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‡ Bilkent University Department of Electrical and Electronics Engineering Ankara, Turkey

Abstract—The problem of positioning of an unknown target
in cooperative active and passive wireless sensor network is
addressed. Two-way time of arrival and time difference of arrival
measurements in active and passive nodes are used to estimate the
position of the target. A maximum likelihood estimator (MLE)
can be employed to solve the problem. Due to nonlinear nature of
the cost function in the MLE, the iterative search might converge
to local minima resulting in large error of estimation. To avoid
the MLE drawback, we formulate the problem of positioning as
the intersection of some convex sets. To find the position estimate,
we apply projection onto convex sets approach which is robust
and can be implemented in a distributed manner. Simulations
are performed to compare the performance of the MLE and
new method.

I. INTRODUCTION

Nowadays wireless sensor network (WSN) has been vastly
considered for both civil and military applications. Accurate
positioning of node is one of the important task which has
great effect on the performance of every WSN [1]. Most
literatures assumed that there are some reference nodes, also
called anchor nodes, which can be used to estimate the
position of an unknown target [2], [3]. In general, there are
various positioning algorithms based on time of arrival (TOA),
time difference of arrival (TDOA), received signal strength
(RSS), and angle of arrival that can be used in different
applications [4].

Two-way TOA (TW-TOA) has been considered as an ef-
fective approach in literature [5] due to advantageous such as
no need to reference clock. In this approach, the reference
nodes send a signal to target, and wait for response from it.
The round trip delay between reference and target gives an
estimation of distance. It is evident that the more reference
nodes are used for TW-TOA ranging, the more accurately
the target position can be estimated. Since, in practice, there
are some limitations in increasing the number of reference
due to power constraints, the idea of cooperation between
reference nodes was proposed [5] to decrease the number of
transmission. In this method, some reference nodes, which
we call them primary reference nodes (PRNs), initiate range
estimation by sending a signal. The target replies to the
received signals by sending an acknowledgement. Suppose that
there are some other reference nodes which can listen to both
signals, henceforth we call them secondary reference nodes
(SRNs).

It has been shown that the SRNs can help the PRN to
estimate the target position more accurately. In fact, it is

possible to get the same performance with less the PRNs
when measurements from the SRNs are involved in positioning
process. In this model, the PRNs are active nodes and the
SRNs play the role of passive nodes. The model considered
here is based on cooperation between active and passive
reference nodes which is different from targets cooperation
in cooperative network.
In this paper, we assume that the SRNs are able to receive
signal from both target and the PRNs. Therefore the SNRs are
able to measure the TDOA between target signal and PRN’s
signal. In this case, a maximum likelihood estimator (MLE)
derived in [5] can be employed to improve positioning accu-
racy compared to non-cooperative approach. Due to nonlinear
nature of cost function in the MLE, the iterative search may
converge to local minima and then resulting in high error of
estimation. Using geometric interpretation, we formulate the
positioning problem as finding the intersection of some convex
sets resulted from the TW-TOA and TDOA measurements
in SRNs and PRNs. Successive orthogonal projection onto
discs and ellipsoid can be employed to solve the optimization
problem of cooperative positioning. The proposed algorithm
is robust and converges after a few iterations. The distributed
nature of algorithm allows it to be implemented in an iterative
approach.

This paper is organized as follows. Sec. II explains the
signal model considered in this paper. Positioning algorithms
are explained in Sec. III and simulation results are discussed
in Sec. IV. Finally Sec. V concludes the paper.

II. SIGNAL MODEL

We consider a 2D network (the generalization to 3D is
straightforward, but is not explored here). Let the sensor
network consists of N +M reference nodes located at known
position, zi = [xi, yi]

T ∈ R
2, i = 1, ..., N + M . Suppose N

PRNs are used to measure the TW-TOA between the PRNs and
unknown target, and suppose that M SRNs are able to listen
and measure signals transmitted by the PRNs and target. For
simplicity, we assume that the first N th sensors are primary
nodes and the other M sensors are secondary nodes.
Let us define C = {(i, j) : i = 1, ..., N, j = N +1, ..., N +M}
as the set of all pairs of active and passive sensors which
are connected. The TW-TOA measurement between reference
node i and the target, located at coordinates θ = [x, y]T ∈ R

2



can be written as [5]

t̂i =
ri(θ)

c
+

nT,i

2
− ni,T

2
, i = 1, ..., N, (1)

where ri(θ) = ‖zi − θ‖ is the distance between the ith PRN
and the point θ, ni,T is the TOA estimation error at the target
node for the signal being transmitted from the ith PRN, and
ni,T is the TOA estimation at the ith PRN for the signal being
transmitted from the target node. The estimation errors are
modeled as zeros mean Gaussian random variables with vari-
ances σ2

T,i and σ2
i,T , i.e., nT,i ∼ G(0, σ2

T,i), ni,T ∼ G(0, σ2
i,T ).

Lastly, c is the speed of light.
Suppose that the SRNs are able to measure the TOA for

received signal from the target and the PRNs. The TOA
estimate of ith PRN in jth SRN is

t̂i,j = Toi
+

ri,j

c
+ ni,j , (i, j) ∈ C, (2)

where ith PRN sends its signal at time reference Toi
which

is not known to the SRN and ni,j is modeled as Gaussian
random variable ni,j ∼ G(0, σ2

i,j). Suppose that the replied
signal from the target to this signal is also received in jth
SRN. The TOA estimation for this signal is

t̂Ti,j = Toi
+

ri(θ)

c
+

rj(θ)

c
+ ni,T + nT,j , (i, j) ∈ C. (3)

Having these two measurements in the SRN, i.e., 2 and
3, we are able to measure the TDOA between ith PRN and
the target which corresponds to distance from ith PRN to the
target plus distance from the target to the jth SRN.

III. POSITIONING ALGORITHMS

In this section, we propose an iterative algorithms to extract
position information based on measurements collected in the
PRNs and SRNs. To find some insight into the problem,
let us consider Fig.1 where one PRN starts the TW-TOA
measurement with the target. The PRN sends a signal to the
target, and the target replies to this signal. Here, we assume
that the turn-around time in the target is extremely small and
so we can neglect it. Suppose that two other nodes (SRN1
and SRN2) listen to both signals. Since the distance between
reference nodes is known, in the secondary node, it is possible
to estimate the time reference from (2), hence the SRNs are
able to estimate the overall distance from the PRN to the target
and the target to the SRN as follows

r̂T
i,j = c(t̂Ti,j − T̂oi

) =

ri(θ) + rj(θ) +
c

2
nj,T +

c

2
ni,T − cni,j , (i, j) ∈ C, (4)

where T̂oi
is an estimation of Toi

.
From (1), the distance estimate to target in the ith PRN is

r̂i = ct̂i = ri(θ) +
c

2
ni,T − c

2
nT,i, i = 1, ..., N. (5)

It is obvious that there are correlations between the TW-
TOA and the TDOA measurements in the PRNs and SRNs.

Considering collected measurements in both PRNs and SRNs,
the MLE can be obtained as [5]

θ̂ = argmin
θ

N
∑

i=1

{( 2

c2σ2
i

− 1

aic4σ4
i

)(r̂i − ri(θ))2

− 1

ai

(

M+N
∑

j=N+1

r̂T
i,j − ri(θ) − rj(θ)

4c2σ2
j

) − r̂i − ri(θ)

aic2σ2
i

N+M
∑

j=N+1

(r̂T
i,j − ri(θ) − rj(θ))

2c2σ2
j

+

N+M
∑

j=N+1

(r̂T
i,j − ri(θ) − rj(θ))2

2c2σ2
j

},

(6)

where

ai =
1

2c2σ2
T

+
1

2c2σ2
i

+

M+N
∑

j=N+1

1

4c2σ2
j

. (7)

Due to nonlinear nature of the cost function (6), when using
iterative search, it may converge to local minim resulting in
large estimation error. In the sequel, using geometric inter-
pretation, we propose an iterative method to estimate target
position. Suppose there is no noise in the TOA estimation,
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Fig. 1: Primary node initiates transmitting signal to the target
and the target replies to the received signal. Both signals are
received in the secondary nodes

based on the TW-TOA measurement, it is obvious that the
target can be found on a circle with distance ri centered around
zi. On the other hand, TDOA measurement in the SRN defines
an ellipse with foci zi and zj . In absence of noise, target can
be found in the intersection of some circles and some ellipses.
Let us define disc and elliptic set as follows.
For the ith PRN, consider the disc

Di = {θ ∈ R
2 : ri(θ) ≤ r̂i}, (8)

and for ith SRN and jth PRN, consider elliptic set Ek as
follows

Ek = {θ ∈ R
2 : ri(θ) + rj(θ) ≤ r̂T

i,j}. (9)

Now, the target can be found in the intersection of sets Di, i =
1, ..., N and Ek, k = 1, ..., NM ,

θ̂ ∈ J =

N(1+M)
⋂

i=1

Ji, (10)

where Ji = Di for i <= N and Ji = Ei if i > N . For the case
of empty intersection, which can occur due to measurement



noise, the estimator finds a point that minimizes the sum of
distance to the sets Ji, i = 1, ..., N(1 + M), i.e.,

θ̂ = arg min
θ

N(1+M)
∑

k=1

‖θ −PJk
(θ)‖2 (11)

where PJk
(θ) is the orthogonal projection of θ onto convex

set Jk.

Algorithm 1 CE-POCS

1: Initialization θ
0 is arbitrary

2: for k = 0 until convergence do
3: if θ

k ∈ Ik then
4: θ

k+1 ⇐= θ
k

5: else
6:
7: if k mode N(1 + M) ≤ N then
8: PIk

(θk) ⇐= θ−zi

‖θ−zk‖
r̂k

9: else
10: PIk

(θk) ⇐= [F−1
k [ [Fkθ]2×2

‖[Fkθ]2×2‖
1]T ]2×2

11: end if
12: θ

k+1 ⇐= (1 − λk)θk + λkPIk
(θk)

13: end if
14: end for

For a disc with radius r̂i, the projection function is simply
defined as follows

PJi
(θ) =

{

θ, if ri(θ) ≤ r̂i
θ−zi

‖θ−zi‖
r̂i, otherwise. (12)

For elliptic set, we need to project a point onto an ellipse.
Here we consider a geometric solution to the elliptic projection
problem. A general form of an ellipse can be expressed as

Ax2 + 2Bxy + Cy2 + 2Dx + 2Ey + F = 0. (13)

The coefficients of an ellipse can be obtained versus known
positions of reference nodes and distance estimate to the target.
Suppose there is no noise in the TOA measurements. From (4),
for primary node i and secondary node j we have

ri(θ) + rj(θ) = rT
i,j = ‖zi − θ‖+ ‖zj − θ‖. (14)

Moving one term of (14) to left and squaring both sides, we
have

‖zi − θ‖2 = rT
i,j

2 − 2rT
i,j‖zj − θ‖ + ‖zj − θ‖2. (15)

With some similar manipulations, we have

4rT
i,j

2
((x − xi)

2 + (y − yi)
2) =

a2x2 + b2y2 + c2 + 2acx + 2bcy + 2abxy, (16)

where a = 2(xi−xj), b = 2(yi−yj), and c = x2
j−x2

i +y2
j−y2

i .
Finally the general form of ellipse is

(a2 − 4rT
i,j

2
)x + 2abxy + (b2 − 4rT

i,j

2
)y2 + 2(ac + 4rT

i,j

2
xi)x

+ 2(bc + 4rT
i,j

2
yi)y + c2 − 4rT

i,j

2
(x2

i + y2
i ) = 0. (17)

Therefor the coefficients, A, B, C, D, E, and F can be com-
puted from (17). Equation (13) can be written in a matrix form
as

zT Mz = 0, (18)

where z = [x y 1]T and symmetric matrix M ∈ R
3 is defined

as follows

M =





A B D
B C E
D E F



 . (19)

Algorithm 2 CE-POCS

1: Initialization θ
0
p and θ

0
s are arbitrary

2: for For k = 0 until convergence do
3: for For l = 0 until a predefined number L do
4: if θ

l
p ∈ Dl then

5: θ
l+1
p ⇐= θp

l

6: else
7: PDl

(θl
p) ⇐= θp−zi

‖θl
p−zk‖

r̂l

8: θp
l+1 ⇐= (1 − λl)θp

l + λlPDl
(θp

l)
9: end if

10: end for
11: for For j = 0 until a predefined number J do
12: if θ

j
s ∈ Ej then

13: θ
j+1
s ⇐= θs

j

14: else
15: PEj

(θj
s) ⇐= [F−1

j [
[Fjθ

j
s]2×2

‖[Fjθ
j
s]2×2‖

1]T ]2×2

16: θs
j+1 ⇐= (1 − λj)θs

j + λjPEj
(θs

j)
17: end if
18: end for
19: θk =

(

θ
L+1
c + θ

J+1
s

)

/2

20: θ
0
p = θk and θ

0
s = θk

21: end for

To project a point to an ellipse, we first find a transform that
transforms the ellipse to a unit circle. We subject the point to
this transform, project onto the unit circle, and subject the
projected point to the inverse transform. A unit circle can be
expressed as

z̃T I−1z̃ = 0, (20)

where diagonal matrix I−1 is

I−1 =





1 0 0
0 1 0
0 0 −1



 . (21)

Now, we try to find a function which transforms the ellipse
(18) to a unit circle (20). This function first scales the ellipse
to a circle, then rotates it, and finally transforms it to origin,
i.e., F = TRS [6]. Matrixes T, R, S are defined as follows

S =





s1,1 0 0
0 s2,2 0
0 0 1



 =

[

S2×2 0
0T 1

]

, (22)



where 0 = [0, 0]T . The matrix R is given

R =





cosα − sinα 0
sin α cosα 0

0 0 1



 =

[

R2×2 0
0 1

]

, (23)

and

T =





1 0 xc

0 1 yc

0 0 1



 =

[

I2×2 zT
c

0 1

]

, (24)

where zc = [xc, yc]
T is the center of the ellipse. Now the

relation between ellipse and unite circle can be expressed as
Z = F Z̃. To find the matrixes T, R and S, we replace the
inverse transform of F in (20) and compare with (18) to yield

M = (TRS)−T I−1(TRS)−1, (25)

After some manipulations we get [6]

M =

[

R2×2S
−2
2×2R

T
2×2 −R2×2S

−2
2×2R

T
2×2zc

−zcR2×2S
−2
2×2R

T
2×2 zT

c R2×2S
−2
2×2R

T
2×2zc

]

.

(26)
To find transformed matrix, it is enough to find sub-matrixes
R2×2 and S−2

2×2. Since matrix M is symmetric, we can use the
singular value decomposition technique for upper left 2 × 2
matrix of M , i.e., M2×2,

M2×2 = UT
λU = R2×2S

−2
2×2R

T
2×2. (27)

It is clear that R2×2 = UT . To find scaling matrix, (25) can
be written based on scaling matrix as follows

S−T I−1S
−1 =







1
s2

1,1

0 0

0 1
s2

1,1

0

0 0 −1






= (TR)T M(TR).

(28)
Finally the projection of a point θ outside of an ellipse onto
the ellipse can be done as follows

1) Compute transform function F = (TRS)−1,
2) Transform point to the new coordinate where the ellipse

is transformed to the unite circle, i.e. θT = Fθ,
3) Find the projection of θT onto the unite circle, P(θT ) =

θT

‖θT‖ ,
4) In final step using inverse transform F−1 = TRS, the

projected point on the unit circle is transformed to a
point on the ellipse, i.e, P(θ) = F−1P(θT ).

Fig.2 shows how a point outside of an ellipse is projected
onto the ellipse. To find the position of the target, we employ
orthogonal projection onto circular and elliptical convex sets
(CE-POCS) sequentially. Algorithm 1 shows implementation
of the CE-POCS. We also suggest a different type of imple-
mentation of CE-POCS.
Since there are two different convex sets derived from different
measurements, circular and elliptical sets, one method of
implementing CE-POCS is applying POCS to circular and
elliptical sets individually, i.e., orthogonal projection onto
circular convex set (C-POCS) and orthogonal projection onto
elliptical set (E-POCS). The accuracy of estimation can be im-
proved by combining the two estimates, namely by computing
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Fig. 2: Projection of a point onto an ellipse

the average and using it as a new initial value. This procedure
is continued for a certain number of iterations. Algorithm 2
shows the modified version of CE-POCS.
In both algorithms {λk}∞k=0 are relaxation parameters. In the
simulation, the relaxation parameters are first set to one, and
after a given number k0 of iteration, decreases as

λk =

⌈

k − k0 + 1

N

⌉−1

(29)

where dxe denotes the smallest integer greater than or equal
to x.

IV. SIMULATION RESULTS

We consider a 100 × 100 square area. To set reasonable
values for variances, we consider Cramér-Rao lower bounds
(CRLB). For variance of the TOA estimation, suppose that
we are using a signal with 2MHz band width without pulse
shaping. The CRLB for the TOA estimation is given by [7]

√

var(r̂i) ≥
c

2
√

2π
√

SNRξ
, (30)

where SNR is the signal to noise ratio and ξ is effective
bandwidth which is defined as follows [8],

ξ =

[
∫ ∞

−∞ f2|S(f)|2df
∫ ∞

−∞ |S(f)|2df

]2

. (31)

For thermal noise, we assume N0 = 1−12W/Hz.
To compute the SNR, we consider the ensemble mean power
at the ith node, measured in dB, which can be modeled as [9]

Pi = P0 − 10β log10(
ri(θ)

d0
) + wPi

, (32)

where β is a path-loss factor and P0 is the received power in
dB at calibration distance d0. wPi

is a log-normal shadowing
term, i.e, wPj

∼ N (0, σ2
Pi). In simulation, we set following

values for different parameters in (32)

β = 2.5, P0 = −70dBm, d0 = 1m, σ2
Pi = σ2

P = 4dB2.

The cumulative density function (CDF) is considered to com-
pare the performance of different methods. The performance
of projection onto convex sets is compared with the MLE
estimator derived in [5]. We use the same network deployment
of [5] where four reference nodes are located at the corners of



the area. To see the performance of cooperative performance,
we consider two cases like [5]. In one case, three reference
nodes are considered as PRNs and the last one is considered
as SRN. In the second case, two non-consecutive nodes on
vertexes (on a diameter) of square area are considered as PRNs
and the two other nodes play the role of the SRNs. The target
is randomly placed inside of that area over a grid of 19× 19.
For algorithm 2, the procedure is repeated for five iterations.
To implement the MLE, Matlab’s gradient-based lsqnonlin
routine [10] is used.
Fig.3 shows the CDF for the MLE and POCS methods. It
is obvious that the MLE in cooperation mode shows good
performance compared to others. It converges a small per-
centage of cases to local minima resulting in large error
which is not much clear for this deployment, probably due to
regular network deployment, but in general it has problem of
converging to local minima. It is also seen that cooperation can
improve the performance of the CE-POCS for the large error.
For this network, we can see that the second type of algorithm
with five iterations improves CE-POCS such that it can be
compared to the MLE. One important observation is that the
gain obtained in the POCS approach due to cooperation is
much bigger than that one for the MLE. Fig.4 shows the
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Fig. 3: CDF of cooperative and non-cooperative MLE and
POCS for TW-TOA/TDOA measurements (a) N=3, M=0 , and
(b) N=3,M=1.

CDF for cooperative and noncooperative algorithms for second
case where network contains two PRNs and two SRNs. Again
it shows that cooperation improves the performance of both
MLE and POCS. For POCS the improved gain for large error
is grater than that for MLE. It also shows that algorithms
2 and 1 approximately give the same performance. In other
simulations, we observed that algorithm 1 never outperforms
algorithm 2.

V. CONCLUSION

In this paper, we considered the positioning problem in
cooperative active and passive sensor network. A maximum
likelihood estimator (MLE) can be derived based on mea-
surements in different nodes and the iterative search can be
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Fig. 4: CDF of cooperative and non-cooperative MLE and
POCS for TW-TOA/TDOA measurements (a) N=3, M=0 , and
(b) N=2,M=2.

employed to solve it. Due to non linear cost function of
the MLE, it needs a good initialization which increases the
complexity. Using geometric interpretation, we formulated the
positioning problem as the intersection of some convex sets.
In fact the positioning problem renders to a feasibility problem
which projection onto convex sets can be employed to solve
it. The proposed method is a robust technique and can be
implemented in a fully distributed manner. Simulation results
show a good performance for new method.

REFERENCES

[1] R. Huang and G. Zaruba, “Beacon deployment for sensor network
localization,” Proc. IEEE Wireless Communications and Networking
Conference, pp. 3188–3193, March 2007.

[2] A. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wireless
location: challenges faced in developing techniques for accurate wireless
location information,” IEEE Signal Processing Magazine, vol. 22, no. 4,
pp. 24–40, July 2005.

[3] C. Chang and A. Sahai, “Cramér-rao-type bounds for localization,”
EURASIP Jounal on Applied Signal Processing, vol. 2006, no. 1, pp.
166–166.

[4] M. Rydström, “Algorithms and models for positioning and scheduling
in wireless sensor networks,” Ph.D. dissertation, Chalmers University of
Technology, 2008.

[5] Z. Sahinoglu and S. Gezici, “Improved positioning via cooperation and
clock frequency offset mitigation,” Submitted to IEEE Transaction of
Communications, 2008.

[6] I. Ihrke, “Some notes on elipse,”
http://people.cs.ubc.ca/ ivoihrke/software/ellipse.pdf, 2004.

[7] S. Gezici, “A survey on wireless position estimation,” Wireless Personal
Communications (Special Issue on Towards Global and Seamless Per-
sonal Navigation), vol. 44, no. 3, pp. 263–282, Februray 2008.

[8] S. Gezici, Z. Tian, G. Giannakis, H. Kobayashi, A. Molisch, H. Poor,
and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at
positioning aspects for future sensor networks,” IEEE Signal Processing
Magazine, vol. 22, no. 4, pp. 70–84, July 2005.

[9] N. Patwari, J. ash, S. Kyperountas, A. Hero, and N. Correal, “Locating
the nodes: Cooperative localization in wireless sensor network,” IEEE
Signal Processing Magazine, vol. 22, no. 4, pp. 54–69, July 2005.

[10] The Mathworks Inc., “On-line,” http://www.mathworks.com, 2010.


	copyright_notice_ieee
	Cooperative_positioning.pdf

