
Automatic Generation of Controllers for
Collision-Free Flexible Manufacturing Systems

Mohammad Reza Shoaei, Bengt Lennartson and Sajed Miremadi
Department of Signals and Systems, Chalmers University of Technology

SE-412 96, Gothenburg, Sweden
{shoaei, bengt.lennartson, miremads}@chalmers.se

Abstract—A method for automatic generation of non-blocking
controllers that generate collision-free flexible manufacturing
cells is presented in this paper. Today, industry demands on
flexible production sometimes require significant changes in
location, orientation and configuration of industrial robots and
other moving devices, when new products are introduced. All
these changes pose a threat to the devices to collide while sharing
workspace. Although the use of simulation software to facilitate
these changes is gaining popularity, the coordination of collision-
free flexible manufacturing systems is still at best a semi-manual
trial-and-error procedure. To avoid this, a formal model of the
operations in a manufacturing system is generated, and for each
operation state a corresponding 3D simulation shape is created.
A collision-free system is then achieved by considering pairs of
colliding shapes as forbidden states. The automatic generation
also includes a synthesis procedure, where a non-blocking and
controllable supervisor is generated based on guard generation.
The guards are computed by binary decision diagrams, which
means that complex systems can be handled, still generating
comprehensible restrictions that are easily included in PLC-code.

I. INTRODUCTION

Today’s automotive industry trend towards accelerated prod-
uct development cycles, and the ambition to shorten the time-
to-market, represent the symptoms of an extremely compet-
itive marketplace. This has driven the industry to develop
and coordinate highly complex flexible manufacturing systems
(FMS). A key enabler to handle this type of complexity is to
replace time-consuming on-line and manual tests with virtual
development, including off-line programming and up-front
performance simulation.

Most digital manufacturing software, such as [1], [2], and
[3], offer tools to facilitate the development of control code, by
providing the functionality for off-line programming, digital
manufacturing simulation and virtual commissioning. Still, the
coordination of FMS is at best a semi-manual trial-and-error
procedure, where the generation of control code is often a
time demanding occupation, suffering from human mistakes
and risks for collisions in the final execution of the controlled
FMS.

The option to use formal methods, including controller
synthesis to automatically generate correct control functions,
is still very limited in industry. Some reasons are given in
[4], including modeling difficulties and state space explosion.
This problem is further discussed in [5], [6], and [7], where
in the latter a formal language for hierarchical operations

and sequences of operations (SOPs) are introduced to support
controller synthesis.

In synthesis procedures, such as supervisory control theory
(SCT), introduced by Radmadge and Wonham [8], the genera-
tion of the supervisor depends on a specification of the closed
loop behavior. For FMSs some parts of this specification result
from production planning, where engineers naturally introduce
desired operations and SOPs, for instance by the language
introduced in [7]. Other parts of the specification are based
on safety issues, more related to the coordination between
robots and other moving devices, such as machines, conveyors,
fixtures, and clamps. These safety specifications depend on the
physical layout of the FMS, and actual geometry of the parts to
be manipulated. Hence, rapid changes in an FMS may imply
large changes of these safety specifications.

To handle this challenging problem, an automatic generation
of safety specifications is presented in this paper, to avoid
collisions between any moving devices in an FMS. This is
achieved by first identifying all areas where robots and other
devices are performing operations in a shared workspace. To
avoid collisions, a set of volumes (henceforth called shapes),
which represents the location of devices in the workspace,
are created for all involved operations, based on simulations
in a 3D simulation environment. Pairwise intersections of
theses shapes are identified, and avoided by adding guards to
the corresponding operation models, to eliminate all possible
collisions.

A consequence of introducing these guards, as well as
the user specifications in terms of SOPs mentioned above,
blocking and uncontrollability problems may arise. These
problems are avoided by synthesizing a supervisor that prevent
some controllable events to be executed, to fulfill the desired
specification [8]. Since the operations and SOPs are modeled
by a new type of automata with variables called Extended
Finite Automata (EFA) [9], the synthesis is also based on EFA.
Applying a recently developed strategy [10], additional guards
are then added to achieve the required closed loop behavior.
The computations, including the guard generation, are based
on binary decision diagrams (BDDs) [11], which means
that large and complex systems can be handled efficiently,
where small and comprehensible guards often can be achieved
that correspond to a large number of states in a traditional
supervisor implementation. This is exemplified in a case study
in the end of this paper.



The ambition of this work is to be easily applicable, based
on currently available software. For this purpose, functionality
that is considered to be a part of most digital manufacturing
software is used as far as possible. For demonstration pur-
poses, the method presented in this paper is implemented
using Dassault Systèmes DELMIA V5 [1], a software that
easily generates the required pairwise intersected shapes, and
Supremica [12], a tool for formal verification and synthesis
developed by the Chalmers University of Technology.

This paper is organized as follows, in Section II mathemat-
ical preliminaries are shortly reviewed. Section III is devoted
to a presentation of the method in detail, followed by Section
IV, where a case study is given. Conclusions and future work
are presented in Section V.

II. PRELIMINARIES

For notational convenience, the moving devices that are
employed in a cell, such as robots, machines, conveyors,
fixtures, clamps etc, are called resources. Each resource in
a cell is assumed to be assigned a number of operations to
perform, like grip or weld for a robot and close or open for a
clamp.

A. Extended Finite Automata

In order to describe the behaviour of a cell in a structured
way, extended finite automata [9] are used. An EFA is defined
as a 7-tuple E = 〈Q × V,Σ,G,A,→, (q0, v0),M〉. The set
Q× V is the extended finite set of states, where Q is a finite
set of discrete locations and V is the finite domain of an
m-tuple of variables, v = (v1, v2, . . . , vm). Σ is a nonempty
finite set of events (the alphabet). G is a set of guard predicates
over V , A is a set of action functions from V to V , where
each function maps the present variable values to the variable
values of the next state. →⊆ Q × Σ × G × A × Q is a state
transition relation, (q0, v0) ∈ Q × V is the initial state, and
M ∈ Q× V is a set of marked (desired) states.

The event set, is partitioned into two disjoint subsets, the
controllable events Σc and the uncontrollable events Σuc. A
controllable event can be inhibited by the supervisor, while an
uncontrollable event cannot be inhibited. When an uncontrol-
lable event occurs in the plant, the supervisor must be able to
follow it, or risk losing control over the system.

EFAs are composed by full synchronous composition [13].
In the composition of two EFAs, a shared event is enabled if
and only if it is enabled by each of the composed automata
[9]. There are three types of automata appearing in this paper,
plants, specifications, and supervisors. The plant is a model of
all operations in the system, and the specification is a model of
the desired behavior of the controlled system. The supervisor
is synthesized from the plant and the specification, using the
supervisory control theory (SCT) [8]. It issues control over the
plant so that the specification is fulfilled.

B. Simulation Assumptions

It is assumed that resources are collision free in the initial
state of a cell. This is required, since the method otherwise

identifies the initial location as a forbidden state and returns
the empty controller. Also, it is assumed that the operations
are defined and available in the 3D simulation model. Fur-
thermore, the exactness of the shapes is very valuable for this
method. Therefore, it is assumed that the created shapes using
the software functions are accurate enough. Finally, the cell
behavior is analyzed for one cycle, since the workspace for
the resources are assumed to be the same for all cycles.

III. METHOD

The method used to generate a controller that guarantees a
collision-free FMS consists of the following main steps

A Operation model generation
B Collision detection
C Interlocks generation
D User specification
E Synthesis

In the first step, operations are modeled by using EFAs. Then
the set of shapes from all operations are created in step B,
by using Dassault Systèmes DELMIA V5 simulation software
and simulating the operations. Collisions are identified by
pairwise intersection tests over the set of shapes, and the pairs
of colliding shapes are generated. In step C, based on the pairs
of colliding shapes, interlocks are added to the corresponding
operation models. In the final step, including the given user
specification, a non-blocking and controllable supervisor is
generated.

A. Operation Model Generation

To be able to formally specify properties and relations
of operations with respect to resources in the manufacturing
system, the operation model in [7] is used.

For notational purposes, a slight reformulation of the EFA
is done in the operation model, by replacing the guards and
actions by a set C of transition conditions.

An operation is an EFA where the set of discrete locations
Qk = {Oi

k, O
e
k, O

f
k}, the event set Σk = {O↑k, O

↓
k}, the set of

transition conditions Ck = {C↑k , C
↓
k}, the transition relation

→k= {〈Oi
k, O

↑
k/C

↑
k , O

e
k〉, 〈Oe

k, O
↓
k/C

↓
k , O

f
k 〉, and the initial

and marked locations are qik = Oi
k and qmk = Of

k , respectively.
See Fig. 1.

Oi
k Oe

k Of
k

O↑
k/C

↑
k O↓

k/C
↓
k

Fig. 1. The EFA model of the operations. The discrete
locations Oi

k, O
e
k and Of

k where Ok ∈ O represent
the initial, execution and completion of the operation,
respectively.

The transition for operation Ok from the initial discrete
location Oi

k to the execution location Oe
k is enabled when

the precondition C↑k is satisfied, after which the transition
can be fired and the start event O↑k occurs. In the same
way the completion event O↓k can only occur when the
postcondition C↓k is fulfilled. The basic assumption is that all



operations can be executed concurrently in parallel. But the
physical location of the resources further reduces the flexibility
and typically leads to restrictions on the operations. Therefore,
some operations must wait until other operations are finished.
These sequential restrictions on the order between different
operations are formally expressed by logical preconditions.

In this paper, the event O↓k is assumed to be an uncontrol-
lable event. The motivation is that in practice, the start of an
operation, O↑k, can be disabled by the controller at any time,
whereas the completion of the operation, O↓k, is performed
autonomously by the system without any interference with the
controller.

Example 1 (A small manufacturing cell): Consider a man-
ufacturing cell including three resources, two robots and a
clamp, and a number of operations for each resource to
perform, e.g. visit a number of targets from home position
for robots and open for the clamp.

The set of resources of the cell is R = {Rb1, Rb2, C}
where Rb1, Rb2 and C are assigned to perform the operations
{O1, O2}, {O3, O4} and {O5}, respectively. It is assumed
that the operation O1 is followed by O2 and operation O3

is followed by O4. Hence, to formally express this, a true
condition on the discrete locations Of

1 and Of
3 are added to

the transition conditions C↑2 and C↑4 , see Fig. 2. 2

Oi
1 Oe

1 Of
1

Oi
2 Oe

2 Of
2

O↑
1 O↓

1

O↑
2/O

f
1 O↓

2

Fig. 2. The EFA models of the operations O1 and O2.
The sequence O1 followed by O2 is achieved by the
condition Of

1 on the event O↑
2 .

B. Collision Detection

In this step, an algorithm for collision detection is presented,
see Algorithm 1. Collision detection is a well established re-
search field, see e.g. [14] and [15]. In this work we simply use
available 3D simulation software functionality to find actual
collisions. The collisions are identified by pairwise intersection
test over the set of shapes generated from simulating the
operations. The pairs with intersected shapes, excluding shapes
from the same resource, will be added to the set of pairs of
colliding shapes X .

To map the volume of the resource in the workspace
while performing the operation Ok, the set of shapes Sk =
{Si

k, S
e
k, S

f
k } is introduced. The shapes Si

k, Se
k and Sf

k are
the 3D simulation volumes of the resource performing the
operation Ok in the stand still position at the initial location
Oi

k, in the sweep mode at the execution location Oe
k, and the

stand still position at the finished location Of
k .

Consider two operations Ok1 and Ok2 performed in se-
quence by a resource R. Then the shape Sf

k1
of the final

location Of
k1

in the predecessor operation Ok1
, is identical

to the shape Si
k2

of the initial location Oi
k2

in the successor
operation Ok2

. Therefore, it is enough to add one shape called
Sfi
k1,k2

, which denotes the identical shapes Sf
k1

and Si
k2

. This
shape represents the combination of discrete locations Of

k1

and Oi
k2

which is formally expressed by (Of
k1
∧ Oi

k2
). The

information concerning the resource and related operations and
discrete locations are saved as the attributes of the shape and
will be used in the following steps.

Algorithm 1 Collision detection
Input: R – the set of resources.
Output: X – the set of pairs of colliding shapes;

S – the set of generated shapes.
1: foreach R` ∈ R do
2: foreach Ok ∈ R`.Operations() do
3: (Si

k, S
e
k, S

f
k )← CreateShapeByLocation(Oi

k, O
e
k, O

f
k )

4: S ← (Si
k, S

e
k, S

f
k )

5: end for
6: end for
7: while S 6= ∅ do
8: Si = S.RemoveFirst()
9: foreach Sj ∈ S do

10: if Si.Resource() 6= Sj .Resource() then
11: if Si intersects with Sj then
12: X ← (Si, Sj)
13: end if
14: end if
15: end for
16: end while
17: return X ,S

Example 1 (Continue): Algorithm 1 is employed to identify
the collisions in the example cell. The input of the algorithm is
the setR = {Rb1, Rb2, C}. In the first iteration, the shapes for
all operations, e.g. {Si

1, S
e
1 , S

f
1 } for operation O1, are created

and added to the set S by simulating the operations in Dassault
Systèmes DELMIA V5. For the operation locations {Of

1 , O
i
2}

and {Of
3 , O

i
4} of the resources Rb1 and Rb2, which are in

sequence, one shape for each resource is created, Sfi
1,2 and Sfi

3,4

respectively, which are represented by the combined discrete
locations (Of

1 ∧Oi
2) and (Of

3 ∧Oi
4).

TABLE I
PAIRS OF COLLIDED SHAPES IN THE SET OF X

Shape Si Shape Sj

Se
1 Se

5

Sfi
1,2 Se

4

Se
2 Sfi

3,4

In the next step, the pairwise intersection test is applied
on the set S, and the pairs of colliding shapes is added to
the set X , see Table I. Fig. 3 illustrates the pair of colliding
shapes (Se

1 , S
e
5), which indicates the collision between Rb1

while executing the operation O1, and C while executing the
operation O5. 2



Fig. 3. The shapes Se
1 and Se

5 which are representing the
collision between the resources Rb1 and C in their execution
location to perform operations O1 and O5 respectively.

C. Interlocks generation

For each pair of colliding shapes, the corresponding forbid-
den locations are identified. In order to avoid collision, reach-
ing the forbidden locations are eliminated by adding guards to
the corresponding events of the two involved operation models,
see Algorithm 2. The input of the algorithm is the set of pairs
of colliding shapes X .

Algorithm 2 Guard generation on transition conditions
Input: X – the set of pairs of colliding shapes;

1: while X 6= ∅ do
2: (S1, S2)← X .RemoveFirstPair()
3: (O1,O2)← DiscreteLocationSetFromShape(S1, S2)

4: for z = 1 to 2 do
5: O`1

t1 = Oz.RemoveFirst()
6: k ← t1

7: if (∃O`2
t2 ∈ Oz : `2 = f) then

8: k ← t2
9: end if

10: C↑k = C↑k ∧ ¬
∧O3−z

11: if (∃Oy
m ∈ O3−z : y = f) then

12: C↑k = C↑k ∧ ¬Oe
m

13: end if
14: end for
15: end while

In the first step of the algorithm, one pair of colliding
shapes, (S1, S2), is selected (and removed) from the set X .
For each of the colliding shapes, S1 and S2, the corresponding
operation locations are retrieved from the shapes. Since each
shape represents a discrete location (or combination of discrete
locations) in the related operation(s), to avoid the collision, it

is enough to forbid operations to enter the collision location
concurrently. This condition is expressed by adding the safety
guards to the transition condition C↑k of operations. If the
discrete location Of

k should be forbidden, since the event O↓k
is an uncontrollable event, the discrete location Oe

k is also
forbidden to avoid an uncontrollable supervisor.

Example 1 (Continue): The input of the Algorithm 2 is
the set of pairs of colliding shapes X from previous step. In
the first iteration, the pair of (Se

1 , S
e
5) is taken. The function

DiscreteLocationSetFromShape() retrieves the location sets,
O1 = {Oe

1} and O2 = {Oe
5}. In the next step, the condition

¬Oe
5, will be added to the transition condition C↑1 , and the

condition ¬Oe
1 to the C↑5 , respectively. These conditions avoid

the robot and the clamp to be in their execution location
concurrently. In the next iteration another pair is taken, and
with the same procedure, necessary conditions will be added
to their operation models. Table II, shows the generated
conditions for all operation models. 2

TABLE II
GENERATED CONDITIONS FROM ALGORITHM 2

Transition condition Added boolean condition

C↑
1 ¬Oe

4 ∧ ¬Oe
5

C↑
2 ¬(Of

3 ∧Oi
4) ∧ ¬Oe

3

C↑
3 ¬Oe

2

C↑
4 ¬(Of

1 ∧Oi
2) ∧ ¬Oe

1

C↑
5 ¬Oe

1

D. User specification

Without any restrictions on the individual operations the
basic assumption is that all operations can be executed in
parallel [7]. On the other hand, in a manufacturing system
there are precedence relations between operations. Restrictions
on the order between different operations are formally ex-
pressed by logical preconditions on individual operations and
indicated by guards on corresponding operation models. Since
the operations are guaranteed to be collision-free, the user
can freely specify desired SOPs without considering collision
problems.

O1

O2

O3

O4

O5

Of
5

Of
5

Fig. 4. Desired sequences where preconditions are added
such that operation O5 needs to be finished before O2 and
O3 are allowed to start.

Example 1 (Continue): Fig 4 shows a user specification by
ordering the operation O5 to precede the operations O2 and
O3. Hence, the transition conditions for O2 and O3 become
C↑2 = C↑2 ∧Of

5 and C↑3 = C↑3 ∧Of
5 , respectively. 2



E. Synthesis

So far, the guards that have been generated and attached
to the operation models, i.e. EFAs, yield a collision-free
system that fulfills the user’s specification, e.g. the sequence of
operations. Furthermore, it is necessary to synthesize a non-
blocking, controllable and maximally permissive supervisor
[8]. Traditionally, the synthesis procedure for EFAs was car-
ried out by first flattening the EFAs to ordinary finite automata,
and then perform a monolithic synthesis. In this way, the states
of the final supervisor are represented explicitly, which has
some main drawbacks when the supervisor becomes very large
in terms of the number of states:
• Converting EFA to ordinary automata may be time-

consuming.
• The supervisor may be untraceable for the users and hard

to understand.
• It may not be possible to implement the controller based

on the supervisor on a PLC with limited memory.
• Since the number of states increases exponentially dur-

ing the monolithic synthesis, state space explosion may
occur, and thus, no supervisor will be computed.

To overcome the above problems, we perform the synthesis
based on the approach proposed in [10]. In this framework,
the synthesis is performed directly on the EFAs, rather than
flattening them to ordinary automata. The result will be a non-
blocking, controllable, and maximally permissive monolithic
supervisor.

Based on the monolithic supervisor, a set of reduced guards
are generated and attached to the original EFAs, representing
the conditions that should hold in order to guarantee that the
system preserves the supervisor’s properties. In Section IV,
this approach is applied to a very large system, where a huge
supervisor is represented by a few number of small guards.

Example 1 (Continue): With all collision-free operation
models including the user specification, the supervisor is
generated in the Supremica software. Fig. 5 shows the syn-
chronized model, in which the cross marks are the blocking
states (removed by synthesis) and slash marks are the forbid-
den states (removed by the collision avoidance specification).
After removing the blocking and uncontrollable states, the
supervisor will be the sequence of operations (O1 → O5 →
O2 → O3 → O4), (O5 → O1 → O2 → O3 → O4) or
(O5 → O3 → O4 → O1 → O2).

Also, it is possible to generate the EFA model of the
supervisor. Fig. 6 shows the EFA supervisor model. It is
interesting that few guards is enough to generate the non-
blocking supervisor. 2

IV. CASE STUDY

The method described above has been implemented using
three existing software, Dassault Systèmes DELMIA V5, as
a 3D simulation environment, for generating the operation
models, collision detection and interlocks generation, Se-
quence Planner [16], to add the desired specification to the
operations, and Supremica, for the verification and synthesis.

Oiiiii
1,2,3,4,5 Oeiiii

1,2,3,4,5 Ofiiii
1,2,3,4,5

Oiiiie
1,2,3,4,5 Oeiiie

1,2,3,4,5 Ofiiie
1,2,3,4,5

Oiiiif
1,2,3,4,5 Oeiiif

1,2,3,4,5 Ofiiif
1,2,3,4,5 Ofeiif

1,2,3,4,5 Offiif
1,2,3,4,5

Oiieeif
1,2,3,4,5 Oeieif

1,2,3,4,5 Ofieif
1,2,3,4,5 Ofeeif

1,2,3,4,5 Offeif
1,2,3,4,5

Oiifif
1,2,3,4,5 Oeifif

1,2,3,4,5 Ofifif
1,2,3,4,5 Ofefif

1,2,3,4,5 Offfif
1,2,3,4,5

Oiifef
1,2,3,4,5 Oeifef

1,2,3,4,5 Ofifef
1,2,3,4,5 Ofefef

1,2,3,4,5 Offfef
1,2,3,4,5

Oiifff
1,2,3,4,5 Oeifff

1,2,3,4,5 Ofifff
1,2,3,4,5 Ofefff

1,2,3,4,5 Offfff
1,2,3,4,5

O↑
1

O↑
1

O↑
1

O↑
1

O↑
1 O↑

2

O↑
2

O↑
3 O↑

3O↑
3 O↑

3

O↑
4O↑

4

O↑
5 O↑

5

O↓
1

O↓
1

O↓
1

O↓
1

O↓
1

O↓
2

O↓
2

O↓
3O↓

3 O↓
3O↓

3

O↓
4O↓

4

O↓
5 O↓

5

Fig. 5. The monolithic synchronized model of the ex-
ample cell. The cross marks indicate the blocking states
and the slash marks indicates the forbidden states. The
notation Oeiiii

1,2,3,4,5 means the combined operation locations
Oe

1, O
i
2, O

i
3, O

i
4, O

i
5.

Oi
1

Oe
1

Of
1

Oi
2

Oe
2

Of
2

Oi
3

Oe
3

Of
3

Oi
4

Oe
4

Of
4

Oi
5

Oe
5

Of
5

¬Oe
5 ∧ ¬Oe

4∧Oi
5 ∧Oi

3 ∧Of
4

O↑
1

O↓
1

Of
5 ∧Of

1 ∧ ¬(Of
3 ∧Oi

4) ∧ ¬Oe
3

O↑
2

O↓
2

Of
5 ∧ ¬Oe

2∧Oi
1 ∧Of

2

O↑
3

O↓
3

Of
3 ∧ ¬(Of

1 ∧Oi
2) ∧ ¬Oe

1

O↑
4

O↓
4

¬Oe
1

O↑
5

O↓
5

Fig. 6. The supervisor for the example cell using direct
synthesis on EFAs. The bold red guards are added by the
synthesis algorithm to remove the blocking states.

The program is used to automatically generate the controller
for a robot cell at Chalmers University of Technology (PPU
Lab). The cell consists of seven resources: two ABB robots,
a fixture with four clamps, and a conveyor. The desired
behaviour for the cell is the following. Two parts are loaded
by operator and carried to the work station on the conveyor.



First, robot Rb1 picks a part and places it on the fixture, and
then robot Rb2 takes the second part and places it on the
fixture. Afterwards, the clamps are closed to fixate the parts.
Then, the robots start to assemble the product by drilling and
pop-riveting the parts. Finally, the clamps are opened and the
finished product is ready to be unloaded.

The input to the method is the 3D simulation model of
the cell including predefined operations for the resources in
Dassault Systèmes DELMIA V5. The generated operation
models with collision avoidance guards are structured and
exported to a XML-format. In Sequence Planner, from the
XML-format, the operation models are imported. Here, desired
SOPs are visually created as the user specification. Finally,
the controllable and non-blocking supervisor is generated in
Supremica based on the operation models including the desired
user specifications.

To test the capability of the synthesis approach based on
guard generation, the cell described above is duplicated and
run concurrently. After synthesis, the number of reachable
states for the closed loop system and the generated supervisor
are given in Table III, including some more relevant cell
information.

TABLE III
STATICS OF THE SUPERVISOR FOR TWO CELLS

Complex Case Study Numbers

No. of Resources 14

No. of Operation 68

No. of Pairs of colliding shapes 84

No. of Generated Guards to avoid collisions 164

No. of Closed-loop states 1.35× 1011

No. of Supervisor states 2.15× 109

No. of generated guards based on the SCT synthesis 4

Time to compute using BDD 3.2 seconds

V. CONCLUSIONS AND FUTURE WORK

A method for automatic generation of a non-blocking
controller that generate collision-free flexible manufacturing
cells has been presented in this paper. Two crucial steps are
included, first a safety specification is generated automatically
based on 3D simulation and formal operation models. A
collision-free system is achieved by considering pairs of col-
liding shapes as forbidden states. Secondly, a non-blocking and
controllable supervisor is generated based on guard generation.
The guards are computed by binary decision diagrams. A
case study shows that large systems can be handled including
billions of reachable states and even more, still only resulting
in a few guards that are easily to interpret and implement in
for instance a PLC or a robot controller.

Future work will include cycle time and/or energy optimiza-
tion based on MILP and MINLP solvers. A stronger interac-
tion between the 3D simulation software and our suggested
synthesis method will also further improve the usability of the
suggested methodology.

REFERENCES

[1] Dassault Systèmes DELMIA V5 and DELMIA Automation V5, 2010,
http://www.3ds.com.

[2] ABB RobotStudio, 2010, http://www.robotstudio.com.
[3] Siemens Tecnomatix, 2010, http://www.tecnomatix.com.
[4] E. W. Endsley, E. E. Almeida, and D. M. Tilbury, “Modular finite state

machines: Development and application to reconfigurable manufacturing
cell controller generation,” Control Engineering Practice, vol. 14, no. 10,
pp. 1127–1142, 2006.

[5] K. Andersson, J. Richardsson, B. Lennartson, and M. Fabian, “Coor-
dination of Operations by Relation Extraction for Manufacturing Cell
Controllers,” IEEE Transactions on Control Systems Technology, pp. 1–
17, 2009.

[6] K. Bengtsson, B. Lennartson, Y. Chengyin, P. Falkman, and S. Biller,
“Operation-oriented specification for integrated control logic develop-
ment,” in 2009 IEEE International Conference on Automation Science
and Engineering. IEEE, 2009, pp. 183–190.

[7] B. Lennartson, K. Bengtsson, C. Yuan, K. Andersson, M. Fabian,
P. Falkman, and K. Akesson, “Sequence Planning for Integrated Product,
Process and Automation Design,” Conditionally accepted for IEEE
Transactions on Automation Science and Engineering, 2010.

[8] P. Ramadge and W. Wonham, “The control of discrete event systems,”
Proceedings of the IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[9] M. Skoldstam, K. Akesson, and M. Fabian, “Modeling of discrete event
systems using finite automata with variables,” in IEEE Conference on
Decision and Control, 2007, pp. 3387–3392.

[10] S. Miremadi, K. Akesson, and B. Lennartson, “Symbolic Supervisory
Synthesis on Extended Finite Automata,” in submitted to IEEE Trans-
actions on Automation Science and Engineering, 2010.

[11] A. Vahidi, B. Lennartson, and M. Fabian, “Efficient Analysis of Large
Discrete-Event Systems with Binary Decision Diagrams,” in Decision
and Control, 2005 and 2005 European Control Conference. CDC-ECC
’05. 44th IEEE Conference on, 2005, pp. 2751–2756.

[12] K. Akesson, M. Fabian, H. Flordal, and R. Malik, “Supremica - An
integrated environment for verification, synthesis and simulation of
discrete event systems,” in 2006 8th International Workshop on Discrete
Event Systems. IEEE, 2006, pp. 384–385.

[13] C. A. R. Hoare, “Communicating Sequential Processes,” Communica-
tions of the ACM, vol. 21, pp. 666–677, 1985.

[14] P. Jiménez, F. Thomas, and C. Torras, “3D Collision Detection: A
Survey,” Computers and Graphics, vol. 25, pp. 269–285, 2000.

[15] M. C. Lin and S. Gottschalk, “Collision Detection Between Geometric
Models: A Survey,” in In Proc. of IMA Conference on Mathematics of
Surfaces, 1998, pp. 37–56.

[16] E. Ohlson and C. Torstensson, “Development, implementation and
testing of Sequence Planner - A concept for modeling of automation
systems,” Tech. Rep. EX/2009, Chalmers University of Technology,
2009.


