∈ Σ) to get each local target state q́i.

Algorithm 2 ConjForwardReachability

1: input : Qinit ,{δ̂1, . . . , δ̂n},Σ
2: let Q0 := Qinit ,k := 0
3: repeat

4: k := k+1
5: Qk := Qk−1 ∪{q́ | ∃q ∈ Qk−1 and ∃σ ∈ Σ,

∀i ∈ {1,2, . . . ,n} such that δ̂i(qi,σ) = q́i}
6: until Qk = Qk−1

7: return Qk

Disjunctive Representation

The conjunctive partitioning of the transition rela-
tion works well for formal verification of synchronous
digital circuits. However, because of the asyn-
chronous feature of the full synchronous composition
in SCT, the intermediate states (Qk−1) can still cause
the explosion problem when performing the reach-
ability search, which prevents the conjunctive parti-
tioning technique from being applied to large systems
in SCT. The disjunctive partitioning of the full syn-
chronous composition, explained subsequently, on the
other hand, is then shown to be an appropriate parti-
tioning.

Assuming the automaton set A = {A1, . . . ,An} and
the state q = 〈q1,q2, . . . ,qn〉, a disjunctive transition

function, the partial transition function δ̌i, is defined



based on the event σ∈Σi and the dependent set D(Ai):

δ̌i(q,σ) =





∧

A j∈D(Ai)

ζi, j(q j,σ)



∧





∧

Ak /∈D(Ai)

qk σ
↔ qk





(4)

ζi, j(q j,σ) =

{

δ j(q j,σ) if σ ∈ Σi ∩Σ j

q j otherwise
(5)

and

D(Ai) = {A j ∈ A | ∃Ai ∈ A where Σi ∩Σ j 6= /0} (6)

The total transition function is defined as

δ =
∨

1≤i≤n

δ̌i (7)

The construction of the dependent set for each au-
tomaton can be obtained through calculating which
automaton shares any event with it. Taking Fig. 1
as an example, for the automaton A, since it shares
the events useA

R1
, useA

R2
with the automaton C and the

event useA
R2

with the automaton D, D(A) can be con-
structed as follows:

D(A) = {A,C,D}

Besides, the total transition function defined for the
state 〈qA

1 ,q
B
1 ,q

C
1 ,q

D
1 〉 and the event useA

R1
can be ob-

tained by computing δ̌A and δ̌C, since useA
R1

only be-

longs to ΣA and ΣC. By using equations (4) and (5), it
can be inferred that

δ(〈qA
1 ,q

B
1 ,q

C
1 ,q

D
1 〉,useA

R1
)= δ̌A(〈qA

1 ,q
B
1 ,q

C
1 ,q

D
1 〉,useA

R1
)

= δ̌C(〈qA
1 ,q

B
1 ,q

C
1 ,q

D
1 〉,useA

R1
) = 〈qA

2 ,q
B
1 ,q

C
2 ,q

D
1 〉

Notice that the disjunctive transition function repre-
sented in BDDs, is shown explicitly here to easily un-
derstand.

4.3 Workset Based Strategies

In Section 4.2, we suggested the use of partitioning
techniques to deal with the large number of interme-
diate BDD nodes. However, using partitioning tech-
niques alone is not enough to yield efficient BDD-
based reachability algorithms. In (Byröd et al., 2006),
it has been shown that random structural reachabil-
ity search yields poor compression of intermediate
BDD nodes. In order to improve these algorithms to
substantially reduce the number of intermediate BDD
nodes, it is vital to search the state space in a struc-
tural and efficient way. Here we introduce a simple
algorithm, Algorithm 3, which is formally defined in
(Vahidi et al., 2006). The workset algorithm main-
tains a set of active disjunctive transition functions

Wk. These active transition functions are selected one
at a time for the local reachability search. If there is
any new state found for the currently selected transi-
tion relation, then all of its dependent transition func-

tions (8) will be added in Wk. Notice that in Algorithm
3, ”·” can be any event, since we don’t care about the

specific events as long as it is defined in δ̌i.

E(δ̌i) = {δ̌ j | A j ∈ D(Ai)\{Ai}} (8)

Algorithm 3 WorksetForwardReachbility

1: input : Qinit ,{δ̌1, . . . , δ̌n}

2: let W0 := {δ̌1, . . . , δ̌n},Q0 := Qinit

3: repeat

4: H : Pick and remove a transition δ̌i ∈Wk

5: k := k+1
6: Qk := Qk−1 ∪{q́ | ∃q ∈ Qk−1, δ̌

i(q, ·) = q́}
7: if Qk 6= Qk−1 then

8: Wk :=Wk−1 ∪E(δ̌i)
9: end if

10: until W = /0
11: return Qk

Selection Heuristics

In Algorithm 3, H denotes the heuristics of selecting
the next transition relation for the reachability search
such that the number of intermediate BDD nodes is
computed as small as possible. How a transition Ť i

is chosen among those in the working set W has great
influence on the performance of the algorithm. Here
we suggest a series of simple heuristics that have been
implemented and seem to work well on real-world
problems. In Section 6, those heuristics will be ap-
plied to a benchmark example to compare how they
influence the performance of the workset algorithm.

To find a good heuristic, a two-stage selection rule
was implemented, see Fig.3. Using this method, a
complex selection procedure can be described as a
combination of two selection rules. In the current
implementation, the first stage H1 selects a subset
W ′ ⊂ W to be sent to H2 using one of the following
rules:

1. MaxF: Choose the automata with the largest de-
pendency set cardinality.

2. MinF: The opposite of above.

In case W ′ is not a singleton, the second stage H2
is used to choose a single transition relation Ť i among
W ′. In the experiment, the following shown heuristics
can significantly reduce the number of intermediate
BDD nodes for the simple problems.



H1 H2
W W’

Figure 3: The two stage selection heuristics for the
workset algorithm.

1. Reinforcement learning (R) (Kaelbling et al.,
1996): Choose the best transition relation based
on the previous activity record.

2. Reinforcement learning + Tabu (RT) (Glover and
Laguna, 1997): Same as the reinforcement learn-
ing with the difference that using tabu search for
the selection policy.

5 SUPERVISOR AS GUARDS

As mentioned in Section 1, given a supervisor repre-
sented as a BDD, it is cumbersome for the users to
relate each state to the corresponding BDD variables.
Therefore, it is more convenient and natural to rep-
resent the supervisor in a form similar to the original
models. In this section, an approach, the guard gen-
eration procedure which originates from (Miremadi,
2010), is discussed and combined with the BDD-
based disjunctive partitioning approach.

The guard generation procedure, being dependent
on three kinds of state sets (explained below), extracts
a set of conditional propositional formulae, referred to
as guards indicating under which conditions the event
can be executed without violating the specifications
and attaches them to the original models. In (Mire-
madi, 2010), the computation of the monolithic tran-
sition function is the prerequisite for generating these
state sets. Here an alternative way which is based on
the disjunctive partitioning approach is presented.

5.1 Computation of the Basic State Set

Concerning the states that are retained or removed af-
ter the synthesis process, the states that enable an ar-
bitrary event σ can be divided into three basic state

sets: forbidden state set, allowed state set and don’t
care state set.

The forbidden state set, denoted by Qσ
f , is the set

of states in the supervisor where the execution of σ is
defined for S0, but not for the supervisor. The allowed
state set, denoted by Qσ

a , is the set of states in the
supervisor where the execution of σ is defined for the
supervisor. In other word, for each event σ in S0’s
alphabet, Qσ

a represents the set of states where event
σ must be allowed to be executed in order to end up
in states belonging to the supervisor.

In order to obtain compact and simplified guards,
inspired from the Boolean minimization techniques,

another set of states, denoted by Qσ
dc, which describes

a situation where executing σ will not impact the
result of the synthesis, is utilized to minimize the
guards.

Algorithms 4 and 5 presented below show how
to compute the forbidden states Qσ

f and the allowed
states Qσ

a by making use of the disjunctive transition
functions. Note that QS and Qx denote the resultant
supervisor states and all the forbidden states yielded
from the synthesis algorithm in Section 4.1. The don’t
care state set, Qσ

dc can be defined as the complement
of the union of Qσ

a and Qσ
f (9). The proof can be found

in (Miremadi, 2010).

Qσ
dc =C(Qσ

a ∪Qσ
f ) (9)

Algorithm 4 Compute Qσ
f

1: input : σ,Qx,Q
S,{δ̌1, . . . , δ̌n}

2: let Qσ
f := /0

3: for all Ai if σ ∈ Σi do

4: Qσ
f := Qσ

f ∪{q | ∃q́ ∈ Qx, δ̌
i(q,σ) = q́}

5: end for

6: let Qσ
f := Qσ

f ∩QS

7: return Qσ
f

Algorithm 5 Compute Qσ
a

1: input : σ,QS,{δ̌1, . . . , δ̌n}
2: let Qσ

a := /0
3: for all Ai if σ ∈ Σi do

4: Qσ
a := Qσ

a ∪{q | ∃q́ ∈ QS, δ̌i(q,σ) = q́}
5: end for

6: let Qσ
a := Qσ

a ∩QS

7: return Qσ
a

5.2 Guard Generation

Based on the basic state sets, some logic restrictions
can be extracted, expressing under which conditions
the events can be executed without violating the spec-
ifications. For every automaton in the DES, a new
variable v is introduced to hold the current state of the
automaton. The following propositional function for

the event σ, Gσ : QA1
×QA2

× . . .×QAn
→B, referred

to as guards, is defined as:

Gσ〈vA1 ,vA2 , . . .vAn〉=






true 〈vA1 ,vA2 , . . .vAn〉 ∈ Qσ
a

false 〈vA1 ,vA2 , . . .vAn〉 ∈ Qσ
f

don′t care otherwise
(10)



where B is the set of Boolean values and vAi rep-
resents the current state of automaton Ai. In par-
ticular, σ is allowed to be executed from the state
〈vA1 ,vA2 , . . .vAn〉 if the guard is true.

By applying minimization methods of Boolean
functions (utilizing the don’t care state set) and cer-
tain heuristics, the generated guards can be simplified.
The procedure is discussed in details in (Miremadi,
2010).

6 CASE STUDIES

What we have discussed in the previous sections
has been implemented and integrated in the supervi-
sory control tool Supremica (Åkesson et al., 2003;
Åkesson et al., 2006) which uses JavaBDD (Jav-
aBDD, 2007) as BDD package. In this section, the
implemented program will be applied to a set of rela-
tively complicated examples 1. The examples are pre-
sented including references in the right column.

6.1 Benchmark Examples

A set of benchmark examples is briefly described as
follows.

Automated Guided Vehicles

An AGV system, described in (Holloway and Krogh,
1990), is a simple manufacturing system where five
automated guided vehicles transport material between
stations. As the routes of the vehicles cross each
other, single-access zones are introduced to avoid col-
lisions.

Parallel Manufacturing Example

The Parallel Manufacturing Example, introduced in
(Leduc, 2002), consists of three manufacturing units
running in parallel. The system is modeled in three
layers in a hierarchical interface-based manner.

The Transfer Line

The Transfer Line TL(n,m), introduced as a tutorial
example in (Wonham, 1999), defines a very simple
factory consisting of a series of n identical cells. Each
cell contains two machines and two buffers, one be-
tween the machines and one before a testing unit
which decides whether the work piece should be sent

1The experiment was carried out on a standard Lap-
top (Core 2 Duo processor, 2.4 GHz, 2GB RAM) running
Ubuntu 10.04.

B1M1 M2 B2 TU

Figure 4: A single cell in the transfer line.

back to the first machine for further processing, or if
it should be passed to the next cell. Fig. 4 shows the
single cell in the transfer line. The capacity of each
buffer is m, which is usually chosen to be either 1 or
3.

The Extended Cat and Mouse

An extended cat and mouse problem (Miremadi et al.,
2008), which is more complicated than the transfer
line model, generalizes the classic one presented in
(Ramadge and Wonham, 1987). The extended ver-
sion makes it possible to generate problem instances
of arbitrary size, where n and k denote the number of
levels and cats respectively.

6.2 Approach Evaluation

In this section, we evaluate the approach from two as-
pects. First, a comparison between two partitioning
techniques is made by analyzing the statistical data
from Fig. 2. In addition, the extended cat and mouse
example with multiple instances is utilized to investi-
gate how the choice of heuristics in the workset algo-
rithm influences the time efficiency.

Conjunctive vs. Disjunctive

Fig. 2 shows the result of applying two partitioning
techniques for the examples explained above. The
supervisors synthesized for these examples are both
nonblocking and controllable and the safe states are
reachable. It is observed that both of the partitioning
based algorithms can handle the AGV and the Paral-
lel Manufacturing example, for which the number of
reachable states is up to 107.

However, with DESs getting larger and more com-
plicated, the conjunctive partitioning technique is not
capable of synthesizing nonblocking and controllable
supervisors any more. The disjunctive partitioning,
on the other hand, could successfully explore the state
space within acceptable time. In addition, the column
”BDD Peak”, the maximal number of BDD nodes
during the reachability computation, in the figure,
shows that the disjunctive partitioning together with
heuristic decisions can effectively reduce the number
of intermediate BDD nodes.



Table 2: Nonblocking and controllability synthesis.

Conjunctive Synthesis Disjunctive Synthesis

Model Reachable States Supervisor states BDD Peak Computation Time (s) BDD Peak Computation Time (s)

AGV 22929408 1148928 9890 6.50 2850 0.87

Parallel Man 5702550 5702550 12363 2.47 2334 1.57

Transfer line (1,3) 64 28 17 0.05 13 0.10

Transfer line (5,3) 1.07×109 8.49×104 2352 1.69 299 0.59

Transfer line (10,3) 1.15×1018 6.13×1013 31022 48.36 1257 3.89

Transfer line (15,3) 1.23×1027 4.42×1020 − − 3032 12.80

Cat&mouse (1,1) 20 6 43 0.02 31 0.05

Cat&mouse (1,5) 605 579 2343 0.08 273 0.09

Cat&mouse (5,1) 1056 76 848 0.30 305 0.30

Cat&mouse (5,5) 6.91×109 3.15×109 − − 15964 20.86

∗ - denotes memory out.

Table 3: Computing time for the nonblocking super-
visor with different heuristics.

Computation Time

(n,k) Workset(MaxF,R) Workset(MaxF,RT) Workset(MinF,R) Workset(MinF,RT)

(1,1) 0.04 0.06 0.05 0.05

(1,5) 0.30 0.27 0.33 0.36

(5,1) 0.08 0.08 0.09 0.08

(5,5) 3.15 2.90 3.85 3.42

(1,10) 0.67 0.66 0.75 0.73

(7,7) 21.4 17.6 25.5 22.9

(10,1) 0.23 0.20 0.24 0.23

(10,7) 100.3 88.5 136.4 138.0

Heuristics

Table 3 shows the computing time for synthesizing
the nonblocking supervisor from different instances.
Different combinations of heuristics, presented in
Section 4.3, are chosen to test the performance of
the workset algorithm. Empirically, for the models
with relatively large dependency sets, the heuristic
pair (MaxF,RT) seems to be a good choice, although
it hasn’t been formally proved. Observing the results
from Table 3, the workset algorithm can handle prob-
lem instances with either a large number of levels n

or cats k rather well. However, with both numbers
increasing, the computation time increases rapidly no
matter which heuristic pair is chosen.

7 CONCLUSIONS

In this paper, we improved and extended our previ-
ous work, the guard generation procedure, by apply-
ing an approach to efficiently performing symbolic
reachability exploration on composite discrete event
systems. More specifically, the content of the paper
can be summarized as follows:

1. Introduce the partitioning techniques to split the
BDD representation of δSp‖P into a set of smaller
but structural components.

2. To alleviate the problem that the intermediate
number of BDD nodes might still be huge dur-
ing the reachability exploration, we introduce the
workset algorithm together with a set of simple
heuristics to search the state-space in a structured
and efficient way.

3. The guard generation procedure is tailored to
make use of the partitioned transition functions
and the synthesized supervisor to compute the ba-
sic state sets for an event.

4. The presented approach is applied to a set of
benchmark examples to be evaluated.

It is concluded that the disjunctive partitioning, with
appropriate heuristics, is suitable for solving large
modular supervisory control problems. There are sev-
eral directions towards which we could extend our ap-
proach. For instance, additional heuristics could be
applied to the workset algorithm, to further decrease
the number of intermediate BDD nodes. Moreover, it
is possible to combine with more sophisticated syn-
thesis techniques, such as compositional techniques,
to substantially improve the algorithm efficiency.

REFERENCES

Akers, S. B. (1978). Binary decision diagrams. IEEE Trans-
actions on Computers, 27:509–516.

Åkesson, K., Fabian, M., Flordal, H., and Malik, R. (2006).
Supremica—an integrated environment for verifica-
tion, synthesis and simulation of discrete event sys-
tems. In Proceedings of the 8th international Work-
shop on Discrete Event Systems WODES08, pages
384–385.



Åkesson, K., Fabian, M., Flordal, H., and Vahidi, A. (2003).
Supremica—a tool for verification and synthesis of
discrete event supervisors. In 11th Mediterranean
Conference on Control and Automation.

Aloul, F. A., Markov, I. L., and Sakallah, K. A. (2003).
Force: a fast and easy-to-implement variable-ordering
heuristic. In in ACM Great Lakes Symposium on VLSI,
pages 116–119.

Balemi, S., Hoffmann, G. J., Gyugyi, P., Wong-Toi, H., and
Franklin, G. F. (1993). Supervisory control of a rapid
thermal multiprocessor. IEEE Transactions on Auto-
matic Control, 38(7):1040–1059.

Bollig, B. and Wegener, I. (1996). Improving the vari-
able ordering of OBDDs is NP-complete. IEEE Trans.
Comput., 45(9):993–1002.

Bryant, R. E. (1992). Symbolic manipulation with ordered
binary decision diagrams. ACM Computing Surveys
24, 24:293–318.

Burch, J. R., Clarke, E. M., and Long, D. E. (1991). Sym-
bolic model checking with partitioned transition rela-
tions. In Proceedings of the International Conference
on Very Large Scale Integration, volume A-1 of IFIP
Transactions, pages 49–58. North-Holland.

Burch, J. R., Clarke, E. M., Long, D. E., Mcmillan, K. L.,
and Dill, D. L. (1994). Symbolic model checking
for sequential circuit verification. IEEE Transactions
on ComputerAided Design of Integrated Circuits and
Systems, 13(4):401–424.

Byröd, M., Lennartson, B., Vahidi, A., and Åkesson, K.
(2006). Efficient reachability analysis on modu-
lar discrete-event systems using binary decision dia-
grams. In Proceedings of the 8th international Work-
shop on Discrete Event Systems, WODES’06, pages
288–293.

Cassandras, C. G. and Lafortune, S. (2008). Introduction to
Discrete Event Systems. Springer, 2nd edition.

Feng, L., Wonham, W. M., and Thiagarajan, P. S. (2007).
Designing communicating transaction processes by
supervisory control theory. Form. Methods Syst. Des.,
30(2):117–141.

Glover, F. and Laguna, M. (1997). Tabu search. Number 1
in Wiley-Interscience Series in Discrete Mathematics
and Optimization. Kluwer Academic Publishers.

Hoare, C. A. R. (1985). Communicating sequential pro-
cesses. Communications of the ACM, 21(8):666–677.

Holloway, L. E. and Krogh, B. H. (1990). Synthesis of feed-
back control logic for a class of controlled Petri Nets.
IEEE Transactions on Automatic Control, 35(5):514–
523.

JavaBDD (2007). available online.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996).
Reinforcement learning: a survey. Journal of Artificial
Intelligence Research, 4:237–285.

Leduc, R. J. (2002). Hierarchical interface-based supervi-
sory control. PhD thesis, Department of Electrical and
Computer Engineering, University of Toronto.

Miremadi, S. (2010). Symbolic Computation of Control
Functions Modeled by Automata with Variables. Li-
centiate thesis, Chalmers University of Technology,
Gothenburg, Sweden.

Miremadi, S., Åkesson, K., Fabian, M., Vahidi, A., and
Lennartson, B. (2008). Solving two supervisory con-
trol benchmark problems using supremica. In Discrete
Event Systems, 2008. WODES 2008. 9th International
Workshop on, pages 131–136.

Ramadge, P. J. G. and Wonham, W. M. (1987). Supervisory
control of a class of discrete event processes. SIAM
Journal of Control and Optimization, 25(1):206–230.

Ramadge, P. J. G. and Wonham, W. M. (1989). The control
of discrete event systems. Proceedings of the IEEE,
77(1):81–98.

Shannon, C. E. and Weaver, W. (1949). The mathematical
theory of communication, volume 181. University of
Illinois Press.

Shoaei, M. R., Lennartson, B., and Sajed, M. (2010). Au-
tomatic Generation of Controllers for Collision-Free
Flexible Manufacturing Systems. In CASE 2010 6th
IEEE Conference on Automation Science and Engi-
neering, page 7.

Vahidi, A., Fabian, M., and Lennartson, B. (2006). Effi-
cient supervisory synthesis of large systems. Control
Engineering Practice, 14(10):1157–1167.

Wonham, W. M. (1999). Notes on control of discrete event
systems. Technical report, University of Toronto.


