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Abstract 

A molecular dyad consisting of a photochromic dihydroindolizine unit covalently linked to 

a porphyrin performs, when illuminated through a third-harmonic-generating crystal, the 

functions of both an AND and a NAND Boolean logic gate with shared all-optical inputs. 

The NAND gate is of particular interest as it is a so-called universal gate, and hence all 

other digital systems can be implemented by combinations of NAND gates. The functions 

of the AND and the NAND gates rely on changes in absorption and emission of the dyad 

in the visible spectral region upon isomerization of the photochromic unit. The change in 

absorption which forms the basis for the AND gate function is ascribed to the 

colorization/decolorization of the photochrome itself in response to the optical inputs. The 

variation in emission intensity which constitutes the NAND gate function is a result of the 

changes in redox properties of the photochrome that follow upon isomerization, such that 

only one of the two isomers is competent to quench the porphyrin emission by electron 

transfer.  
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1. Introduction 

Lately, it has been realized that organic molecules can be used as switching elements in 

Boolean logic constructs.[1-7] Replacing today’s silicon-based semiconductor materials 

with molecular switches would have an enormous impact on information processing and 

transmission. Typically, the function of the molecular logic constructs reported in the 

literature relies on the switching of an optically detectable property of the molecule, e.g., 

changes in absorption or emission.[8-34] In most cases, at least one of the inputs of the 

logic construct requires physical addition of a chemical species. The material transfer and 

the diffusion needed for the switching of these constructs impose limitations on the media 

(fluid solution required) as well as the operational speed, and multiple operation leads to a 

buildup of byproducts. Molecule-based logic elements with optical inputs and outputs do 

not require access for chemicals or wires and can in principle operate on a much faster time 

scale and in rigid or semi-rigid media. Furthermore, using light allows one in principle to 

use 3-dimensional arrays of volume elements containing the molecules. These can be 

addressed independently by optical means, using the spatial resolution achieved by 

focusing the light, two-photon effects, etc., affording higher device densities. Several 

different kinds of molecular systems, each sensitive to different wavelengths of light, may 

also be contained within the same diffraction-limited spot. This would increase the device 

densities even further.  

Our main approach to molecule-based logic has been to use photo-

isomerizable photochromic molecules to constitute the heart of the logic constructs.[35] In 

addition to a number of simple switches based on photocromic molecules covalently linked 

to a porphyrin,[36-39] we have shown proof of principle for several Boolean logic 

gates,[40-42] a double-throw switch,[43] a 2-1 multiplexer,[44] a 1-2 demultiplexer,[45] 

two half adders,[46-47] an encoder/decoder,[48] and a keypad lock,[49] all operated using 
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light or heat (which can be supplied by an IR laser) as input and output signals. Here, we 

report that when illuminated through a third-harmonic-generating crystal, a photochromic 

dyad (1, Scheme 1), consisting of a porphyrin P covalently linked to a dihydroindolizine 

photochrome DHI, simultaneously performs the functions of both an AND gate and a 

NAND gate, operated with light as inputs and outputs.  

The NAND gate, together with the NOR gate, is a so-called universal gate, as 

any digital system can be implemented by combinations of NAND gates.[50] Therefore, 

NAND gates typically form the basis of all other logic hardware. Following the first 

reports on molecular AND[51] and NAND[52] gates, the same functions have been 

realized by many other groups. In the vast majority of these cases, chemical inputs have 

been used. The approach used in this work is to make P-DHI dyad 1 perform the desired 

functions via photoisomerization of the appended DHI photochrome between its two states.  

The isomerization process induces changes in both the absorption spectrum and the 

reduction potential of the switching element. In the open, betaine form DHIo of the dyad 

1b, the photochrome displays strong absorption in the visible region. Excitation of the 

porphyrin is followed by efficient electron transfer to yield P
•+

-DHIo
•-

, and the 

fluorescence from P is strongly quenched. Visible irradiation of 1b converts DHIo to the 

closed, spirocyclic form DHIc, yielding dyad 1a which absorbs almost exclusively in the 

UV region. Here, the reduction potential of DHIc is much more negative than that of the 

open isomer and the energy of the charge separated state increases substantially. Excitation 

of the porphyrin unit does not lead to any quenching by electron transfer, and the typical 

emission from P is observed. As discussed below, the observed changes in absorption and 

emission intensity in the visible region upon switching the state of the DHI photochrome 

form the basis for the functions of the AND and the NAND gate, respectively.  
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2. Experimental Section 

The synthesis and characterization of dyad 1 have been reported.[39] The spectroscopic 

solvent was distilled 2-methyltetrahydrofuran. The samples were degassed by 6 freeze-

pump-thaw cycles to a final pressure of ~10
-5

 Torr.  

The absorbance measurements were performed using a CARY 4B UV/Vis 

spectrometer. For the emission measurements, a SPEX Fluorolog τ2 was used. The red 

light used in the reset operation was generated by a 1000 W Xe/Hg-lamp operating at 450 

W. The Xe/Hg-lamp light was filtered by two hot mirrors (each having A = 1.8 at 900 nm) 

to reduce the IR intensity, and a long pass filter (>590 nm) to remove light of shorter 

wavelengths. The resulting light power density on the sample was ~ 40 mW/cm
2
. The laser 

used to generate the input signals was a Nd:YAG laser (Continuum Surelight II-10, 6 ns 

fwhm). 

The schematic diagram in Figure 3 shows all excitation and readout apparatus 

present in one location. Although such an experimental setup could be assembled in 

principle, separate instruments already on hand were employed for experimental 

convenience, as described below.  

Outputs X and Y. The readout of output X from dyad 1, i.e., absorbance at 572 nm, 

was measured with the absorbance spectrometer described above. The readout of output Y, 

i.e., the fluorescence intensity at 722 nm, was measured with 590-nm excitation using the 

spectrofluorimeter described above.  

Inputs A and B. For the results shown in Figures 4-6 and described in the text, only one 

laser was used to provide both inputs A and B, for reasons of experimental convenience. 

The schematic diagram in Figure 3 shows two separate lasers to facilitate the description, 

and in fact the device could be operated in this configuration. The cuvette containing a 

solution of dyad 1 (~0.5 × 10
-5

 M) was irradiated with the Nd:YAG laser described above 
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through SHG and then THG crystals. The wavelength selection was achieved by rotating 

the crystals into and out of the resonance angle. As a result, the state with input A only on 

was generated by passing the first harmonic of the laser (1064 nm) through the two 

nonlinear crystals with the SHG crystal tuned off-resonance and the THG crystal tuned in-

resonance. The state with input B only on was generated by tuning the SHG crystal in-

resonance (532 nm) and the THG crystal off-resonance. When both crystals were in-

resonance, 355 nm UV light was generated by the THG crystal. In this configuration, the 

crystals could not be set completely to 0% harmonic generation. To maximize the degree 

of discrimination among the isomer populations, a 532 nm dichroic mirror was used to 

better eliminate the UV light from the 532-nm light (input B on), and to eliminate the 532-

nm light from the IR light (input A on). No filter was used when both inputs were on, i.e., 

when both the SHG and the THG were tuned in-resonance to generate UV light. Had two 

lasers been available, the use of mirror and crystal tuning could have been avoided. The 

irradiation powers and times employed were:  1064 nm (300 mW average power at 10 Hz 

for 35 s), 532 nm (16 mW average power at 10 Hz for 35 s), and 355 nm (11 mW average 

power at 10 Hz for 35 s). 

 

3. Results and Discussion 

First, to interpret and understand the results for P-DHI dyad 1, the previously reported 

photochemical and photophysical properties will be briefly reviewed. For a more detailed 

description, please see reference 39. Then, the AND gate and the NAND gate functions 

will be presented. Finally, the long term performance of the P-DHI dyad is investigated in 

terms of its stability toward photobleaching upon repeated photocycling.  
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3.1 Photochemical Properties of Dyad 1 and Monomer 2. Dyad 1 consists of a 

photochromic dihydroindolizine unit covalently linked to a porphyrin. The DHI 

photochrome is the switching unit of the dyad, and can exist in two different forms. The 

photoinduced and thermal interconversions between the closed, spirocyclic forms 1a and 

2a and the open betaine forms 1b and 2b are shown in Scheme 1. Figure 1 shows the 

absorption spectra of dyad 1 and model monomer 2 in the different forms together with the 

emission spectra of the porphyrin unit in dyad 1. The inset shows the absorption spectra of 

model compound 2a. This compound absorbs almost exclusively in the UV region, with 

absorption maxima at 334 and 403 nm. Exposing 2a to UV light converts it to the open, 

betaine form 2b. This compound displays strong absorption in the visible region with 

bands at 340, 395, and 529 nm. Reversion of 2b to 2a results from exposure to visible light 

or heat. Figure 1 also shows the absorption of dyad 1a. Maxima are observed at 419, 483, 

515, 550, 593, and 650 nm, where the absorption in the visible region is ascribed to the 

porphyrin unit of the dyad. UV light exposure isomerizes the dyad to the open form 1b. 

The resulting changes in the absorption spectrum are most pronounced between 450 nm 

and 650 nm, where the absorption is significantly increased due to isomerization of the 

DHI photochrome from the closed to the open form. Isomer 1b reverts slowly thermally to 

1a (τ =182 min. at 20 °C) or faster with visible light. 

The isomerization process also causes significant changes in the first 

reduction potential of the DHI photochrome. In the closed form 2a, the reduction potential 

is -1.18 V vs. SCE. For 2b, the corresponding value is -0.70 V. Hence, 2b is easier to 

reduce by almost 0.5 V. The emission spectra from the porphyrin unit of dyads 1a and 1b 

are also shown in Figure 1. In 1a, the porphyrin emission displays the typical unperturbed 

bands at 655 nm and 722 nm. Isomerization to 1b results in strong quenching of the 

emission intensity. The quenching is attributed to photoinduced electron transfer to form 
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P
•+

-DHIo
•-

. The energy of this state is estimated to be 1.68 eV, based on the first reduction 

potential of 2b and the first oxidation potential of the porphyrin (0.98 V vs. SCE). As the 

energy of the lowest excited singlet state of the porphyrin is 1.90 eV, there is a driving 

force of 0.22 eV for the electron transfer reaction. Energy transfer as the origin of the 

quenching can be excluded, as such a reaction would be endergonic by ≥ 0.2 eV.[39] 

Quenching of the porphyrin emission in 1a by electron transfer would also be endergonic 

by 0.26 eV due to the much lower reduction potential of 2a compared to 2b.  

Time resolved emission studies using the single photon counting technique 

(SPC) also confirm the efficient quenching of the porphyrin emission in 1b compared to 

1a. Excitation of a sample of 1a at 590 nm yields a lifetime for 
1
P-DHIc of 11.5 ns, which 

is the typical, unquenched lifetime of a model porphyrin under the conditions used. In 1b, 

however, the major decay component has a lifetime of 49 ps, and represents the lifetime of 

the quenched porphyrin. The dominating deactivation pathways for 
1
P-DHI in the closed 

1a and the open 1b forms are summarized in Figure 2.  

Comparing the results from the steady-state emission measurements with the 

results from the SPC measurements, it is seen that the decrease in emission intensity upon 

isomerization (ca. 83% quenching efficiency) is smaller than the expected quenching 

judged by the decrease in lifetime (99.6% quenching efficiency). This is due to the fact that 

the photostationary distribution after UV exposure at 355 nm is ca. 85/15 1b/1a. Hence, 

the major part of the residual emission from the porphyrin after UV exposure is due to 

unquenched emission from 1a.  

These data demonstrate that light can be used to control both the absorption 

and the emission intensity of dyad 1 in the visible region. The absorption increases when 

the sample is exposed to UV light, but decreases when the sample is exposed to visible 

light or heat. The emission intensity, however, follows the opposite trend; it increases upon 
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exposure to visible light or heat, but decreases upon exposure to UV light. As discussed 

below, these observations form the basis of the AND gate and the NAND gate, 

respectively. 

 

3.2 AND Gate Function. The truth table for an AND gate is shown in Table 1. The gate 

has two inputs, A and B, and one output, X. The inputs may be either on (designated 1) or 

off (0). The AND gate generates an on response only when both inputs are on. Figure 3 

shows a schematic sketch of how to implement an AND gate based on dyad 1 and a third-

harmonic-generating crystal, THG (for convenience, only a single light source was used to 

provide the two inputs in our experiments, as described in the experimental section). Inputs 

A and B are defined as 35 s exposure by the first (1064 nm, 10 Hz, 6 ns fwhm, ∼300 mW 

average power) and the second (532 nm, 10 Hz, 6 ns fwhm, ∼16 mW average power) 

harmonics of the Nd:YAG laser, respectively. The output is represented by strong 

absorption of mainly DHIo in 1b at 572 nm. In the initial state (after reset), dyad 1 is 

converted to a photostationary distribution containing mainly the thermally stable 1a state, 

P-DHIc. The dyad is set to this state by exposure to red light (∼40 mW/cm
2
, 590 nm < λ < 

900 nm) for 2 h. Here, the DHI photochrome is in the closed form, with virtually no 

absorption at 572 nm. Hence, with neither input on, the gate output (strong absorption at 

572 nm) is off. If input A is applied, no isomerization of P-DHIc to P-DHIo occurs as the 

dyad is already in the thermally stable form. Hence, the absorbance at 572 nm is still below 

the threshold level and the gate output remains off. Similarly, if input B is applied, only a 

small portion of the sample is isomerized to the P-DHIo form 1b. With a proper choice of 

threshold level, the gate output will still be off. Finally, applying both inputs generates 355 

nm (∼11 mW average power) UV light via the THG. This UV light isomerizes DHIc to 

DHIo and the dyad is switched from 1a to 1b. The absorption of P-DHIo at 572 nm 
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increases above the threshold level and the gate output X is switched on. Thus, the 

molecule meets the criteria for an AND gate, i.e., both inputs must be on to switch the 

output on. The actual results from an experiment (absorption of dyad 1 at 572 nm as a 

function of the different input combinations) are shown in Figure 4. Before each input 

combination was applied, the sample was reset to the initial 1a state by exposure with red 

light according to above. Please observe that DHIo is not the only absorber at 572 nm. The 

porphyrin unit displays Q-band absorption in the region between 475 and 675 nm. Hence, 

the lowest possible absorbance at 572 nm is determined by the Q-band absorption, 

imposing some limitations on the dynamic range, i.e., the difference between on and off in 

the output signal amplitude. It is clear, however, that the dynamic range of the AND gate 

in Figure 4 is more than sufficient to distinguish between an on and an off value. Another 

important parameter that determines the ability of the gate to distinguish output on from 

output off is the associated signal-to-noise of the output signal. Figure 6a presents the crude 

output signals measured in a similar cycling experiment, and it is evident that the signals 

are virtually noise free. 

 

3.3 NAND Gate Function. The truth table for a NAND gate is shown in Table 2. Similar 

to the AND gate, the NAND gate also has two inputs, A and B, and one output, here 

referred to as Y. The NAND gate can be considered as an AND gate followed by an 

inverter, i.e., the output of a NAND gate is opposite to the output of an AND gate. 

Consequently, the NAND gate generates an off response only when both inputs are on. For 

all other input combinations, the gate output is on. Figure 3 can be used to illustrate also 

the function of the NAND gate, as both the AND gate and the NAND gate functions are 

being described by dyad 1 using the same initial state and the same inputs. Accordingly, 

inputs A and B are 35 s exposure by 1064 nm IR light and 532 nm green light, 
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respectively. Hence, no reconfiguration of the initial state or the input signals is needed for 

dyad 1 itself to function as two individual logic gates. The output of the NAND gate is 

strong emission of the porphyrin at 722 nm after excitation at 590 nm. In the initial P-DHIc 

state 1a, the DHI unit is in the closed spirocyclic form with relatively low reduction 

potential. There is no quenching of the porphyrin emission by electron transfer, and the 

resulting emission intensity is high. Hence, with neither input on, the emission intensity is 

above the threshold level and the gate output is on. Applying input A, the IR light will 

cause no net isomerization to 1b, the DHI unit is still in the closed form and no electron 

transfer occurs. The emission intensity is high and the gate output is on. Input B will again 

cause only a small portion of dyad 1 to isomerize to the P-DHIo 1b form. The emission 

intensity is still above the threshold level and the gate output remains on. With both inputs 

A and B on, the resulting 355 nm UV light generated by the THG will isomerize the 

sample to the open P-DHIo form 1b. Here, the reduction potential of DHIo is high enough 

for electron transfer from the porphyrin to occur. The emission of the porphyrin is 

quenched below the threshold level, and the gate output switches off. Thus, the 

requirements for a NAND gate are met. The experimental results (emission intensity of the 

porphyrin unit at 722 nm as a function of the different input combinations) are shown in 

Figure 5. Before applying each input combination, the sample was reset to the initial 1a 

state using red light. The dynamic range for NAND gate operation is virtually identical to 

that for the AND gate, i.e., output on is easily distinguished from output off. The associated 

signal-to-noise of the output signal is presented in Figure 6b.   

 

3.4 Photocycling and Photostability. 

From the experimental results described above, it is obvious that the changes in color and 

reduction potential of the photochromic unit of 1 make the dyad mimic the functions of 
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both an AND and a NAND gate, respectively. Although the primary objective of this work 

has been to show proof of principles rather than producing a practical device, it is still of 

interest to investigate the fatigue resistance of dyad 1 upon repeated photocycling. It is 

known that photochromes of the DHI family photo-decompose rapidly in the presence of 

oxygen.[53] Therefore, the samples were rigorously degassed prior to all experiments by 

six freeze-pump-thaw cycles to a final pressure of ca. 10
-5

 Torr. The operation of the gate 

through three cycles is illustrated in Figures 6a (AND gate mode, absorbance) and 6b 

(NAND gate mode, emission). The actual signal-to-noise obtained is evident from these 

data. It is clear that the signals are essentially noise free. Following each measurement, 

dyad 1 was reset to the initial P-DHIc state using red light and another set of measurements 

were taken prior to applying the next input combination. Judging from the signal-to-noise 

ratio and the dynamic range retained after three cycles, it is obvious that the sample can go 

through several more cycles before it is no longer possible to distinguish between an off 

and an on value of the output signal. This is true for both AND and NAND gate operation. 

It should be noted that the 35 s irradiation doses were selected to yield signals with ample 

signal-to-noise ratio and minimal sample degradation due to side reactions. They do not 

achieve the photostationary states of the photochromic DHI moiety and hence, some of 

each species (DHIc and DHIo) is present in each state of the logic gates. This is another 

reason for the residual responses of the two gates in the data shown in Figures 4-6 when 

the gates are in the off state. By choosing suitable threshold values, however, an on 

response is easily distinguished from an off response. 

 

4. Conclusions 

When illuminated through a third-harmonic-generating crystal, dyad 1 is capable of 

performing the functions of both an AND and a NAND Boolean logic gate operated by 
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optical inputs and outputs. The dyad performs the AND and the NAND logic operations in 

parallel, i.e., no reconfiguration of dyad 1 is needed. The output signals of both gates are 

essentially noise free and based on easily detectable phenomena (absorption and emission) 

which in principle allows for detection by two separate photodiodes and a light source. The 

input signals are pulsed laser light at 1064 and 532 nm so that the total irradiation time 

(with 6 ns pulses) in each input operation was on the order of 2 µs. After each input 

operation, the gates remember their states for hours and may then be reset to the initial 

state after readout. Hence, the dyad functions as a storage element of the information 

contained in the transiently applied input combinations. The dyad is stable towards photo-

bleaching in degassed solution and may be cycled many times before losing the ability to 

distinguish between output on or off. The lower limit for the cycle time of the gates is 

ultimately determined by the rate of the isomerization reaction, an event that occurs in less 

than a ns. This is an obvious advantage of light-controlled systems like dyad 1 compared to 

molecular logic systems that rely on chemical inputs, where the rates of operation are 

limited by material transfer and diffusional processes.  
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 Figures and Schemes 

 

 
Scheme 1. Structures and isomerization schemes of P-DHI dyad 1 and DHI 

monomer 2. 

 

 

 

  



 18

400 500 600 700

0.0

0.2

0.4

0.6

0.8

300 400 500 600
0.0

0.2

0.4

0.6

0.8

E
m

is
s
io

n

 

A
b

s
o
rb

a
n

c
e

Wavelength (nm)

 

 

 

 

Figure 1. Absorption spectra of solutions dyad 1 in the closed 1a () and highly enriched 

in the open 1b (---) forms. Also shown are the porphyrin emission spectra of these 

solutions with the dyad in the closed (○-○-○) and highly enriched in the open (□-□-□) 

forms after excitation at 590 nm. The inset shows the corresponding absorption spectra of 

the closed 2a () and the open 2b (---) forms of the model monomer. 
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Figure 2. Transient states and relevant interconversion pathways for dyad 1 with 

the photochromic moiety in the open, 1o, form (left) and the closed, 1c, form 

(right). 
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Figure 3. Schematic sketch showing how to implement AND and NAND gate functions 

using dyad 1 and a third-harmonic-generating crystal (THG). Lasers A and B are pulsed 

Nd:YAG lasers at 1064 nm. Switching laser B on will produce 532 nm light (via a second-

harmonic generating crystal, SHG). Switching both lasers on simultaneously will produce 

355 nm UV light (via the THG). The absorbance at 572 nm (AND gate, output X) and the 

emission at 722 nm (NAND gate, output Y) of dyad 1 are monitored by a readout laser and 

suitable diodes for detection.  
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Figure 4. Performance of dyad 1 in the AND gate mode. The bars show the absorbance 

measured at 572 nm after each input combination (see text for details). The dotted line 

represents an arbitrarily set threshold level to distinguish output on from output off. Before 

each input combination, the sample was reset to the initial 1a state using red light. 
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Figure 5. Performance of dyad 1 in the NAND gate mode. The bars show the emission 

intensity of the porphyrin unit measured at 722 nm after each input combination (see text 

for details). The sample was excited at 590 nm. The dotted line represents an arbitrarily set 

threshold level to distinguish output on from output off. Before each input combination, the 

sample was reset to the initial 1a state. 
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Figure 6. Photocycling of dyad 1 in the AND gate (a) and the NAND gate mode (b). Both 

the absorbance and the emission intensity were monitored for 5 s after the input 

combinations were applied. The associated noise is shown for each measurement. The 

symbol R indicates the reset operation (2 h red light, 590 nm < λ < 900 nm, ∼40 mW/cm
2
), 

A indicates Input A (35 s 1064 nm pulsed IR light, 10 Hz, 300 mW average power), and B 

signifies Input B (35 s 532 nm pulsed green light, 10 Hz, 16 mW average power). 

Applying both A and B generates UV light in the THG (35 s 355 nm pulsed UV light, 10 

Hz, 11 mW average power). 
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Tables 

 

Table 1. Truth Table for the AND Gate. The choice of input wavelengths is 

governed by the first and the second harmonics of the Nd:YAG laser. 

Input A 

(1064 nm IR light) 

Input B 

(532 nm visible light) 

Output X 

(Absorbance at 572 nm) 

0 0 0 

1 0 0 

0 1 0 

1 1 1 
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Table 2. Truth Table for the NAND Gate. The choice of input wavelengths 

is governed by the first and the second harmonics of the Nd:YAG laser. 

Input A 

(1064 nm IR light) 

Input B 

(532 nm visible light) 

Output X 

(Absorbance at 572 nm) 

0 0 1 

1 0 1 

0 1 1 

1 1 0 

 


