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Conventional models of Josephson junction dynamics rely on the absence of low-energy quasiparticle states 
due to a large superconducting gap. With this assumption the quasiparticle degrees of freedom become «frozen 
out» and the phase difference becomes the only free variable, acting as a fictitious particle in a local in time Jo-
sephson potential related to the adiabatic and nondissipative supercurrent across the junction. In this article we 
develop a general framework to incorporate the effects of low-energy quasiparticles interacting nonadiabatically 
with the phase degree of freedom. Such quasiparticle states exist generically in constriction type junctions with 
high transparency channels or resonant states, as well as in junctions of unconventional superconductors. Fur-
thermore, recent experiments have revealed the existence of spurious low-energy in-gap states in tunnel junc-
tions of conventional superconductors �— a system for which the adiabatic assumption typically is assumed to 
hold. We show that the resonant interaction with such low-energy states rather than the Josephson potential de-
fines nonlinear Josephson dynamics at small amplitudes. 

PACS: 74.50.+r Tunneling phenomena; Josephson effects; 
74.78.Na Mesoscopic and nanoscale systems; 
72.10.Bg General formulation of transport theory. 

Keywords:.Andreev states, Rabi dynamics, nonequilibrium dynamics. 
 

 
1. Introduction 

During last twenty years a microscopic theory of Jo-
sephson effect was undergoing steady development follow-
ing the advent of novel mesoscopic Josephson structures 
such as transparent metallic and semiconducting junctions 
[1], quantum point contacts [2], quantum dot contacts [3], 
junctions with spin-active interfaces [4]. Much of the theo-
ry development for these structures were based on pioneer-
ing work by I.O. Kulik [5�–8]. Also important breakthrough 
was experimental demonstration [9�–11] of macroscopic 
quantum coherence [12] in Josephson junctions, and reali-
zation of quantum Josephson circuits (qubits) [13�–16]. 

Functioning of quantum Josephson circuits is based on 
a fundamental property of Josephson tunnel junctions: non-
linear nondissipative phase dynamics. Equivalence of Jo-
sephson junctions to ideal nonlinear oscillators, pointed out 
already by Josephson [17], is used in numerous applica-
tions in microwave electronics [18]. The possibility to 
quantize the motion of Josephson oscillator [19], and to 
observe the macroscopic quantum dynamics is essentially 
based on this fundamental property. 

Equation of motion for the superconducting phase dif-
ference across the junction stems from Kirchhoff's rule that 
combines the Josephson tunneling current, ( ) = sin ,J CI I  
and the displacement current through junction capacitor, 
( / 2 )C e , 

 sin = ( , ),
2 C e
C I I t
e

 (1) 

where ( , )eI t  is a biasing current defined by external cir-
cuit, = 1 . A key assumption behind this equation is a 
quasistatic form of the Josephson current that extends the 
static current-phase relation to the nonstationary case of 
temporal variation of the phase. A justification for this as-
sumption is provided by a wide isotropic superconducting 
energy gap  that prevents excitation of quasiparticles by 
temporal variation of the phase at low temperature and 
small frequency of Josephson plasma oscillation, 

, pkT . Thus electrons in the junction remain in 
equilibrium, and the adiabatic form of the Josephson cur-
rent is maintained. 
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Such an approach is relevant for tunnel junctions, but it 
is not always correct. Notable exceptions are transparent 
point contacts [20] and resonant quantum dot contacts [21] 
containing Andreev bound states deep inside the energy 
gap. Other important exceptions are junctions of d-wave 
superconductors containing zero energy Andreev surface 
states [22] and low-energy nodal quasiparticles [23]. In 
such junctions the low-energy quasiparticles are involved 
in the macroscopic dynamics: they are excited and driven 
away from equilibrium by temporal variation of the phase 
resulting in significant modification of the Josephson cur-
rent. How is Eq. (1) then modified in the presence of low-
energy quasiparticle states? 

In this article we suggest an extension of Eq. (1) to de-
scribe the nonadiabatic Josephson dynamics in the pres-
ence of interaction with quasiparticles. A general equation 
derived in the next sections has the form 

 

�ˆ�ˆTr( ) = ,
2
�ˆ �ˆ�ˆ= [ , ].

J e
C I f I
e

if H f  
(2)

 
Here the adiabatic Josephson current is replaced by a sta-
tistical average of a Josephson current operator, �ˆJI ; the 
nonequilibrium quasiparticle density matrix �ˆf  satisfies the 
Liouville equation with an effective Hamiltonian, �ˆH . The 
only approximation made during the derivation is a semi-
classical approximation for the phase dynamics, otherwise 
this is an exact equation. As we will show, both the current 
operator and effective Hamiltonian are expressed through 
the quasiparticle energy spectrum of the junction and inter-
level transition matrix elements. 

Equation (2) has a generic form of equation of motion 
of a macroscopic particle interacting with a fermionic bath. 
Usually such problems are treated assuming an equilibrium 
bath. Here we will consider a nonequilibrium bath consist-
ing of low-energy bound Andreev states strongly driven by 
the phase dynamics. Our main conclusion is that the Rabi 
dynamics of the Andreev states dramatically modifies the 
nonlinear properties of macroscopic Josephson dynamics. 
The physics here resembles well known in nonlinear optics 
picture of interaction of electromagnetic mode with me-
dium of two-level atoms [24]. 

The structure of the paper is as follows. In Sec. 2 we 
discuss a general approach based on the path integral tech-
nique, which is used in Sec. 3 to derive Eq. (2). In the next 
section we discuss the adiabatic limit and establish connec-
tion between our method and earlier results for tunnel junc-
tions. Section 5 is devoted to nonadiabatic effects; we 
study both the linear and nonlinear quasiparticle response, 
the main result here is the evaluation of a nonlinear effect 
of driven low-energy Andreev bound states. In Sec. 6 we 
present the derivation of stochastic Langevin equation ge-
neralizing the deterministic Eq. (2). 

2. Formulation of the problem 

Consider a general setup of a junction with supercon-
ducting electrodes occupying left ( < 0x ) and right 
( > 0)x  halfspaces, with an interface at = 0x  carrying N  
conducting modes. We will not specify the properties of 
the interface but rather characterize it, within the quasiclas-
sical approximation, with some electronic transfer matrix. 
In the following we also adopt common assumptions: (i) 
the superconductors are described with a BCS mean field 
theory, (ii) superconducting electrodes maintain local equi-
librium implying absence of spatial and temporal variation 
of the module and phase of the order parameter, = const,  

( , ) = sign ( ) ( ) / 2t x tr . 
To accurately describe the nonequilibrium dynamics we 

adopt the path integral approach, introduced by Ambegao-
kar et al. [25], and adapted for nonequilibrium systems 
[26�–28]. Following this approach we represent the trace of 
the time dependent statistical operator of the junction 

0 0 0�ˆ �ˆ�ˆ �ˆ( ) = ( , ) ( , )t U t t U t t  with the path integral 

 [ , , ]�ˆ= Tr [ ( )] = e ,iSZ t  (3) 

where the action is 

 2 1
2[ , , ] = ( ) ( , ) .

8
e

CS dt U
e

 (4) 

The first term in this equation originates from the electro-
static interaction between electrodes and is described with-
in the capacitance approximation [25]; the second term is 
an inductive energy of the external circuit, and the last 
term represents the contribution of superconducting elec-
trons. Time integration goes along the forward-backward 
time contour, = . The fermionic fields in the ele-
ctronic term are written in the Nambu pseudospinor repre-
sentation, = ( , )T , and 

 1 = ( ) ,
2t zi  (5) 

where 

 
2

( ) = ( ) e
2

i zF z xE V
m

p
r  (6) 

is the junction Hamiltonian. Here ( )V r  is the potential 
defining the interface; superconducting order parameter  
is a scalar in s-wave superconductors, but becomes a non-
local operator in the case of unconventional d-wave pair-
ing. The last term in Eq. (5) represents the electrical poten-
tial needed to preserve electro-neutrality within the electro-
des [29]. 

By virtue of the quadratic form of the fermionic part of 
the action (4) one can formally perform the Gaussian path 
integral over the fermionic fields, and reduce the integral 
to one over the phase degree of freedom [30�–33]: 

 
1[ ] Sp ln ( )0= e ,iGiSZ  (7) 
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here 0S  comprises the first two terms in Eq. (4), and Sp  
denotes the trace over both the quasiparticle states as well 
as the forward-backward time contour. This transformation 
in itself, however, does not solve the problem: the obtained 
effective action contains the contour ordered fermionic 
Green's function, which needs to be computed by solving 
the equation of motion. This can only be done under some 
approximations. The most studied in literature case con-
cerns tunnel junctions where the Green's function is calcu-
lated perturbatively using small transparency of the junc-
tion, 1D  [25,30,31]. This is commonly done within the 
formalism of tunnel Hamiltonian model. This method can 
be improved and made suitable for transparent junctions, 

1D , by performing summation of the whole perturba-
tive series [34]. However, the tunnel model method does 
not straightforwardly apply to superconductors with sur-
face states, such as d-wave superconductors, since it is 
based on expansion over bulk Green's functions. The tun-
nel model must then be modified by considering semi-
infinite leads with hard-wall boundaries rather than homo-
genous leads [35]. An alternative way to calculate the ef-
fective action for transparent junctions was suggested in 
Refs. 29, 36, by using exact boundary conditions and an 
adiabatic approximation for low-energy Andreev states. 
Zaikin and Panuykov [32,33] suggested a general method 
for calculating the effective action by establishing a formal 
relation between the action and the current across the junc-
tion. This method, however, requires knowledge of the ac 
current response to an arbitrary time dependent realization 
of ( )t , which in general is not possible to obtain. 

In this paper we suggest an alternative method of calcu-
lation of the effective action (7), which is exact in the limit 
of semiclassical phase dynamics, and universal regarding 
interaction with any kind of quasiparticle states. 

2.1. Instantaneous basis 

The central idea of the method is to expand the Nambu 
fields over an instantaneous eigenbasis of the Hamilto-
nian (6): 

 ( , ) = ( ; ) ( ).i i
i

t a tr r  (8) 

This allows us to separate the spatial problem from the 
temporal one by solving the time independent Bogoliubov�–
de Gennes equation for a fixed value of the phase. Apart 
from the technical simplifications this basis provides an 
intuitive understanding of the microscopic processes in-
volved in the Josephson dynamics in terms of transitions 
between quasiparticle states. 

In this basis the action (4) becomes 

2 1
2[ ,{ },{ }] ( ) ,

8
i i e i ij j

ij

CS a a dt U a G a
e  

  (9) 

where 

 1 = ( )ij t ijG i H  (10) 

represents the quasiparticle Green function in the instanta-
neous basis, and the Hamiltonian is given by equation 

 ( , ) = ( ) .ij i ij ijH E  (11) 

The diagonal elements here are given by the instantaneous 
eigen energies of the Hamiltonian (6) 

 = ,i i iE  (12) 

and the off-diagonal elements are proportional to the ma-
trix elements 

 1= ( , ) ( ,sign ( ) )
4ij i j i z ji x  (13) 

of the transitions between the instantaneous eigenstates due 
to temporal variations of the phase. 

The physical meaning of the transition matrix elements 
can be understood by establishing their connection to the 
Josephson current operator. Consider a general quantum 
mechanical equation for the charge current density matrix 

 �†
=

( ) = ( ') ( ) ( ') .
2ij ji
ie
m r r

j r r r  (14) 

The current through the interface S  is given by equation 

 = ( ).ij ij
S

I dn j r   

This is the matrix of the Josephson current operator. If we 
connect the electrodes in a loop at infinity, we can use the 
fact that no current is flowing through any other part of the 
surface of the superconductor so we may extend the sur-
face, S , around the whole superconductor and use Gauss 
law 

 3 32 = ( ) ( ).ij ij ij
L R

I d r d rj r j r  (15) 

From the explicit form of the Hamiltonian (6) we derive 
the relation 

 
�†2 �† 2

�† �†

( ) = [ ] [ ]
2

( ) [ , ] .

ij i j ji

i j z j z ji i

ei
m

e E E

j
 

(16)
 

The last term in this equation can be rewritten as 

 [ , ] = 4 sign( ) .z i x  (17) 

The current operator then becomes 

1= 2 ( , ) ( )( ,sign ( ) ) .
4ij i j j i i z jI ie i E E x

 

 
 (18) 
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By differentiating the eigenvalue equation, =i i iE , 
with respect to  one obtains the following identities: 

 
( , ) = ,

.
( , ) = ( )( , ), .

i i i

i j j i i j

i i E

i E E i i j
 (19) 

From these one sees that the current matrix elements are 
given by equations 

 
= 2 ,

= 2 ( ) ,
ii i

ij i j ij

I e E

I ei E E
 (20) 

or 

 = 2 [ , ] .i
ij ij ij

E
I e i E  (21) 

Thus we conclude that the matrix elements ij  are related 
to the off-diagonal matrix elements of the Josephson cur-
rent operator. 

Towards the end of this section we present a many body 
Hamiltonian of the junction in the instantaneous eigen ba-
sis. To this end we define the conjugate momentum n  
corresponding to , 

 
2= = ,

4
ij i j

ij

L Cn a a
e

 (22) 

and perform a Legendre transformation of the Lagrangian 
in Eq. (9), then we promote the variables, ,i ia a , and ,n  
to operators by imposing standard (anti-) commutation 
relations to get, 

 
2

2
�† �†(2 ) �ˆ �ˆ �ˆ �ˆ �ˆ= ( ) ( ) ( ) .

2q ij j e i ii i
ij i

e n a a U E a a
C

 

 

 (23) 

3. Equation of motion 

Now we perform integration over the fermionic va-
riables using the instantaneous eigen basis, 

 
1[ ] Sp ln( ) [ ]0 eff= e = e .iS iG iSZ  (24) 

Defining in a standard manner four Green's function com-
ponents, depending on wether the time arguments are de-
fined on the forward ( =a ) or backward ( =a ) part of 
the contour, 

 ( , ) = ( , ), , ,ab a bG t t G t t t t  (25) 

we write Eq. (10) on the form 

 �ˆ�ˆ ( , ) ( , ) = ( ).a a ab ab
ta i H G t t t t  (26) 

Introducing a single particle density matrix through the 
relation 

 1�ˆ �ˆ( ) = ( , ),
2

aa

a
f t G t t

i
 (27) 

we get from Eq. (26) the Liouville equation 

 �ˆ �ˆ�ˆ �ˆ �ˆ= [ , ], = .if H f H E A  (28) 

A semiclassical dynamical equation for the supercon-
ducting phase is given by the least action principle formu-
lated in terms of the Wigner variables, = / 2a a , 
and has the form [26] 

 eff

=0

[ , ]
= 0.

S
 (29) 

To calculate the functional derivative of the fermionic part, 
we perform a rotation to a single particle basis, in which 
the dependence on the time derivative of the phase is elim-
inated from the Hamiltonian. This is achieved by using a 
unitary matrix �ˆ ( )U  satisfying the equation �ˆ�ˆ �ˆ= .i U U  
Computing the derivative and rotating back to the original 
basis we find 

 
1

=0

Sp ln [ ] �ˆ�ˆ �ˆ= Tr ( ( ) ) ,
2 2J J

iG i iI f I
e e

 (30) 

where �ˆ ( )JI  is the Josephson current operator defined in 
Eq. (21). Then introducing external current, = 2 ,e eI e U  
we write equation of motion on the form 

 �ˆ�ˆ�ˆ �ˆ �ˆ �ˆTr( ) = , = 2 [ , ] .
2 J e J
C I f I I e E i E
e

 (31) 

Equations (28) and (31) together constitute a central tech-
nical result of this paper. 

4. Adiabatic limit 

In general, in order to solve the coupled equations for 
the phase (31) and the density matrix (28), one needs to 
calculate the static quasiparticle energy spectrum, and ma-
trix elements of the interlevel transitions. This is a rather 
difficult task since the latter quantities are complicated 
functions of the phase. However, if the quasiparticle spec-
trum has a gap, and the frequency of the plasma oscillation 
is small compared to this gap, in other words, if the qua-
siparticle dynamics is fast on the time scale of the phase 
variation, one can apply an adiabatic approximation to find 
the solution. 

A formal condition for the adiabatic expansion is 
ij i jE E . In the main approximation, the Hamilto-

nian in Eq. (28) reads �ˆ �ˆ=H E , and the initial equilibrium 
density matrix 0�ˆ �ˆ(0) = ( (0))f f E  defines the solution that 
remains constant during the phase evolution, 0�ˆ �ˆ( ) =f t f . 
This implies that the trace in Eq. (31) will only contain the 
diagonal part of the current operator, and the Josephson 
current reduces to the adiabatic form, 
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ad 0

0

�ˆ�ˆ( ) = 2 Tr ( ) = 2 ,

�ˆ�ˆ( ) = Tr ( ( ) ).

J J

J

I e Ef e U

U E f
 (32) 

This equation provides a generalization of the tunnel junc-
tion equation (1) to the junctions with nonsinusoidal cur-
rent-phase dependence. 

To find the first nonadiabatic correction, it is conve-
nient to expand electronic part in effective action, Eq. (24), 

 1 ad 1 ad1Sp ln ( ) = Spln ( ( ) ) Sp ( ) ,n

n
iG i G G

n
 

 

 (33) 

where ad 1( ) = ( ( ))ij t iG i E . The first, adiabatic term 
is given by equation 

 ad 1Sp ln ( [ ] ) = ( ),Ji G i dtU  (34) 

consistent with Eq. (32). To see this, we formally introduce 
ad ad= ( )G G , and rewrite the adiabatic term as [32] 

 
1

ad 1 ad 1Sp ln [ ] = Sp ln ( )di G d i G
d

 

 

1
ad( )

[ ] ( , ).i
ii

E
dt d G t t  (35) 

Since ad 0[ ] ( , ) =ii iG t t if  does not change with time by vir-
tue of the earlier presented argument, we find 

ad 1 0�ˆ ( ) �ˆSp ln [ ] = Tr = .J
Ei G i dt d f i dt U

  (36) 

The first order nonadiabatic term in the series, Eq. (33) , 
cancels since ad�ˆG  is diagonal while �ˆ  is purely off-
diagonal, which implies that the trace of their product is 
zero. Keeping then only the second order correction we 
find 
 1Sp ln ( ) = ( )JiG i dt U   

 ad ad1 ( ) ( , ) ' ( ) ( , ).
2 ij jj ji iidt dt G t t G t t  (37) 

When the occupied and unoccupied states are separated by 
a large gap, the product 

( )
ad ad( , ) ( , ) e , = ,

t

t
i dt ij

jj ii ij i jG t t G t t E E  (38) 

oscillates rapidly on the scale of variations of the phase, 
and we can treat this object in the local approximation. 
This gives us 

 1 2
2
( )Sp ln ( ) = ( ) ,

8
J

CiG i dt U
e

 (39) 

where 

 
2

2 | ( ) | (1 )
( ) = 2

( )
ij i j

ijij

f f
C e  (40) 

represents a phase dependent correction to the junction 
capacitance. 

Let us explicitly evaluate the contribution to Eq. (40) of 
the Andreev bound states in a tunnel junction. In tunnel 
junctions, Andreev energy levels are located very close 
to the gap edges [37] having the level spacing, 

2= 2 1 ( / 2) 2sinD . The transitions connect 
only Andreev states of the same conducting mode with 
transition matrix elements [38] 

 | sin / 2 |= sin .
2 4 2

i Di RD  (41) 

Computing the correction to the capacitance using these 
expressions we find the phase dependent correction in the 
zero temperature limit to be 2( / 32 )cosC De  per 
conducting mode. This is consistent with the result of the 
tunnel model calculation in Refs. 25, 30. 

5. Nonadiabatic dynamics 

5.1. Linear response 

The nonadiabatic dynamics essentially results from the 
resonant response of low-energy quasiparticles to the phase 
variation. In this section we consider the linear quasipar-
ticle response and compute the nonadiabatic correction to 
the frequency of Josephson plasma oscillation. 

Consider small deviations from an equilibrium configu-
ration, 0=  and 0�ˆ �ˆ=f f  determined by the equation, 

ad 0
0 0 0

�ˆ�ˆ( ) = Tr( ( ) ) = ( )J eI I f I . Straightforward lineari-
zation of Eqs. (28) and (31) with respect to small devia-
tions of the phase, 0( )t , and the density matrix, 

0�ˆ �ˆ( )f t f , leads to the dispersion equation for the plasma 
oscillation 

 2 2
0 ( ) = 0,p  (42) 

where 

 
ad

2 0( )2= J
p

Ie
C

 (43) 

is the adiabatic plasma frequency, and 0 ( )  denotes the 
linear response of the quasiparticles 

 
2 0 02

0
| | ( )4( ) = .

( 0)
ij ij i j

ijij

f fe
C i

 (44) 

The linear response of quasiparticle is a relevant approxi-
mation at small phase oscillation when the quasiparticles 
have a continuous energy spectrum and the transferred 
energy is dispersed across a large phase space volume re-
sulting in weak nonequilibrium. As such the dispersion 
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equation (42) can be applied, for example, to the low-
energy itinerant states in the nodal regions of high-Tc su-
perconductors, or to broadened Andreev bound states in 
disordered junctions. However, the linear approximation 
does not apply to spectroscopically narrow Andreev bound 
states, whose response is essentially nonlinear even at 
small phase amplitude. 

5.2. Resonant interaction with Andreev levels 

Now we consider the nonlinear dynamics of the phase 
driven by small oscillating current ( ) = cose eI t I t , at a 
frequency not far from the resonant frequency, 

= 1p , in the presence of resonant interaction 
with weakly broadened low-energy Andreev levels. Such 
levels may exist in transparent electronic conducting mod-
es close to 0 = , in electronic modes with resonant 
transmissivity, or in surface modes of d-wave supercon-
ductors. The exact nature of these states does not play any 
role for our analysis. The important properties are: (i) the 
phase variations do not change the electronic momentum 
hence do not induce quasiparticle transitions among the 
conducting modes, (ii) therefore transitions only occur 
between pairs of Andreev states within the same conduct-
ing mode, (iii) the Andreev levels are well separated from 
the continuum states of the mode. Under these assump-
tions, the Hamiltonian in Eq. (28) truncated to the Andreev 
level subspace consists of a sum of independent two-level 
Hamiltonians, and the density matrix factorizes to the 
product of two-level density matrices parameterized with 
the conduction mode number, �ˆ ( )f n . The nonadiabatic 
current then becomes 

ad 0 *( ) = 2 ( ) ( ) ,J J z z
n

I I e f f f f  (45) 

where 1 2= E E  is the level spacing between two An-
dreev states associated with a specific mode n  and 

12=i  is the corresponding transition matrix element 
(we skip index n  for brevity). Similarly 11 22=zf f f  
and *

12= = ( )f f f  are the corresponding elements of 
the two-level density matrix satisfying the Bloch�–Redfield 
equation 

 2

1 ,0

= ( ) 2 ,

= ( ),
z

z z z

f i f f

f f f f f
 (46) 

where we have added phenomenological decay rates 1  
and 2  originating, e.g., from some weak inelastic interac-
tion with the continuum states. 

To separate the fast and slow resonant dynamics, we 
parameterize the phase as 

 

1( ) = ( ( )e c.c.),
2

( ) = ( ( )e c.c.),
2

i t

i t

t t

t t
i

 (47) 

where the complex variable ( )( ) = ( )ei tt r t  depends on 
the amplitude of oscillations ( )r t  and the time dependent 
phase shift ( )t . Using a similar separation for the fast 
and slow parts of the off-diagonal elements of the density 
matrix 
 ( ) = ( )e ,i tf t f t  (48) 

we get, after expanding to first order in 0  and averag-
ing over fast variables (note 0 0= ( )  and 0 0= ( ) ) 

 
0 2 0

0 1 ,0

= ( ) ,

= ( c.c.) ( ).
2

z

z z z

f i i f i f

f i f f f
 (49) 

The regime relevant for our discussion corresponds to slow 
variation of the phase oscillation envelope, , on the 
time scale of the Andreev state relaxation. Then the An-
dreev state density matrix will adiabatically follow the 
evolution of the phase amplitude (in the rotating frame), 
and we restrict ourselves to the quasistationary solutions, 

, 0zf f , to find from the first equation in (49): 

 0

2 0
= .

( ) zf f
i

 (50) 

Inserting this expression into the current we find 

 

ad 00

2
0 0

2 0

= ( ) 2 ( )

| |
e c.c. .

( )

J J z z
n

i tz

I I e f f

f
i

 (51) 

Equation (51) illustrates the principal effect of the resonant 
interaction between the phase and the Andreev levels: the 
phase oscillation drives the Andreev levels to a nonequili-
brium state determined by the stationarity condition 

 
2

0 02 1
2 2 2

0 2 2 1

( )( / )
= .

( ) ( )( / )
z z z

r
f f f

r
 (52) 

Here 0( ) = | |r r  is the amplitude dependent Rabi fre-
quency of the Andreev two-level system associated with 
specific mode n . The first term inside the bracket in Eq. 
(51) produces a nonlinear modulation of the Josephson 
potential due the nonequilibrium population of the An-
dreev levels. The second term causes a nonlinear damping 
of the phase oscillation, similar to the imaginary part of the 
linear response, although it now depends on the nonequili-
brium population of the Andreev levels. 

For the levels close to the resonance, 0 , the di-
agonal elements are approximately given by 

 
2

0
2 2 ,

( )
z zf f

r
 (53) 

where 1 2= . Thus in the limit of ( )r , i.e., 
0/ | |r , we recover the linear response regime. In 
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the opposite limit, ( )r , i.e., 0/ | |r , the 
levels become saturated, 0zf , and can no longer absorb 
energy from the phase oscillation, thus the damping de-
creases for large amplitude of phase oscillation. 

5.3. Nonlinear phase dynamics 

To see how the nonlinear quasiparticle response mani-
fests itself in the junction dynamics we write down the 
equation of motion for the slowly varying amplitudes  
and introduce a nonlinear response function ( )r

( ) ( )r i r  defined through the relation 

 ad2 [ ( )] = ( , ) e c.c.i t
J J

e I I r
C

 (54) 

in terms of which the averaged equation for the envelope 
becomes 

 2 2 ( , ) = .p p p p e
ei r I
C

 (55) 

The stationary solutions to this equation, = 0 , connect 
resonant amplitude and detuning : 

 2 2 21 1= ( ) ( / ) ( ( )) .
2 2 e pr eI C r r

r
 (56) 

The two solutions correspond to the stable/unstable branches 
of the function ( )r  as illustrated on Fig. 1. The maximum 
response mr  is found where the two branches coincide, 
i.e., ( ) = /m m e pr r eI C . 

To make a quantitative analysis we write 
= ( )n d , where 0( ) = ( ( ))n n . If the den-

sity of states ( )  is a smooth function close to the reson-
ance the integration can be explicitly performed, giving 

 

2 2
0 0

0 2 21

0
2 2

( ) = ,
( )

( ) = ,
( )

r
r

r

r
r

 (57) 

where 0  is the imaginary part of the linear response (44) 

 
2

2 0
0 0

4= | | ( ) ( / 2),z
e f
C

 

and bars indicate the values of the functions at the reson-
ance. With this expression we find the maximum response 
amplitude 

 
1/22= 1 ( / ) ,m e er I I I  (58) 

where 

 
0 0

= =
2

pe e
e

p C

eI I
I

C I
 (59) 

is the dimensionless driving current, and 

 
0

= .
| |p

I  (60) 

This result shows that the response has an explosive insta-
bility manifested by a divergency of the oscillation ampli-
tude when the driving current amplitude reaches the criti-
cal value =eI I . We emphasize that this current is much 
smaller than the Josephson critical current, cI , which sets 
the scale for the nonlinear behavior of the adiabatic junc-
tions. This instability is easy to understand noticing that 
the damping produced by the Andreev states decreases 
with amplitude of oscillation, and, on the other hand, it is 
the damping value that limits the resonance response am-
plitude. To eliminate the divergency, one has to take into 
account other damping mechanisms, which are weaker 
than the linear damping by the Andreev states. 

If we turn off the external drive, = 0eI , we find from 
Eq. (55) the equation for the decay of the oscillation ampli-
tude, = ( ) / 2r r r . For 0> / | | pr , we find that the 
plasma oscillation decays linearly with time with the rate 

0 0( / | | ) = const,pr  until it enters the linear re-
gime 0< / | | pr , where the decay crosses over to an 
exponential time dependence, 0exp ( )r t . 

6. Langevin equation 

The classical equation of motion (31) is deterministic 
and thus does not include the fluctuations originating from 
the coupling of the phase to the quasiparticles. In this sec-
tion we shall outline how these effects can be taken into 
account. The method we adopt results in a quantum Lan-
gevin equation [26,28,39], although as we shall show, the 
stochastic force in this case generally has non-Gaussian 
properties. 

0

!
I
*

I
e

r

Fig. 1. Effect of resonant interaction with spectroscopically sharp
Andreev bound states on nonlinear response of the junction.
Phase oscillation amplitude as a function of detuning shown for
different amplitudes of driving current. 
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Expectation values of any function of phase, ( )F , is 
given by 

 1 1 1 red 1 1 1( ) = ( ) ( , , ),F t d F t  (61) 

where red 1 1 1( , , )t  is the reduced density matrix. Notic-
ing that the partition function (3) is given by the trace over 
the reduced density matrix, 1 red 1 1= ( , , )Z d t , we 
are able to write the diagonal elements in terms of the 
Wigner variables ,  on the form 

 
[ , ]

red 1 1 1
( )= ( )=01 1 1

( , , ) = e ,iS

t t
t  (62) 

where the limits on the functional integrals indicate that the 
endpoints, 1 1( ), ( )t t , of the trajectories are to be held 
fixed. 

To zeroth order in the saddle point approximation, 
[ , ] ( ) [ ,0] / ( )S dt t S t , only the classical path, 

( )c t , is realized and the density matrix is written: 

 

red 1 1

( )= ( )=01 1 1

( )=1 1

( , , )

[ ,0]exp ( )
( )

[ ,0]= ,
( )

t t

t

t

Si dt t
t

S
t

 

(63)

 

where [ ]  denotes a delta functional. Average quantities 
are then entirely determined by the classical path 

1 1( ) = ( ( ))cF t F t . 
To go beyond this deterministic description and include 

fluctuations we can expand the action around the saddle 
point, = 0 , to second order 

 
2[ ,0] 1 [ ,0][ , ] ( ) ( ) ( ).

( ) 2 ( ) ( )
S SS dt t dtdt t t

t t t

 

 

 (64) 

Here the kernel 

 
2

2
[ ,0] �ˆ �ˆ�ˆ �ˆTr ( , ) ( ) ( , ) ( ) =

( ) ( ) (2 )
ab ba

ab

S ii G t t I t G t t I t
t t e

 
 2

1 [ ]( , )
(2 )

I t t
e

 (65) 

is given by the symmetrized current-current correlation func-
tion, [ ]( , )I t t , which is a functional of  due to the 
dependence of �ˆ abG  and �ˆI  on ( )t . 

We decouple the quadratic term in  by introducing an 
auxiliary variable I  which shall later be interpreted as a 
stochastic current [39], 

 2
1 1exp ( ) [ ]( , ) ( )
2 (2 )

Idtdt t t t t
e

  

 

exp ( ) ( ) [ , ],
2
iI dtI t t P I
e

 (66) 

where [ , ]P I  denotes the functional distribution 

11[ , ] = [ ] exp ( ) [ ]( , ) ( ) ,
2 IP I dtdt I t t t I t (67) 

where 1 1/2[ ] = (det [ ])IS . The density matrix can 
then be written as 

 red 1 1 1
[ ,0]( , , ) ( ) [ , ].

( )
St I t P I

t
 

 

 (68) 

The delta functional selects a single trajectory, , for 
each realization of I  determined by the classical equation 

 [ ,0] = ( ) [ ] = ,
( ) 2

S CI t I I
t e

 (69) 

where, for the sake of convenience, we assumed an un-
biased junction. Equation (69) is a stochastic equation and 
averages are given by 

 1 1( ) = ( ( )) ,F t F t  (70) 

where = ( ) [ , ]I P I . In contrast to the con-
ventional theory of quantum Langevin equations the func-
tional distribution [ , ]P I  is in general non-Gaussian 
due to the dependence of the symmetrized current correla-
tion function on = [ ]I . This is a consequence of non-
equilibrium nature of the fermionic bath strongly coupled 
to the phase variable. 

The stochastic force becomes Gaussian under the linear 
response approximation. We consider small deviations 
from a classical equilibrium configuration, 0( ) =t  and 

0�ˆ ( ) =f t f , and get the equation 

 2 2
0

2( ) ( ) = ( ).p
e I

C
 (71) 

The functional distribution can be taken at the equilibrium 
value, 0[ , ]P , which then becomes Gaussian and the 
stochastic current, I , satisfies the typical relations for 
Gaussian noise: 

 0( ) = 0, ( ) ( ) = ( ),II t I t I t t t  (72) 

where 

 0 2 0 0( ) = coth | | ( ) ( )
2I ij i j ij

ij
I f f

T
  

 2 2 2 0 0= (2 ) coth | | ( ) ( )
2 ij i j ij

ij
e f f

T
 

 0= coth Im ( ).
2

C
T

 (73) 
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Thus the fluctuating current is related to the dissipative 
response by the quantum fluctuation dissipation theorem. 

7. Conclusions 

We have presented a general theory framework for de-
scribing nonadiabatic dynamics of Josephson junctions 
with low-energy quasiparticle states. The theory applies to 
a wide class of Josephson junctions including transparent 
mesoscopic contacts based on 2DEG, nanowires, quantum 
dots, and also junctions of unconventional superconduc-
tors. It was shown that in the classical limit the equation of 
motion for the phase must be solved together with a Liou-
ville equation for density matrix of low-energy fermionic 
states. Furthermore, we illustrated how the dynamics of 
such systems can differ significantly from the adiabatic 
(tunnel) junctions, by investigating the resonant dynamics 
of the phase and low-energy Andreev bound states. It was 
shown that nonlinear, two-state dynamics of the Andreev 
bound states, rather than an adiabatic Josephson energy, 
defines the nonlinear macroscopic dynamics of the junc-
tion. 

This work was supported by the Swedish Research 
Council (VR), and the European FP7-ICT Project MIDAS. 
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