
Realizability and Parametricty
in Pure Type Systems

Jean-Philippe Bernardy1 and Marc Lasson2

1 Chalmers University of Technology and University of Gothenburg
2 ENS Lyon, Université de Lyon, LIP (UMR 5668 CNRS ENS Lyon UCBL INRIA)

Abstract. We describe a systematic method to build a logic from any
programming language described as a Pure Type System (PTS). The
formulas of this logic express properties about programs. We define a
parametricity theory about programs and a realizability theory for the
logic. The logic is expressive enough to internalize both theories. Thanks
to the PTS setting, we abstract most idiosyncrasies specific to particular
type theories. This confers generality to the results, and reveals parallels
between parametricity and realizability.

1 Introduction

During the past decades, a recurring goal among logicians was to give a com-
putational interpretation of the reasoning behind mathematical proofs. In this
paper we adopt the converse approach: we give a systematical way to build a
logic from a programming language. The structure of the programming language
is replicated at the level of the logic: the expressive power of the logic (e.g. the
ability of expressing conjunctions) is directly conditioned by the constructions
available in the programming language (e.g. presence of products).

We use the framework of Pure Type Systems (PTS) to represent both the
starting programming language and the logic obtained by our construction. A
PTS [2, 3] is a generalized λ-calculus where the syntax for terms and types are
unified. Many systems can be expressed as PTSs, including the simply typed
λ-calculus, Girard and Reynolds polymorphic λ-calculus (System F) and its ex-
tension system Fω, Coquand’s Calculus of Constructions, as well as some exotic,
and even inconsistent systems such as λU [8]. PTSs can model the functional
core of many modern programming languages (Haskell, Objective Caml) and
proof assistants (Coq [25], Agda [19], Epigram [17]). This unified framework
provides meta-theoretical such as substitution lemmas, subject reduction and
uniqueness of types.

In the Sec. 3, we describe a transformation which maps any PTS P to a PTS
P 2. The starting PTS P will be viewed as a programming language in which
live types and programs and P 2 will be viewed as a proof system in which live
proofs and formulas. The logic P 2 is expressive enough to state properties about
the programs. It is therefore a setting of choice to develop a parametricity and
a realizability theory.

Parametricity. Reynolds [23] originally developed the theory of parametricity
to capture the meaning of types of his polymorphic λ-calculus (equivalent to
Girard’s System F). Each closed type can be interpreted as a predicate that all
its inhabitants satisfy. Reynolds’ approach to parametricity has proven to be a
successful tool: applications range from program transformations to speeding up
program testing [28, 7, 4].

Parametricity theory can be adapted to other λ-calculi, and for each calculus,
parametricity predicates are expressed in a corresponding logic. For example,
Abadi et al. [1] remark that the simply-typed corresponds to LCF [18]. For
System F, predicates can be expressed in second order predicate logic, in one or
another variant [1, 16, 29]. More recently, Bernardy et al. [5] have shown that
parametricity conditions for a reflective PTS can be expressed in the PTS itself.

Realizability. The notion of realizability was first introduced by Kleene [10] in
his seminal paper. The idea of relating programs and formulas, in order to study
their constructive content, was then widely used in proof theory. For example, it
provides tools for proving that an axiom is not derivable in a system (excluded
middle in [11, 26]) or that intuitionistic systems satisfy the existence property3

[9, 26]; see Van Oosten [27] for an historical account of realizability.

Originally, Kleene represented programs as integers in a theory of recursive
functions. Later, this technique has been extended to other notions of programs
like combinator algebra [24, 26] or terms of Gödel’s system T [12, 26] in Kreisel’s
modified realizability. In this article, we generalize the latter approach by using
an arbitrary pure type system as the language of programs.

Krivine [13] and Leivant [15] have used realizability to prove Girard’s repre-
sentation theorem4 [8] and to build a general framework for extracting programs
from proofs in second-order logic [14]. In this paper, we extend Krivine’s method-
ology to languages with dependent types, like Paulin-Mohring [20, 21] did with
the realizability theory behind the program extraction in the Coq proof assis-
tant [25].

Contributions. Viewed as syntactical notions, realizability and parametricity
bear a lot of similarities. Our aim was to understand trough the generality of
PTSs how they are related. Our main contributions are:

– The general construction of a logic from the programming language of its
realizers with syntactic definitions of parametricity and realizability (Sec. 3).

– The proof that this construction is strongly normalizing if the starting pro-
gramming language is (Thm. 2).

– A characterization of both realizability in terms of parametricity (Thm. 6)
and parametricity in terms of realizability (Thm. 5).

3 If ∀x∃y, ϕ(x, y) is a theorem, then there exists a program f such that ∀x, ϕ(x, f(x)).
4 Functions definable in system F are exactly those provably total in second-order

arithmetic.

2 The First Level

In this section, we recall basic definitions and theorems about pure types systems
(PTSs). We refer the reader to [2] for a comprehensive introduction to PTSs.
PTSs are defined by a specification (S,A,R) where S is a set of sorts, A ⊆ S×S
a set of axioms and R ⊆ S×S×S a set of rules. This specification parametrizes
both the syntax of term and the rules of the type system.

A PTS is defined by a specification (S,A,R) where S is a set of sorts,
A ⊆ S × S a set of axioms and R ⊆ S × S × S a set of rules, with determines
the typing of product types. The typing judgement is written Γ ` A : B. The
notation Γ ` A : B : C is a shorthand for having both Γ ` A : B and Γ ` B : C
simultaneously.

Example 1 (System F). The PTS F has the following specification:

SF = {?,�} AF = {(?,�)} RF = {(?, ?, ?), (�, ?, ?)} .

It defines the λ-calculus with polymorphic types known as system F [8] and is
our running example. The rule (?, ?, ?) corresponds to the formation of arrow
types (usually written σ → τ) and the rule (�, ?, ?) corresponds to quantification
over types (∀α, τ).

Even though we use F as a running example throughout the article to illus-
trate our general definitions our results apply to any PTS.

Sort annotations. We sometimes decorate terms with sort annotations. They
function as a syntactic reminder of the first component of the rule used to type a
product. We divide the set of variables into disjoint infinite subsets V =

⊔
{Vs|s ∈

S} and we write xs to indicate that a variable x belongs to Vs. We also annotate
applications F a with the sort of the variable of the product type of F . Using
this notation, the product rule and the application rule are written

Γ ` A : s1 Γ, xs1 : A ` B : s2
Γ ` (Πxs1 : A.B) : s3

Product (s1, s2, s3) ∈ R

Γ ` F : (Πxs : A.B) Γ ` a : A
.

Γ ` (F a)s : B[x 7→ a]

Application

Since sort annotations can always be recovered by using the type derivation, we
do not write them in our examples.

Example 2 (System F terms). In system F, we adopt the following convention:
the letters x, y, z, . . . range over V?, and α, β, γ, . . . over V�. Here are some
examples using that notation:

– The identity program Id ≡ λ(α : ?)(x : α).x of type Unit ≡ Πα : ?.α→ α.
– The Church numeral 0 ≡ λ(α : ?)(f : α → α)(x : α).x is a program of type

Nat ≡ Πα : ?.(α→ α)→ (α→ α).
– The successor function on Church numerals Succ ≡ λ(n : Nat)(α : ?)(f :
α→ α)(x : α).f (nα f x) is a program of type Nat→ Nat.

3 The Second Level

In this section we describe the logic to reason about the programs and types
written in an arbitrary PTS P , as well as basic results concerning the consistency
of the logic. This logic is also a PTS, which we name P 2. Because we carry out
most of our development in P 2, judgments refer to that system unless the symbol
` is subscripted with the name of a specific system.

Definition 1 (second-level system). Given a PTS P = (S,A,R), we define
P 2 = (S2,A2,R2) by

S2 = S ∪ {dse | s ∈ S}
A2 = A ∪ {(ds1e, ds2e) | (s1, s2) ∈ A}
R2 = R ∪ {(ds1e, ds2e, ds3e), (s1, ds3e, ds3e) | (s1, s2, s3) ∈ R}

∪ {(s1, ds2e, ds2e) | (s1, s2) ∈ A}

Because we see P as a programming language and P 2 as a logic for reason-
ing about programs in P , we adopt the following terminology and conventions.
We use the metasyntactic variables s, s1, s2, . . . to range over sorts in S and
t, t1, t2, . . . to range over sorts in S2. We say that a term is

– a type if it inhabits a first-level sort (s),
– a formula if it inhabits a second-level sort (dse),
– a program if it inhabits a type,
– a proof if it inhabits a formula.

We also say that types and programs are first-level terms, and formulas and
proofs are second-level terms.

If s is a sort of P , then dse is the sort of formulas expressing properties of
types of sort s. For each rule (s1, s2, s3) in R,

– (ds1e, ds2e, ds3e) maps constructs of the programming language at the level
of the logic,

– (s1, ds3e, ds3e) allows to build the quantification of programs of sort s1 in
formulas of sort ds3e.

For each axiom (s1, s2) in A, we add the rule (s1, ds2e, ds2e) in order to build
the type of predicates of sort ds2e parametrized by programs of sort s1.

Example 3. The PTS F2 has the following specification:

S2F = { ?,�, d?e, d�e }
A2

F = { (?,�), (d?e, d�e) }
R2

F = { (?, ?, ?), (�, ?, ?), (d?e, d?e, d?e), (d�e, d?e, d?e)
(?, d�e, d�e), (?, d?e, d?e), (�, d?e, d?e) }.

We extend our variable-naming convention to Vd?e and Vd�e as follows:

– the variables h, h1, h2, . . . range over Vd?e,

– and the variables X, Y , Z, . . . range over Vd�e.

The logic F2 is a second-order logic with typed individuals (Wadler [29] gives
another presentation of the same system).

– The rule (d?e, d?e, d?e) allows to build implication between formulas, written
P → Q.

– The rule (d?e, d?e, d?e) allows to quantify over individuals (as in Πx : τ.P).
– The rule (�, d?e, d?e) allows to quantify over types (as in Πα : ?.P).
– The rule (?, d�e, d�e) is used to build types of predicates depending on

programs, which are of the form τ1 → · · · → τn → d?e.
– The rule (d�e, d?e, d?e) allows to quantify over predicates (as in ΠX : τ1 →
· · · → τn → d?e.P).

Here are some examples in F 2.

– Truth can be encoded by > ≡ ΠX : d?e.X → X and is proved by Obvious ≡
λ(X : d?e)(h : X).h.

– The Leibniz equality x =τ y ≡ ΠX : τ → d?e.X x → X y is a formula
(where τ is the type of x and y).

– The term Refl ≡ λ(α : ?)(x : α)(X : α → d?e)(h : X x).h is a proof of the
reflexivity of equality Π(α : ?)(x : α).x =α x.

– The induction principle over Church numerals is a formula

N≡ λx : Nat .ΠX :Nat→ d?e.(Πy : Nat .X y → X (Succ y))→ X 0→ X x.

3.1 Structure of P 2

Programs (or types) can never refer to proofs (nor formulas). In other words, a
first-level term never contains a second-level term: it is typable in P . Formally:

Theorem 1 (level separation). if Γ ` A : B : s (resp. Γ ` B : s), then there
exists a sub-context Γ ′ of Γ such that Γ ′ `P A : B : s (resp. Γ ′ `P B : s).

Proof. By induction on the structure of terms, and relying on the generation
lemma [2, 5.2.13] and on the form of the rules in R2: assuming (t1, t2, t3) ∈ R2

then t3 ∈ S ⇒ (t1 ∈ S ∧ t2 ∈ S) and t2 ∈ S ⇒ (t1 ∈ S ∧ t3 ∈ S).

Lifting. The major part of the paper is about transformations and relations
between the first and the second level. The first and simplest transformation
lifts terms from the first level to the second level, by substituting occurrences of
a sort s by dse everywhere (see Fig. 1). The function is defined only on first-level
terms, and is extended to contexts in the obvious way. In addition to substituting
sorts, lifting performs renaming of a variable x in Vs to x̊ in Vdse.

Example 4. In F 2, we have dUnite = dΠα : ?.α→ αe = ΠX : d?e.X → X = >,
and dNate = ΠX : d?e.(X → X)→ (X → X).

dxe = x̊
dse = dse
dΠx : A.Be = Πx̊ : dAe. dBe
dλx : A. be = λx̊ : dAe. dbe
dABe = dAe dBe

d<>e = <>
dΓ, x : Ae = dΓ e, x̊ : dAe

bxdsec = ẋs

bdsec = s
bΠxs : A.Bc = bBc
bΠxdse : A.Bc = Πẋs : bAc.bBc
bλxs : A.Bc = bBc
bλxdse : A.Bc = λẋs : bAc.bBc
b(AB)sc = bAc
b(AB)dsec = bAc bBc

b<>c = <>
bΓ, xs : Ac = bΓ c
bΓ, xdse : Ac = bΓ c, ẋs : bAc.

Fig. 1. lifting (left) and projection (right)

Lemma 1 (lifting preserves typing).
Γ ` A : B : s⇒ dΓ e ` dAe : dBe : dse

Proof. A consequence of P 2 containing a copy of P with s mapped to dse.

Lemma 2 (lifting preserves β-reduction).
A−→βB ⇒ dAe−→βdBe

Proof. dAe has the same structure as A.

Projection. We define a projection from second-level terms into first-level terms,
which maps second-level constructs into first-level constructs. The first-level sub-
terms are removed, as well as the interactions between the first and second levels.
The reader may worry that some variable bindings are removed, potentially leav-
ing some occurrences unbound in the body of the transformed term. However,
these variables are first level, and hence their occurrences are removed too (by
the application case).

The function is defined only on second-level terms, and behaves differently
when facing pure second level or interaction terms. In order to distinguish these
cases, the projection takes sort-annotated terms as input. Like the lifting, the
projection performs renaming of each variable x in Vdse to ẋ in Vs. We postulate

that this renaming cancels that of the lifting: we have ˙̊x = x.

Example 5 (projections in F 2).

b>c = Unit bObviousc = Id
bΠ(α : ?)(x : α).x =α xc = Unit bN tc = Nat

Lemma 3 (projection is the left inverse of lifting). bdAec = A

Proof. By induction on the structure of A.

Lemma 4 (projection preserves typing).

Γ ` A : B : dse ⇒ bΓ c ` bAc : bBc : s

Proof. By induction on the derivation Γ ` A : B.

In contrast to lifting, which keeps a term intact, projection may remove parts of
a term, in particular abstractions at the interaction level. Therefore, β-reduction
steps may be removed by projection.

Lemma 5 (projection preserves or removes β-reduction).
If A−→βB, then either bAc−→βbBc or bAc = bBc.

3.2 Strong normalization

Theorem 2 (normalization). If P is strongly normalizing, so is P 2.

Proof. The proof is based on the observation that, if a term A is typable in P 2

and not normalizable, then at least either:

– one of the first-level subterms of A is not normalizable, or

– the first-level term bAc is not normalizable.

Then, by separation (Thm. 1), the first-level subterms are typable in P , so they
must be normalizable. We conclude that A must be normalizable. (Details in
appendix.)

3.3 Parametricity

In this section we develop Reynolds-style [23] parametricity for P , in P 2. While
parametricity theory is often defined for binary relations, we abstract from the
arity and develop the theory for an arbitrary arity n, even though we omit the
index n when the arity of relations plays no role or is obvious from the context.

The definition of parametricity is done in two parts: first we define what it
means for a n-tuple of programs z to satisfy the relation generated by a type T
(z ∈ JT Kn); then we define the translation from a program z of type T to a proof
JzKn that a tuple z satisfies the relation.

The definition below uses n+1 renamings: one of them (̊·) coincides with that
of lifting, and the others map x respectively to x1, . . . , xn. The tuple A denotes
n terms Ai, where Ai is the term A where each free variable x is replaced by a
fresh variable xi.

Definition 2 (parametricity).

C ∈ JsK = C → dse
C ∈ JΠx : A.BK = Πx : A.Πx̊ : x ∈ JAK. C x ∈ JBK
C ∈ JT K = JT KC otherwise

JxK = x̊
Jλx : A.BK = λx : A. λx̊ : x ∈ JAK. JBK
JABK = JAKB JBK
JT K = λz : T .C ∈ JT K otherwise

J<>K = <>
JΓ, x : AK = JΓ K, x : A, x̊ : x ∈ JAK

Because the syntax of values and types are unified in a PTS, each of the
definitions · ∈ J·K and J·K must handle all constructions. In both cases, this is
done by using a catch-all case (the last line) that refers to the other part of the
definition.

Remark 1 For arity 0, parametricity specializes to lifting (JAK0 = dAe).

Theorem 3 (abstraction). If Γ ` A : B : s, then JΓ K ` JAK : A ∈ JBK : dse

Proof. The result is a consequence of the following lemmas:

– A−→βB ⇒ JAK−→∗βJBK
– Γ ` A : B ⇒ JΓ K ` A : B
– Γ ` B : s⇒ JΓ K, z : B ` z ∈ JBK : dse
– Γ ` A : B : s⇒ JΓ K ` JAK : A ∈ JBK

The proof of the last three lemmas is done by simultaneous induction on the
length of the derivations. (Details in appendix.)

A direct reading of the above result is as a typing judgement about translated
terms (as for lemmas 1 and 4): if A has type B, then JAK has type A ∈ JBK.
However, it can also be understood as an abstraction theorem for system P : if
a program A has type B in Γ , then various interpretations of A (A) in related
environments (JΓ K) are related, by the formula A ∈ JBK.

The system P 2 is a natural setting to express parametricity conditions for P .
Indeed, the interaction rules of the form (s, ds′e, ds′e) coming from axioms in P
are needed to make the sort case valid; and the interaction rules (s1, ds3e, ds3e)
are needed for the quantification over individuals in the product case.

3.4 Realizability

We develop here a Krivine-style [13] internalized realizability theory. Realizabil-
ity bears similarities both to the projection and the parametricity transforma-
tions defined above.

Like the projection, the realizability transformation is applied on second-level
constructs, and behaves differently depending on whether it treats interaction
constructs or pure second-level ones. It is also similar to parametricity, as it is
defined in two parts. In the first part we define what it means for a program C
to realize a formula F (C F); then we define the translation from a proof p to
a proof 〈p〉 that a program bpc satisfies the realizability predicate.

Definition 3 (realizability).

C dse = C → dse
C Πxs : A.B = Πxs : A.C B
C Πxdse : A.B = Π(ẋs : bAc)(xdse : ẋ A).(C ẋ) B
C F = 〈F 〉C otherwise

〈xdse〉 = xdse

〈λxs : A.B〉 = λxs : A.〈B〉
〈λxdse : A.B〉 = λ(ẋs : bAc)(xdse : ẋ A).〈B〉
〈(AB)s〉 = (〈A〉B)s
〈(AB)dse〉 = ((〈A〉 bBc)s 〈B〉)dse
〈T 〉 = λzs : bT c. z T otherwise

〈Γ, xs : A〉 = 〈Γ 〉, xs : A
〈Γ, xdse : A〉 = 〈Γ 〉, ẋs : bAc, xdse : ẋ A

Theorem 4 (adequacy). If Γ ` A : B : dse, then 〈Γ 〉 ` 〈A〉 : bAc B : dse

Proof (idea). Similar in structure to the proof of the abstraction theorem.

4 The Third Level

By casting both parametricity and realizability in the mold of PTSs, we are able
to discern the connections between them. The connections already surface in the
previous sections: the definitions of parametricity and realizability bear some
resemblance, and the adequacy and abstraction theorems appear suspiciously
similar. In this section we precisely spell out the connection: realizability and
parametricity can be defined in terms of each other.

Theorem 5 (realisability increases arity of parametricity).(
B,C

)
∈ JAKn+1 = B

(
C ∈ JAKn

)
and JAKn+1 = 〈JAKn〉

Proof. By induction on the structure of A.

As a corollary, parametricity is the composition of lifting and realizability:

Corollary 1 (from realizability to parametricity).
C ∈ JAKn = C1 C2 · · · Cn dAe and JAKn = 〈· · · 〈dAe〉 · · ·〉

Proof. By induction on n. The base case uses JAK0 = dAe.

One may also wonder about the converse: is it possible to define realizability
in terms of parametricity? We can answer by the affirmative, but we need a
bigger system to do so. Indeed, we need to extend J·K to work on second-level
terms, and that is possible only if a third level is present in the system. To do
so, we can iterate the construction used in Sec. 3 to build a logic for an arbitrary
PTS.

Definition 4 (third-level system). Given a PTS P = (S,A,R), we define

P 3 = (P 2)
2
, where the sort-lifting d·e used by both instances of the ·2 transfor-

mation are the same.

Remark 2 Because the sort-lifting used by both instances of the ·2 transfor-
mation are the same, P 3 contains only three copies of P (not four). In fact
P 3 = (S3,A3,R3), where

S3 = S ∪ dSe ∪ ddSee
A3 = A ∪ dAe ∪ ddAee
R3 = R ∪ dRe ∪ ddRee

∪ {(s1, ds3e, ds3e), (ds1e, dds3ee, dds3ee) | (s1, s2, s3) ∈ R}
∪ {(s1, ds2e, ds2e), (ds1e, dds2ee, dds2ee) | (s1, s2) ∈ A}

The J·K transformation is extended second-level constructs in P 2, mapping
them to third-level ones in P 3. The b·c transformation is be similarly extended,
to map the third level constructs to the second level, in addition of mapping the
second to the first one (only the first level is removed).

Given these extensions, we obtain that realizability is the composition of
parametricity and projection.

Lemma 6. If A is a first-level term, then
A = bC ∈ JAK1c and A = bJAK1c

Proof. By induction on the structure of A, using separation.

Theorem 6 (from parametricity to realizability). If A is a second-level
term, then

C A = bdCe ∈ JAK1c and 〈A〉 = bJAK1c

Proof. By induction on the structure of A, using the above lemma.

5 Extensions

5.1 Inductive definitions

Even though our development assumes pure type systems, with only axioms
of the form (s1, s2), the theory easily accommodates the addition of inductive
definitions.

For parametricity, the way to extend the theory is exposed by Bernardy et al.
[5]. In brief: if for every inductive definition in the programming language there

is a corresponding inductive definition in the logic, then the abstraction theorem
holds.

For example, to the indexed inductive definition I corresponds JIK, as defined
below. (We write only one constructor cp for concision, but the result applies to
any number of constructors.)

data I : Π(x1 : A1) · · · (xn : An).s where
cp : Π(x1 : Bp,1) · · · (xn1

: Bp,n1
).I ap,1 · · · ap,n

data JIK : I ∈ JΠ(x1 : A1) · · · (xn : An).sK where
JcpK : cp ∈ JΠ(x1 : Bp,1) · · · (xn1

: Bp,n1
).I ap,1 · · · ap,nK

The result can be transported to realizability by following the correspondence
developed in the previous section. By taking the composition of J·K and b·c for
the definition of realizability, and knowing how to extend J·K to inductive types,
it suffices to extend b·c as well (respecting typing: Lem. 4). The corresponding
extension to realizability is compatible with the definition for a pure system (by
Thm. 6). Adequacy is proved by the composition of abstraction and Lem. 4.
The definition of b·c is straightforward: each component of the definition must
be transformed by b·c. That is, for any inductive definition in the logic, there
must be another inductive definition in the programming language that realizes
it.

For instance, given the definition I given below, one must also have bIc. 〈I〉
is then given by 〈I〉 = bJIKc, but can also be expanded as below.

data I : Π(x1 : A1) · · · (xn : An).dse where
cp : Π(x1 : Bp,1) · · · (xn1 : Bp,n1).I ap,1 · · · ap,n

data bIc : bΠ(x1 : A1) · · · (xn : An).dsec where
bcpc : bΠ(x1 : Bp,1) · · · (xn1 : Bp,n1).I ap,1 · · · ap,nc

data 〈I〉 : bIc (Π(x1 : A1) · · · (xn : An).dse) where
〈cp〉 : bcpc (Π(x1 : Bp,1) · · · (xn1 : Bp,n1).I ap,1 · · · ap,n)

We can use inductive types to encode usual logical connectives, and derive
realizability for them.

Example 6 (conjunction). The encoding of conjunction in a sort dse is as follows:

data ∧ : dse → dse → dse where
conj : Π P Q : dse.P → Q→ P ∧ Q

If we apply the projection operator to the conjunction we obtain the type of
its realizers: the cartesian product in s.

data × : s→ s→ s where
(,) : Π αβ : s.α→ β → α× β

Now we can apply our realizability construction to obtain a predicate telling
what it means to realize a conjunction.

data 〈∧〉 : Π(α : s).(α→ dse)→
Π(β : s).(β → dse)→
α× β → s where

〈conj〉 : Π(α : s)(P : α→ dse)
(β : s)(Q : β → dse)(x : α)(y : β).
P x→ Qy → 〈∧〉αP β Q (x, y)

By definition, t P ∧Q means 〈∧〉 bP c 〈P 〉 bQc 〈Q〉 t. We have

t P ∧Q⇔ (π1 t) P ∧ (π2 t) Q

where π1 and π2 are projections upon cartesian product.

We could build the realizers of other logical constructs in the same way: we
would obtain a sum-type for the disjunction, an empty type for falsity, and a box
type for the existential quantifier. All the following properties (corresponding to
the usual definition of the realizability predicate) would then be satisfied:

– t P ∨Q⇔ case twith ι1 x→ x P | ι2 x→ x Q.
– t ⊥ ⇔ ⊥ and t ¬P ⇔ Π(x : bP c).¬(x P)
– t ∃x : A.P ⇔ ∃x : A.(unbox t) P

where case . . .with . . . is the destruction of the sum type, and unbox is the
destructor of the box type.

5.2 Program extraction and computational irrelevance

An application of the theory developed so far is the extraction of programs from
proofs. Indeed, an implication of the adequacy theorem is that the program
bAc, obtained by projection of a proof A of a formula B, corresponds to an
implementation of B, viewed as a specification. One says that b·c implements
program extraction.

For example, applying extraction to an expression involving vectors (V ec :
(A : d?e)→ Nat→ d?e) yields a program over lists. This means that programs
can be justified in the rich system P 2, and realized in the simple system P .
Practical benefits include a reduction in memory usage: Brady et al. [6] measure
an 80% reduction using a technique with similar goals.

While P 2 is already much more expressive than P , it is possible to further in-
crease the expressive power of the system, while retaining the adequacy theorem,
by allowing quantification of first-level terms by second-level terms.

Definition 5 (P 2′). Let P = (S,A,R), we define P 2′ = (S2′ ,A2′ ,R2′)

S2′ = S ∪ {dse | s ∈ S}
A2′ = A ∪ {(ds1e, ds2e) | (s1, s2) ∈ A}
R2′ = R ∪ {(ds1e, ds2e, ds3e), (s1, ds3e, ds3e), (ds1e, s3, s3) | (s1, s2, s3) ∈ R}

∪ {(s1, ds2e, ds2e), (ds1e, s2, s2) | (s1, s2) ∈ A}

The result is a symmetric system, with two copies of P . Within either side of
the system, one can reason about terms belonging to the other side. Furthermore,
either side has a computational interpretation where the terms of the other side
are irrelevant. For the second level, this interpretation is given by b·c.

Even though there is no separation between first and second level in P 2′ ,
adequacy is preserved: the addition of rules of the form (ds1e, s2, s3) only adds
first level terms, which are removed by projection.

6 Related work and Conclusion

Our work is based on Krivine-style realizability [13] and Reynolds-style para-
metricity [23], which have both spawned large bodies of work.

Logics for parametricity. Study of parametricity is typically semantic, includ-
ing the seminal work of Reynolds [23]. There, the concern is to capture the
polymorphic character of λ-calculi (typically system F) in a model.

Mairson [16] pioneered a different angle of study, where the expressions of the
programming language are (syntactically) translated to formulas describing the
program. That style has then been picked by various authors before us, including
Abadi et al. [1], Plotkin and Abadi [22], Bernardy et al. [5].

Plotkin and Abadi [22] introduce a logic for parametricity, similar to F2, but
with several additions. The most important addition is that of a parametricity
axiom. This addition allows to prove the initiality of Church-style encoding of
types.

Wadler [29] defines essentially the same concepts as us, but in the special
case of system F. He points out that realizability transforms unary parametric-
ity into binary parametricity, but does not generalize to arbitrary arity. We find
the n = 0 case particularly interesting, as it shows that parametricity can be con-
structed purely in terms of realizability and a trivial lifting to the second level.
We additionally show that realizability can be obtained by composing realizabil-
ity and projection, while Wadler only defines the realizability transformation as
a separate construct.

The parametricity transformation and the abstraction theorem that we ex-
pose here are a modified version of [5]. The added benefits of the present version
is that we handle finite PTSs, and we allow the target system to be different
from the source. The possible separation of source and targets is already im-
plicit in that paper though. The way we handle finite PTSs is by separating the
treatment of types and programs.

Realizability. Our realizability construction can be understood as an extension
of the work of Paulin-Mohring [20], providing a realizability interpretation for
a variant of the Calculus of Construction. Paulin-Mohring [20] splits CC in
two levels; one where ? becomes Prop and one where it becomes Spec. Perhaps
counter-intuitively, Prop lies in what we call the first level; and Spec lies in
the second level. Indeed, Prop is removed from the realizers. The system is

symmetric, as the one we expose in Sec. 5.2, in the sense that there is both a
rule (Spec,Prop,Prop) and (Prop,Spec,Spec).

In order to see that Paulin-Mohring’s construction as a special case of ours,
it is necessary to recognize a number of small differences:

1. The sort Spec is transformed into Prop in the realizability transformation,
whereas we would keep Spec.

2. The sorts of the original system use a different set of names (Data and
Order). Therefore the sort Spec is transformed into Data in the projection,
whereas we would use Prop.

3. The types of Spec and Prop inhabit the same sort, namely Type.
4. There is elimination from Spec to Prop, breaking the computational irrele-

vance in that direction.

The first two differences are essentially renamings, and thus unimportant.

Connections. We are unaware of previous work showing the connection between
realizability and parametricity, at least as clearly as we do. Wadler [29] comes
close, giving a version of Thm. 5 specialized to system F, but not its converse,
Thm. 6. Mairson [16] mentions that his work on parametricity is directly inspired
by that of Leivant [15] on realizability, but does not formalize the parallels.

Conclusion. We have given an account of parametricity and realizability in the
framework of PTSs. The result is very concise: the definitions occupy only a
dozen of lines. By recognizing the parallels between the two, we are able to
further shrink the number of primitive concepts.

Our work points the way towards the transportation of every parametricity
theory into a corresponding realizability theory, and vice versa.

Acknowledgments. Thanks to Thorsten Altenkirch, Thierry Coquand, Peter Dy-
bjer and Guilhem Moulin for helpful comments and discussions.

Bibliography

[1] M. Abadi, L. Cardelli, and P. Curien. Formal parametric polymorphism.
In Proc. of POPL’93, pages 157–170. ACM, 1993.

[2] H. P. Barendregt. Lambda calculi with types. Handbook of logic in computer
science, 2:117–309, 1992.

[3] S. Berardi. Type Dependence and Constructive Mathematics. PhD thesis,
Dipartimento di Informatica, Torino, 1989.

[4] J.-P. Bernardy, P. Jansson, and K. Claessen. Testing polymorphic prop-
erties. In A. Gordon, editor, Proc. of ESOP 2010, volume 6012 of LNCS,
pages 125–144. Springer, 2010.

[5] J.-P. Bernardy, P. Jansson, and R. Paterson. Parametricity and dependent
types. In Proc. of ICFP 2010, pages 345–356. ACM, 2010.

[6] E. Brady, C. McBride, and J. McKinna. Inductive families need not store
their indices. In S. Berardi, M. Coppo, and F. Damiani, editors, Types for
Proofs and Programs, volume 3085 of LNCS, pages 115–129. Springer Berlin
/ Heidelberg, 2004.

[7] A. Gill, J. Launchbury, and S. Peyton Jones. A short cut to deforestation.
In Proc. of FPCA, pages 223–232. ACM, 1993.

[8] J. Y. Girard. Interprétation fonctionnelle et elimination des coupures de
l’arithmétique d’ordre supérieur. Thèse d’état, Université de Paris 7, 1972.

[9] R. Harrop. On disjunctions and existential statements in intuitionistic sys-
tems of logic. Mathematische Annalen, 132(4):347–361, 1956.

[10] S. C. Kleene. On the interpretation of intuitionistic number theory. J. of
Symbolic Logic, 10(4):109–124, 1945.

[11] S. C. Kleene. Introduction to metamathematics. Wolters-Noordhoff, 1971.
[12] G. Kreisel. Interpretation of analysis by means of constructive functionals

of finite types. In A. Heyting, editor, Constructivity in mathematics, pages
101–128, 1959.

[13] J.-L. Krivine. Lambda-calcul types et modèles. Masson, 1990.
[14] J.-L. Krivine and M. Parigot. Programming with proofs. J. Inf. Process.

Cybern., 26(3):149–167, 1990.
[15] D. Leivant. Contracting proofs to programs. In Logic and Comp. Sci., pages

279–327, 1990.
[16] H. Mairson. Outline of a proof theory of parametricity. In Proc. of FPCA

1991, volume 523 of LNCS, pages 313–327. Springer-Verlag, 1991.
[17] C. McBride and J. McKinna. The view from the left. J. Funct. Program.,

14(01):69–111, 2004.
[18] R. Milner. Logic for Computable Functions: description of a machine im-

plementation. Artificial Intelligence, 1972.
[19] U. Norell. Towards a practical programming language based on dependent

type theory. PhD thesis, Chalmers Tekniska Högskola, 2007.
[20] C. Paulin-Mohring. Extracting Fω’s programs from proofs in the calculus

of constructions. In POPL’89, pages 89–104. ACM, 1989.
[21] C. Paulin-Mohring. Extraction de programmes dans le Calcul des Construc-

tions. PhD thesis, Université Paris 7, 1989.
[22] G. Plotkin and M. Abadi. A logic for parametric polymorphism. In LNCS,

volume 664, page 361–375. Springer-Verlag, 1993.
[23] J. C. Reynolds. Types, abstraction and parametric polymorphism. Infor-

mation processing, 83(1):513–523, 1983.
[24] J. Staples. Combinator realizability of constructive finite type analysis.

Cambridge Summer School in Mathematical Logic, pages 253–273, 1973.
[25] The Coq development team. The Coq proof assistant, 2010.
[26] A. Troelstra. Handbook of proof theory, chapter Realizability. Elsevier, 1998.
[27] J. Van Oosten. Realizability: a historical essay. Mathematical Structures in

Comp. Sci., 12(03):239–263, 2002.
[28] P. Wadler. Theorems for free! In Proc. of FPCA 1989, pages 347–359.

ACM, 1989.
[29] P. Wadler. The Girard–Reynolds isomorphism. Theor. Comp. Sci., 375

(1–3):201–226, 2007.

Appendix

This appendix contains the details of the proofs of normalization and abstraction
theorems.

6.1 Normalization

Theorem 7 (normalization). If P is strongly normalizing, so is P 2.

Proof. The proof is based on the observation (∗) that, if a term A is typable in
P 2 and not normalizable, then at least either:

– one of the first-level subterms of A is not normalizable, or
– the first-level term bAc is not normalizable.

Then, by separation (Thm. 1), the first-level subterms are typable in P , so they
must be normalizable. We conclude that A must be normalizable.

To prove (∗) we first decompose the reduction relation−→β into three disjoint
relations −→β = −→1 ∪ −→2 ∪ −→i:

1. The relation −→1 reduces abstractions typable with the rules already in R.
2. The relation−→2 reduces abstractions typable with rules of the form (ds1e, ds2e, ds3e)

for (s1, s2, s3) ∈ R.
3. The relation −→i reduces abstractions typable with the other rules (corre-

sponding to interaction reductions).

We then remark the following facts:

1. If A−→2A
′, then A is a second-level term and bAc−→βbA′c; because the

projection does not erase redexes reduced by −→2.
2. If A is a second-level term, then

A(−→1 ∪ −→i)A
′ implies bAc = bA′c

because the projection erases all redexes reduced by −→1 and by −→i.
3. If A−→iA

′, then the number of interaction redexes in A has been decreased
by one in A′.
Indeed, an interaction redex is always a second-level term and it always in-
volves an abstraction whose argument is a first-level term. Therefore, the
argument does not contain any interaction redex and cannot be an abstrac-
tion that would create an interaction redex. This is why −→i does not create
nor duplicate interaction redexes.

4. The number of interaction redexes is invariant by −→1 because interaction
redexes are second-level terms.

Let A−→βA1−→βA2−→β ...−→βAn−→β ... be an infinite sequence of terms.
5 Then we are in one of these situations:
5 The proof may also be carried out constructively: the idea is to reuse the normal-

ization procedure of terms in P to normalize terms in P 2. More precisely, given a
well-typed A, one can use the normalization procedure of bAc to normalize the 2nd
level structure, and normalize the 1st level sub-terms independently. The separation
properties guarantee that the interactions between first and second level structure
only adds a finite number of β-reductions.

– either we can extract a sub-sequence (Ani
)i∈N such that Ani

(−→1 ∪−→i)
∗ ·

−→2Ani+1
for all i ∈ N;

– or there exists a N such that for all n > N , An(−→1 ∪ −→i)An+1 or more
prosaically −→2 is not used in the chain starting from N .

In the former case, because A(−→1 ∪ −→i)
∗ · −→2A

′ implies bAc−→βbA′c,
we can build an infinite sequence (bAni

c)i∈N decreasing for −→1.
In the latter case, because −→i strictly decreases the number of insignificant

redexes and the reduction −→1 does not change this number, there exists an
integer M > N , such that for all n > M , An−→1An+1. We can write AM as
B[x1 7→ t1, ..., xk 7→ tk] where all sub-terms of B that are types or programs
are variables among {x1, ..., xk}. Now, if B[x1 7→ t1, ..., xk 7→ tk]−→βAN+1 it
means there exists t′i such that AN+1 = B[x1 7→ t1, ..., xi 7→ t′i, ..., xk 7→ tk] and
ti−→βt

′
i. By iterating this, we can build an infinite decreasing sequence starting

from ti for some 1 6 i 6 k.

6.2 Abstraction

Lemma 7 (J·K and substitution).

Jt[x 7→ e]K = JtK[x 7→ e][̊x 7→ JeK]

Proof. Recall that if x is free in t, then xi and x̊ are free in JtK. The free variable
x̊ is introduced by the rule JxK = x̊, therefore if x is substituted by e, x̊ must be
substituted by JeK. Similarly, each of the xi must be substituted by ei (renaming
must be applied to the substituted expression).

Lemma 8. A−→βB =⇒ JAK−→∗βJBK

Proof. By induction on the derivation. All cases are congruences, except for the
interesting base case, where β-reduction happens.

In that case, we want to show that if (λx : T. t) e−→βt[x 7→ e] then J(λx :
T. t) eK−→∗βJt[x 7→ e]K.

By definition:

J(λx : T. t) eK = Jλx : T. tK e JeK

= (λx : T . λx̊ : JT Kx. JtK) e JeK

And by Lem. 7, we are left with showing that (λx : T . λx̊ : JT Kx. JtK) e JeK−→∗βJtK[x 7→ e][̊x 7→ JeK],
which one can easily identify as n+ 1 instances of β-reduction.

Corollary 2 (J·K preserves reduction).

A−→∗βB =⇒ JAK−→∗βJBK

Furthermore, the number of reductions in the target is n + 1 times the number
of reductions in the source.

Corollary 3 (J·K preserves β-equivalence). A =β B =⇒ JAK =β JBK

The following lemmas (9, 10 and 11) are proved by construction of a deriva-
tion tree in P 2 from a derivation tree in P . The three corresponding functions
are denoted as follows:

1. |·| for Γ ` A : B ⇒ JΓ K ` A : B

2. {·} for Γ ` B : s⇒ JΓ K, z : B ` z ∈ JBK : dse
3. J·K for Γ ` A : B : s⇒ JΓ K ` JAK : A ∈ JBK

Even though the constructions are interdependent, it is not difficult to see
that recursive calls are made only on strictly smaller trees.

Lemma 9 (|·|). Γ ` A : B ⇒ JΓ K ` A : B

Proof. By the thinning lemma. For each Ai, erase from the context JΓ K the
relational variables and j-indexed variables such that j 6= i. The legality of the
context is ensured by Lem. 10 and Lem. 11.

The following two lemmas proceed by case analysis on the derivation tree.
The presentation uses the following conventions:

– Each case is presented separately: first the input tree is recalled, then the
transformed tree is shown.

– The constructions may make use of the other lemmas, and usages are marked
by |·|, {·} or J·K.

– Usage of the generation lemma is indicated in the input tree.

– For the sake of concision, some usage of the weakening rule are omitted.

– Again, for concision, mundane parts of the construction are omitted (squiggly
lines indicate missing parts).

Lemma 10 ({·}). Γ ` B : s⇒ JΓ K, z : B ` z ∈ JBK : dse
Proof.

Axiom

` s : s′
ax
⇒

` s : s′
ax

z : s ` z : s
st
` dse : ds′e

ax

z : s ` z → dse : ds′e
(s,ds′e,ds′e)

z : s ` z ∈ JsK : ds′e
def

Start

Γ ` s : s′

Γ, x : s ` x : s
st
⇒

JΓK, x : s, x̊ : x ∈ JsK, z : x ` x̊ : x→ dse
JΓK, x : s ` x : s

JΓK, x : s, x̊ : x ∈ JsK, z : x ` z : x
st

JΓK, x : s, x̊ : x ∈ JsK, z : x ` x̊ z : dse
app

JΓK, x : s, x̊ : x ∈ JsK, z : x ` z ∈ JxK : dse
def

Weakening
Γ ` A : s Γ ` C : s′

Γ, x : C ` A : s
wk

⇒
{Γ ` A : s}

JΓK, z : A ` z ∈ JAK : dse
|Γ ` C : s′|

JΓK ` C : s′

JΓK, x : C, z : A ` z ∈ JAK : dse
wk

{Γ ` C : s′}
JΓK, x : C ` x ∈ JCK : ds′e

JΓK, x : C, x̊ : x ∈ JCK, z : A ` z ∈ JAK : dse
wk

Abstraction impossible: no type is a lambda abstraction.
Application

Γ ` A : s1 Γ ` A→ s : s3
generation

Γ ` F : A→ s Γ ` a : A

Γ ` F a : s
app

⇒
JΓ ` F : A→ s : s3K

JΓK ` JF K : F ∈ JA→ sK
JΓK ` JF K : Πx : A. a ∈ JAK→ F a ∈ JsK

def
|Γ ` a : A|

JΓK ` a : A

JΓK ` JF K a : a ∈ JAK→ F a ∈ JsK
app

JΓ ` a : A : s1K

JΓK ` JaK : a ∈ JAK
JΓK ` JF K a JaK : F a ∈ JsK

app

JΓK ` JF K a JaK : F a→ dse
def

|Γ ` F a : s|
JΓK ` F a : s

JΓK, z : F a ` z : F a
st

JΓK, z : F a ` JF K a JaK z : dse
app

JΓK, z : F a ` z ∈ JF aK : dse
def

Product
Γ ` A : s1 Γ, x : A ` B : s2

Γ ` Πx : A.B : s
(s1,s2,s)

⇒

|Γ ` A : s1|
JΓK ` A : s1

{Γ ` A : s1}
JΓK, x : A ` x ∈ JAK : ds1e

JΓK, z : (Πx : A.B), x : A ` z x : B
app

{Γ, x : A ` B : s2}
JΓK, x : A, x̊ : x ∈ JAK, y : B ` y ∈ JBK : ds2e

JΓK, z : (Πx : A.B), x : A, x̊ : x ∈ JAK ` z x ∈ JBK : ds2e
substitution

JΓK, z : (Πx : A.B : s3), x : A ` Πx̊ : x ∈ JAK. z x ∈ JBK : dse
(ds1e,ds2e,dse)

JΓK, z : (Πx : A.B : s3) ` Πx : A.Πx̊ : x ∈ JAK. z x ∈ JBK : dse
(s1,dse,dse)

JΓK, z : (Πx : A.B : s3) ` z ∈ JΠx : A.BK : dse
def

Conversion
Γ ` B : s′ s =β s

′ Γ ` s : s′′

Γ ` B : s
conv

⇒
{Γ ` B : s′}

JΓK, z : B ` z ∈ JBK : ds′e dse =β ds′e
|Γ ` s : s′′|

JΓK ` s : s′′

JΓK, z : B ` z ∈ JBK : dse
conv

Lemma 11 (J·K). Γ ` A : B : s⇒ JΓ K ` JAK : A ∈ JBK

Proof. Case analysis proceeds on the derivation of Γ ` A : B.

Γ ` T : s : s′⇒

{Γ ` T : s}
JΓK, z : T ` z ∈ JT K : dse

|Γ ` T : s|
JΓK ` T : s

{Γ ` s : s′}
JΓK, z : s ` z ∈ JsK : ds′e

JΓK ` T ∈ JsK : ds′e
substitution

JΓK ` T → dse : ds′e
def

JΓK ` λz : T . z ∈ JT K : T → dse
abs

JΓK ` JT K : T ∈ JsK
def

Start

Γ ` A : s

Γ, x : A ` x : A
st
⇒

{Γ ` A : s}
JΓK, x : A ` x ∈ JAK : dse

JΓK, x : A, x̊ : x ∈ JAK ` x̊ : x ∈ JAK
st

Weakening
Γ ` A : B Γ ` C : s

Γ, x : C ` A : B
wk

⇒
JΓ ` A : B : sK

JΓK ` JAK : A ∈ JBK

|Γ ` C : s|
JΓK ` C : s

JΓK, x : C ` JAK : A ∈ JBK
wk

{Γ ` C : s}
JΓK, x : C ` x ∈ JCK : dse

JΓK, x : C, x̊ : x ∈ JCK ` JAK : A ∈ JBK
wk

.

The construction also uses that Γ ` A : B&Γ, x : C ` B : s⇒ Γ ` B : s

Abstraction
Γ ` A : B Γ ` C : s

Γ, x : C ` A : B
wk

⇒
JΓ ` A : B : sK

JΓK ` JAK : A ∈ JBK

|Γ ` C : s|
JΓK ` C : s

JΓK, x : C ` JAK : A ∈ JBK
wk

{Γ ` C : s}
JΓK, x : C ` x ∈ JCK : dse

JΓK, x : C, x̊ : x ∈ JCK ` JAK : A ∈ JBK
wk

Continuations of the tree (squiggly lines) are similar to derivations found in
{Γ ` (Πx : A.B) : s}.

Application
Γ ` A : s1

Γ ` (Πx : A.B) : s3
(s1,s2,s3)

generation

Γ ` F : (Πx : A.B) Γ ` a : A

Γ ` F a : B[x 7→ a]
app

⇒
JΓ ` F : (Πx : A.B) : s3K

JΓK ` JF K : F ∈ JΠx : A.BK : s3

JΓK ` JF K : Πx : A.Πx̊ : x ∈ JAK. F x ∈ JBK
def

|Γ ` a : A|
JΓK ` a : A

JΓK ` JF K a : Πx̊ : a ∈ JAK. (F a ∈ JBK)[x 7→ a]
app

JΓ ` a : A : s1K

JΓK ` JaK : a ∈ JAK
JΓK ` JF K a JaK : (F a ∈ JBK)[x 7→ a][̊x 7→ JaK]

app

JΓK ` JF aK : F a ∈ JB[x 7→ a]K
def

Conversion
Γ ` A : B′ B =β B

′ Γ ` B : s

Γ ` A : B
conv

⇒

JΓ ` A : B′ : s′K

JΓK ` JAK : A ∈ JB′K A ∈ JBK =β A ∈ JB′K

|Γ ` A : B|
JΓK ` A : B

{Γ ` B : s}
JΓK, z : B ` z ∈ JBK : dse

JΓK ` A ∈ JBK : dse
subs

JΓK ` JAK : A ∈ JBK
conv

Γ ` B′ : s′ is a consequence of Γ ` B : s and B =β B
′ (Corollary 3).

Theorem 8 (abstraction). If Γ ` A : B : s, then JΓ K ` JAK : A ∈ JBK : dse

Proof. Combine Lem. 10 and Lem. 11.

