
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1

A BDD-Based Approach for Modeling Plant and
Supervisor by Extended Finite Automata

Sajed Miremadi, Bengt Lennartson, Member, IEEE, and Knut Åkesson

Abstract—In this paper, we settle some problems that are en-
countered whenmodeling and synthesizing complex industrial sys-
tems by the supervisory control theory. First, modeling such huge
systems with explicit state-transition models typically results in an
intractable model. An alternative modeling approach is to use ex-
tended finite automata (EFAs), which is an augmentation of or-
dinary automata with variables. The main advantage of utilizing
EFAs for modeling is that more compact models are obtained. The
second problem concerns the ease to understand and implement
the supervisor. To handle this problem, we represent the super-
visor in a modular manner by extending the original EFAs by com-
pact conditional expressions. This will provide a framework for the
users where they can bothmodel their system and obtain the super-
visor in form of EFAs. In order to be able to handle complex sys-
tems efficiently, the models are symbolically represented by binary
decision diagrams (BDDs). All computations that are performed in
this framework are based on BDD operations. The framework has
been implemented in a supervisory control tool and applied to in-
dustrially relevant benchmark problems.

Index Terms—Binary decision diagrams (BDDs), extended finite
automata (EFA), supervisor representation, supervisory control
theory (SCT), symbolic representation.

I. INTRODUCTION

W HEN designing control functions for discrete event sys-
tems, a model-based approach may be used to conve-

niently understand the system’s behavior. It is also possible to
easily apply different modifications to models and decrease the
testing and debugging time. A well known example of such a
model-based approach is supervisory control theory (SCT) [1].
Having a plant (the system to be controlled) and a specification,
SCT automatically synthesizes a control function, called super-
visor, that restricts the conduct of the plant to ensure that the
system never violates the given specification. SCT has various
applications in different areas such as automated manufacturing
and embedded systems, e.g., [2]–[4].
Generally, a supervisor is a function that, given a set of events,

restricts the plant to execute some events so that the specifica-
tion is satisfied. A typical issue is how to compute such a con-
trol function efficiently and represent it lucidly for the users. A
standard approach is to model the system by finite automata,

Manuscript received March 10, 2011; revised July 04, 2011; accepted July
26, 2011. Manuscript received in final form August 29, 2011. Recommended
by Associate Editor A. Giua. This work was supported by the Swedish Govern-
mental Agency for Innovation Systems (VINNOVA).
The authors are with the Department of Signals and Systems, Chalmers

University of Technology, SE-412 96 Gothenburg, Sweden (e-mail: mire-
mads@chalmers.se; bengt.lennartson@chalmers.se; knut@chalmers.se).
Digital Object Identifier 10.1109/TCST.2011.2167150

synthesize the supervisor, and then explicitly represent all the
states that are allowed to be reached in the closed-loop system.
However, regarding systems of industrially interesting sizes,

the standard approach has the following drawbacks.
• Modeling complex systems with ordinary automata can
make the model large and intractable.

• Exploring all reachable states in the closed-loop system ex-
plicitly is computationally expensive, in terms of both time
and memory, due to the state-space explosion problem.

• Themonolithic supervisor for such systems, typically, con-
sists of a huge number of states, which makes it difficult
for the user to understand it thoroughly. In addition, rep-
resenting the supervisor as a single automaton will require
more memory than available on the hardware.

Various researchers have settled these issues, yet no work has
considered all three topics together.
One way to obtain compact models is to use variables. The

variables can then appear in guards and actions. Guard expres-
sions at the transitions restrict the behavior of the system, while
actions update the variables. Naturally, physical signals that are
stored in memories or sent between controllers can be modeled
as global variables, e.g., sensors, actuators, and buffers.
Many of the frameworks that allow compact representations

of complex and large state-space systems are inspired by Stat-
echarts [5]; an extension of ordinary automata with hierarchy,
concurrency and communication using variables, guards and ac-
tions. However, Statecharts are not completely suitable for the
SCT framework. “In the supervisory control framework it is es-
sential to model what may occur instead of what should occur,
this has large consequences for how the interaction between
subsystems are modeled” [6]. In addition, there is a causality
between subsystems in Statecharts, which is not desired in the
SCT framework. There exist a number of frameworks that are
based on automata extended with variables such as [7]–[9]. In
[7], it is assumed that a variable can be updated by at most one
finite state machine, and in order to do synthesis the state-space
needs to be extended by additional states. In [8], finite-state ma-
chines with variables are used to implement a supervisor. The
authors encode the states of a given supervisor using Boolean
variables. The variables are used in guards and actions attached
to the events (not transitions) of the model. In [9], to ensure a
least restrictive supervisor it is assumed that all variables are
local, i.e., not shared between automata.
In [6], an extended framework called extended finite au-

tomata (EFA) is presented that overcomes the above-mentioned
restrictions making the framework suitable for SCT. An EFA
is an augmentation of an ordinary automaton extended with
variables, guard expressions and action functions. The guards

1063-6536/$26.00 © 2011 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

and action functions are attached to the transitions, which
admits local design techniques of systems consisting of many
different parts. It is also possible to update the variables, which
are global, in different automata, and to use EFAs to model
both plant and supervisor. In [10], the authors present an
approach to compute the optimal nonblocking supervisor based
on a number of EFAs. The principle is that based on an EFA
plant and a set of forbidden locations, iteratively strengthen
the guards of the plant so that forbidden or blocking states
become unreachable in the controlled plant. For problems
with a huge number of EFAs, the approach can suffer from
an early state-space explosion while generating the plant with
the forbidden locations. In addition, the focus is not to obtain
comprehensible guards for the users.
Although extended frameworks allow compact represen-

tations of huge state-spaces, when it comes to analysis the
number of states will not be affected and could potentially
cause state-space explosion problem that typically occurs
when the behavior of interacting sub-systems is studied. A
well-known approach to handle this problem is to symbolically
represent the state-space and transitions using binary decision
diagrams (BDDs) [11]; powerful data structures for repre-
senting Boolean functions. Several researchers have tackled
the state-space explosion problem in the context of SCT using
BDDs such as [12], [13], however, most of them are based on
state transition systems without the introduction of variables.
Regarding the third problem, in [13] an approach is presented,

which aims to obtain comprehensible control functions. In that
article, the supervisor is represented as a set of control functions
expressed by a set of simplified BDDs. They model the system
by hierarchial models called state tree structures, which do not
include variables and could yield complex models for some in-
dustrial applications. In addition, the synthesis result is repre-
sented as BDDs, which is not always easy to interpret by users.
In [14], an algorithm for reducing the state size of the

supremal (minimally restrictive) supervisor is proposed. The
algorithm determines how a control-equivalent monolithic
supervisor with reduced number of states can be computed.
Since the proposed algorithm manipulates the states explicitly,
for huge systems with industrial complexity, e.g., states,
the computations can be very costly, both in terms of time
and memory. In addition, even though the supervisor can be
decreased significantly in many cases, the control action of the
resultant model could still be hard for the designers to render.
There also exists a number of papers dealing with synthesis

on parameterized models on systems with infinite states, where
the supervisor is represented as a set of logical expressions
[15]–[17]. In these papers the focus is on the computational
aspects of synthesis and no attention has been paid to the
comprehensibility of the resultant supervisor. Besides, the
nonblocking property has not been considered in [15] and [17].
Furthermore, since all the papers deal with infinite systems,
there does not exist an exact and automatic computation of the
supervisor.
This paper has the following three main contributions:
1) development of a framework, where both the plant/speci-
fication and the supervisor are modeled by EFAs;

Fig. 1. Process overview of the approach.

2) representation of EFAs and their nontrivial full syn-
chronous composition operator by BDDs including proof
of correctness;

3) applying the framework to a set of industrially relevant
benchmark problems and showing that the results can be
obtained efficiently.

In particular, based on a plant and a specification modeled by
EFAs, initially, the EFAs are transformed to BDDs and the cor-
responding BDD for the states of the monolithic supervisor is
computed. Next, guard expressions are extracted from the gen-
erated BDD, which will be attached to the initial EFAs, forming
a modular supervisor. Hence, the only difference between the
initial and final EFAs is that the guards are extended in the
latter model. Fig. 1 shows a process overview of the approach.
The guard generation procedure, based on ordinary automata
without variables, has been explained thoroughly in [18].
Our approach has some advantages from different per-

spectives. By modeling a system based on EFAs, a compact
representation of complex systems with huge state-space can
potentially be obtained. Another advantage is that the system is
symbolically represented using BDDs, and all the computations
are based on BDD operations, making it possible to handle large
systems and overcome the state-space explosion problem in
many cases. Representing the supervisor by EFAs in a modular
manner also makes it more comprehensible and tractable for
the users. In addition, typically, a modular supervisor consumes
less memory in a controller. The reason is that the synchroniza-
tion will be performed online in the controller (see [19] and
[20]) which can alleviate the problem of exponential growth
of the number of states in the synchronization. Furthermore,
since EFAs include guards and actions, they are often easier to
interpret than purely event based ordinary modular automata.
They can also easily be converted to controller programming
languages, e.g., SFC or ladder diagrams. EFAs can also easily
be converted to well-known verification tools such as NuSMV
[21]. Also, from an engineering perspective, EFAs are attractive
models due to their similarity to UML and state diagrams.
This paper is organized as follows. Section II provides some

preliminaries including extended finite automata and binary de-
cision diagrams, which are the fundamental concepts in our
work. Supervisory control theory and the synthesis algorithms
are described in Section III. In Section IV, we show how the
closed-loop model can be symbolically represented. Section V

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MIREMADI et al.: BDD-BASED APPROACH FOR MODELING PLANT AND SUPERVISOR BY EFA 3

explains how the supervisor can be represented based on the
initial EFA models. The whole process is applied to some case
studies in Section VI. Finally, Section VII provides some con-
clusions and suggestions for future work.

II. PRELIMINARIES

This section provides some preliminaries that are used
throughout this paper.

A. Extended Finite Automata

An EFA, introduced in [6], is an augmentation of the ordinary
finite automaton (FA) with guard predicates and action func-
tions. The guard predicates and actions are associated to the
transitions of the automaton. A transition in an EFA is enabled
if and only if its corresponding guard predicate is evaluated to

, and when a transition is taken, updating actions of a set of
variables may follow. Guard predicates can be realized by their
characteristic functions.
Definition II.1 (Characteristic Function): Let be a finite

set so that , where is the finite universal set. A char-
acteristic function is defined by

iff
iff

(1)

Since the set is finite, say with size , in practice its ele-
ments are represented with numbers in or binary -tuples
in . For binary characteristic functions, an in-
jective function is used to map the elements in
to elements in . In general, is constructed as

(2)

where on two -tuples and is defined as

(3)

denotes the th element in the binary -tuple .
As we will see later, characteristic functions can also be used

to represent BDDs.
Definition II.2 (Extended Finite Automaton): An extended

finite-state automaton is a 6-tuple

where:
(i) is the extended finite set of states, denoted by

, where is a set of locations and is the domain of
definition of the variables;

(ii) is a nonempty finite set of events;
(iii) is the set of guard predicates over

;
(iv) is a collection of action functions;
(v) is the transition relation;
(vi) is the initial state.

The finite set is the domain of definition
of an -tuple of variables with initial values

. A guard is a predicate over the
variables that relate each element of to either 1 or 0

. Actions are written as

where

The symbol is used to denote implicit actions that do not up-
date the value of variables. For instance, if , it means
that action does not update variable , i.e., .
A partial transition relation is written as , where

, , , and . If is absent, denoted
by , it is assumed that always evaluates to . If
is absent, denoted by , it is assumed that ,

where is the vector notation for , indicating that
no variable is updated during the transition.
For convenience, the states (locations and variable values)

can explicitly be written out in system transitions according to
the following definition.
Definition II.3 (Explicit State Transition Relation): Let

be an EFA. The explicit state tran-
sition relation of is defined as

where and are the values of the variables before and after
executing the transition, respectively; denotes the set of
variable assignments that satisfies the guard

(4)

and denotes the following set:

(5)

Note that a special case of is when , that
is . The explicit state transition relation is written

and can recursively be extended to strings in
.
We denote the explicit representation of a partial transition

by .

For an EFA , we write to denote all the events
that are defined from a state . Formally

Definition II.4 (Deterministic EFA): An EFA
is deterministic if and
always implies .

Since we are interested in deterministic systems, we merely
focus on deterministic EFAs. In the sequel, for the sake of
brevity, we simply write EFAs for deterministic EFAs.
The composition of two EFAs is defined by the extended full

synchronous composition (EFSC).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Definition II.5 (Extended Full Synchronous Composition):
Let , 1, 2, be two
EFAs using the shared variables . The EFSC
of and is

where the state transition relation is defined as follows:
1) if

and such that:
a) ,
b) For and :

if
if
if
otherwise

2) if
and ;

3) if
and .

The EFSC operator is both commutative and associative. Note
that, in the case where the action functions of and ex-
plicitly try to update a shared variable to different values, we as-
sume that the variable is not updated. It can indeed be discussed
whether the transition should be executed. In that case, the def-
inition of EFSC need to be more modified compared to FSC,
which is not desired. In addition, a situation where two values
are conflicting, is usually a consequence of bad modeling, and
thus it is more reasonable to inform the user by a message rather
than disabling the transition. For more details about EFAs, refer
to [6] including the procedure of converting an EFA model to
an FA model.

B. Binary Decision Diagrams

BDDs [11] are powerful data structures for representing
Boolean functions. For large systems where the number of
states grows exponentially, BDDs can improve the efficiency
of set and Boolean operations performed on the state sets
dramatically [12], [22]–[24].
Given a set of Boolean variables , a BDD is a Boolean func-

tion , which can be expressed using Shannon’s
decomposition [25]

where and refer to assigning 0 and 1 to all occur-
rences of the Boolean variable , respectively. A BDD is rep-
resented as a directed acyclic graph, which consists of two types
of nodes: decision nodes and terminal nodes. A terminal node
can either be 0-terminal or 1-terminal. Each decision node is la-
beled by a Boolean variable and has two edges to its low-child
and high-child. The low- and high-child corresponds to the cases
in the above equation where is 0 (graphically represented by
a dotted line) and 1 (graphically represented by a solid line), re-
spectively. The size of a BDD refers to the number of decision
nodes.

The power of BDDs lies in their simplicity and efficiency to
perform binary operations. A binary operator between two
BDDs and can be computed as

If the operator is implemented based on dynamic programming,
the time complexity of the algorithm will be , where
and are the sizes of the BDDs. A BDD operation that has

been used extensively in our implementation is the existential
quantification over a set of Boolean variables

The time complexity for quantification is exponential in the
worst case. The implementation of the BDD operators has been
discussed in more detail in [26].
The corresponding BDD for a finite set (is the uni-

versal set), can be represented using the characteristic function
in (1).
In a BDD graph, a variable has a lower (higher) order than

variable if is closer (further) to the root and is denoted by
. The variable ordering will impact the size

of the BDD, however, finding an optimal variable ordering of a
BDD is an NP-complete problem [27].
In our implementation, a BDD follows a fixed variable or-

dering based on the method presented in [28]. In this method,
the variable ordering is influenced by the ordering of interacting
automata based on weighted search in the process communica-
tion graph (PCG). A PCG for a set of automata is a weighted
undirected graph, where the weight between two automata
and is defined as . In some cases, the ordering
can be improved [12]. This is however beyond the scope of this
paper.
For a more elaborate and verbose exposition of BDDs and the

implementation of different operators, refer to [26] and [29].

III. SUPERVISORY CONTROL THEORY

SCT [1], [30] is a general theory to automatically synthesize
supervisors based on a given plant and specification. A spec-
ification describes the allowed and inhibited behaviors. A su-
pervisor restricts the conduct of the plant to guarantee that the
system never violates the given specification.
In SCT, some states of an automaton , which is typically a

specification, are considered as marked states, . These are
the states that are desired to be reached from the initial state.
The set of marked states of a composed automaton is the
Cartesian product of the corresponding sets of marked states. In
addition, some states can be specified as explicitly forbidden,

, which are states that should not be reached from the ini-
tial state. The set of forbidden states of a composed automaton

is . In SCT, the events are
divided into two disjoint subsets: controllable events, denoted
by , that can be prevented from executing by the supervisor;
and uncontrollable events, denoted by , which cannot be in-
fluenced by the supervisor [1], [30].
A plant can be described by the synchronization of a

number of sub-plants , and similarly for a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MIREMADI et al.: BDD-BASED APPROACH FOR MODELING PLANT AND SUPERVISOR BY EFA 5

specification . In our computations,
we assume that a supervisor always refines the plant, i.e.,

. A first candidate of the supervisor is the composed
automaton , which we refer to as in the sequel. After
the synthesis procedure, some states are identified as blocking
or uncontrollable, referred to as forbidden states, which should
be excluded from in order to obtain the supervisor. The
states that belong to the supervisor are called safe states,
denoted by .
Blocking states of an EFA , are states where no marked

states are reachable

and

For a supervisor candidate that is a sub-automaton of , the
set of uncontrollable states are defined as

and

that is, the reachable states in for which an uncontrollable
event is defined for the plant but not for the supervisor .
The safe states can be synthesized by fixed point computa-

tions [12]. There are two operators that are used frequently in
the fixed point computations: and . Given
a set of states ; computes the set of states
that can be reached in one transition

(6)

and computes the set of states that in one
transition can reach a state in

and (7)

The BDD-based implementations of these operators are
described in Section IV. For a more formal and detailed expla-
nation of supervisory synthesis, see [1], [20], and [30].

IV. SYMBOLIC COMPUTATION OF

In the sequel, we will use the characteristic function , pre-
sented in (1), to represent a BDD. This section describes how

can be symbolically represented. In particular, we
explain how to compute and , used as inputs to

(and) in the synthesis com-
putations mentioned in Section III.
There are basically the following two approaches for com-

puting :
1) transforming the EFAs to FAs and then applying the syn-
thesis procedure;

2) applying the synthesis procedure directly on the EFAs
without transforming them to FAs.

In the former case, the EFAs are initially transformed to FAs
based on an algorithm explained in [6]. can then be com-
puted based on the FAs. A drawback of this approach is that
the number of transitions often grows very rapidly when trans-
forming EFAs to FAs, incurring an inefficient performance.
To overcome the above-mentioned obstacle we settle on the

second approach, that is showing how can be computed
without transforming EFAs to FAs. Regarding this approach, the
following two main issues should be resolved:
1) how to represent the transition functions of EFAs by
BDDs?

2) how to represent the full synchronous composition on
EFAs by BDDs?

In the sequel, we elaborate these issues.

A. BDD Representation of an EFA

The characteristic function of the transition function of an
EFA can be computed based on Definition II.3. Two different
sets of Boolean (BDD) variables are used to represent the
current values of different locations and variables, denoted by
and , respectively. Since we have to differ between the

Boolean variables used to represent current and updated values,
and are used to represent the updated values. denotes

the Boolean variables used to represent the alphabet.
Proposition IV.1: The characteristic function of an explicit

partial transition is

Proof: The proof follows immediately from (2), (3), and
Definition II.3.
For brevity, we write representing the characteristic

function of . We denote the characteristic function

where the Boolean variables have been removed, i.e.,
, by . Hence, we

have

We represent integers in the two’s complement system as an
array of BDDs [31]. In our framework, we assume that over-
flows on variables are not allowed and thus we omit the cases
where an overflow occurs. This is performed by removing all the
variable assignments that result in values outside the domain of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 2. EFA model for Example IV.1.

the variables. Consequently, the characteristic function of the
transition relation of an EFA will be

(8)
Based on , different set of states can be extracted. For in-
stance, let denote the set of states where an event can be
executed from. Then, can be computed as follows:

(9)

represents all transitions that include event . By excluding
the BDD-variables used for representing the target-states from
, will be obtained. Finally, the BDD-variables used for rep-
resenting the events are excluded, which will yield the states in
that enable .
The following example shows how the transition function of

an EFA can be represented by a BDD.
Example IV.1: Consider a nim game with 5 sticks on a table,

and two players that take turn by removing one or two sticks.
The winner is the player that takes the last stick(s). Fig. 2 depicts
the EFA model for this game.
Fig. 3 shows the corresponding transition function for the

EFA shown in Fig. 2. Note that the BDD does not contain the
cases where and . The BDD variables in
the figure are labeled with numbers as follows:

' ' ' '

' '

' '

' ' ' ' ' ' ' '

' ' ' ' ' ' ' '

Fig. 3. Corresponding BDD for the transition function of the EFA in Fig. 2.

TABLE I
EVENT AND LOCATION ENCODING FOR THE EFA IN FIG. 2

where is the least significant bit. Note that since the integers
are represented in two’s complement, four Boolean variables are
used to represent because of the sign-bit. The location
and event encoding is shown in Table I.
For instance, let’s track the transition

on the BDD in Fig. 3. Event is identified by
starting from node “0”, following the high-child to node “1”
and following the high-child to node “2”, i.e., . The
location is identified by following the high-child from
node “2”, i.e., , and location is identified by following
the low-child from node “1”, i.e., . The guard and action are
identified by all the paths from node “3” to node “11”.
As it can be observed, the BDD in this example is larger than

its corresponding EFA, however, for larger models the BDDs
typically become much more compact.

B. BDD Representation of EFSC on EFAs

Based on Definition II.5 for the extended full synchronous
composition, we compute in the following three steps.
1) Compute a characteristic function, representing
without including the actions, denoted by .

2) Compute a characteristic function, representing the update
of the EFA variables, denoted by .

3) Based on and , compute .

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MIREMADI et al.: BDD-BASED APPROACH FOR MODELING PLANT AND SUPERVISOR BY EFA 7

Since is the synchronization of a number of sub-plants and
sub-specifications in form of EFAs, in all of the following com-
putations we focus on EFAs .
Note that the result will be incorrect if steps 1 and 2 are car-

ried out in a single step. For deterministic FAs without vari-
ables, this is not the case. For FAs , we have

. This comes from the fact that the
full synchronous operator corresponds to “intersection” on lan-
guages, and “intersection” corresponds to the AND operator on
characteristic functions. For EFAs

Because then it would not be possible to keep track of the vari-
ables that are not updated (don’t-care updates). Furthermore, the
action conflicts will disable the corresponding events. However,
based on Definition II.5, the result should be a transition where
the variables will be remained unchanged.
When computing the synchronous composition based on the

characteristic functions, we have to assume that the EFAs have
the same alphabet. To make this possible we extend the transi-
tion relations of each EFA by adding self-loops with events that
are not in the alphabet of the EFA.
Definition (Extended Explicit Transition Relation,):

For EFAs , the extended explicit transition
relation of , denoted by , represents the explicit tran-
sition relation of together with self-loops on all states with
events that are not in the alphabet of

By this extension, all EFAs in the model will have the same
alphabet and thus the definition of extended full synchronous
composition (Definition II.5) will be simplified to case 1 that
only considers common events.
Proposition IV.2: Let be EFAs. Then

At this stage, we are done with step 1 in the procedure of com-
puting . The next step is to compute a characteristic
function that represents the updating of EFA variables. First, we
have to compute a characteristic function that represents all par-
tial transitions that include the resulting action function of syn-
chronizing EFAs based on Definition II.5. In the following
computations, we start to focus on a single variable and then
extend it to all variables in the model, i.e., . Hence, for each
EFA and each variable in the model, it is necessary to
compute the transitions in on which the variable is up-
dated.
Definition IV.2 (Updated Transition Relation,): For

an EFA and a variable , the updated transition relation for

variable , denoted by , represents the set of partial tran-
sitions in on which the variable is updated

Remark: In a deterministic EFA, the combination of source-
location, event, guard and target-location will uniquely define a
transition.
Recall that, from Definition II.5, the result of can be

divided into four if-then constructs, which we denote by .
Each consists of an part, denoted by , and a part,
denoted by .
• : ; both actions update the variable to the
same value.

• : .
• : ; the first action updates the variable but not
the second action.

• : .
• : ; the second action updates the variable but
not the first action.

• : .
• : ; either none of the actions update the vari-
able, or the actions update the variable but to different
values.

• : .
Definition IV. 3 (Interaction Transition Relation,

): For two EFAs and and a variable ,

the interaction transition relation, denoted by ,
represents a set of partial transitions that satisfies in
Definition II.5

(10)

(11)

(12)

(13)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Hence, by definition we have

(14)

Lemma IV.3: Let be an arbitrary variable of an -tuple
, and for EFAs , let be defined as
follows:

where

and

Then, the following statement holds:

where .
Proof: The lemma can be proved by induction.

(i) For the basic step, we check if the lemma holds for ,
where

We have to prove that

where . First, we compute

for . Based on Proposition
IV.1, we have (15), shown at the bottom of the page.
Now, lets compute . For , we begin
to compute each term separately, as shown in (16) and
(17), shown at the bottom of the next page, where is a
propositional formula including invalid partial transitions
(some assignments do not have corresponding partial
transitions). It can be observed that

represents all the partial transitions, where has been
updated in EFA but not in , together with many
other valid and invalid partial transitions, i.e., . Further-
more, based on Definition II.5, should represent
the partial transitions in EFA , where variable is

(15)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MIREMADI et al.: BDD-BASED APPROACH FOR MODELING PLANT AND SUPERVISOR BY EFA 9

updated, i.e., . Hence, we have (18), shown at
the bottom of the page. By contradiction, we prove that

(19)

Let’s assume that

Then, by assuming that , there should exist
at least one term in that evaluates to when being
conjuncted with

which is contradictory from (16) and (17). Note that if
, the result for would

not be correct.
Similarly, it can be shown that

(20)

(21)

where

(22)

(23)

(16)

(17)

(18)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

If we logically disjunct equations (15), (18), (20), and
(21), we get

Hence

where the last equation is deduced from (14). Based
on (19), (22), and (23), it is straightforward that

. Since the above equation
holds for all variables in , we will have such equa-
tions. If we logically conjunct these equations, we will
get

Since each variable is represented by unique Boolean
variables, i.e., and , it can be deduced that

. This proves the correctness of the
basic step.

(ii) For the inductive step we assume that

We have to show that

Let . Hence, we need to prove

which becomes the basic step that is already proven to
be correct. Notice that we utilized the associativity and
commutativity properties of the logical binary operators
and the EFSC operator.

Consequently, the lemma is proved by induction.
Theorem IV.4: For EFAs , and an -tuple

of variables , the following statement holds:

Proof:

Consequently, for a plant and a specification , ,
i.e., , can be computed based on Lemma IV.4. Further-
more, since and have the same alphabet, and

are equal.

V. REPRESENTATION OF THE SUPERVISOR AS EFAS

The last step is to compute the supervisor represented as
EFAs. This computation is performed in the following three
steps:
1) compute a BDD representing the safe states, i.e., the cor-
responding BDD for ;

2) transform the computed BDD to guard expressions;
3) attach the guards to the original EFAs.

is computed by fixed point computations based on the
synthesis algorithm described in [12]. Note that for a set of
EFAs, the reachability algorithms performed on do not
differ from the algorithms used for FAs. The algorithm requires
four arguments: , , and . is the union
of the explicitly forbidden states and the initially uncontrollable
states, described in Section III. In the last argument, de-
notes the transitions in that include uncontrollable events.

can be computed as follows:

In stage 2, based on , we create the following two sets
of states [18].
• : The set of states in the supervisor where the execution
of is defined for the supervisor.

• : The set of states in the supervisor where the execution
of is defined for , but not for the supervisor.

By utilizing and a guard expression
is generated for each control-

lable event :

if
if

' otherwise

where represents the current state of EFA .
evaluates to true if is allowed to

be executed from the state . The size of a
guard , denoted by , is defined by the number of atomic
equality and nonequality terms in the guard expression.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MIREMADI et al.: BDD-BASED APPROACH FOR MODELING PLANT AND SUPERVISOR BY EFA 11

Fig. 4. Recursive representation of an IDD.

A. Guard Generation

The guards are computed in the following consequent steps:
• compute the corresponding BDDs for and ;
• convert the BDDs to integer decision diagrams;
• convert the integer decision diagrams to guards.

First, the corresponding BDDs for the state sets are computed
similar to in (9). Next, the BDDs are converted to their
corresponding integer decision diagrams (IDDs) [32], which
will be used to generate the guards in the last step. An IDD is an
extension to a BDD where the number of terminals is arbitrary
and the domain of the variables in the graph is an arbitrary set
of integers. For our purpose, we use an IDD with two terminals,
0-terminal and 1-terminal.
To represent a state in the closed-loop

automaton , each IDD-variable is associated to an
automaton that has as its domain. This domain can be
mapped to an integer that is represented as an IDD. In other
words, each outgoing edge from node represents a state in
. Hence the maximum number of edges from a node is
. As for BDDs the number of edges and nodes for an IDD

can also be reduced. For simplicity, we use the names of the
states on the IDD-edges rather than integers in the sequel.
Using IDDs to generate guards has some advantages in

comparison to BDDs: 1) they make it easier to handle and
manipulate propositional formulae; 2) they exploit some of the
common subexpressions in a guard yielding a more factorized
and smaller formula; 3) they depict a more understandable
model of the state set, since the nodes and edges represent
names of the automata and states, respectively. On the other
side different manipulations can be carried out more efficiently
on BDDs compared to IDDs. The procedure of converting a
BDD to an IDD is presented in [18].
The last step of obtaining the guard is to convert the IDDs

to propositional formulae. For a given IDD, a top-down depth
first search is used to traverse the graph and generate its corre-
sponding propositional formula. The algorithm starts from the
root and visits the nodes whilst generating the expression and
ends at the 1-terminal. For each node in the IDD, the corre-
sponding expressions of the edges belonging to the same level
(the children of that node) are logically disjuncted and if the
edges belong to different levels they are logically conjuncted.
Hence, the propositional formula for the IDD in Fig. 4 is

where is the corresponding expression of the edge that lead
to one of ’s children and is the corresponding expression

from the node to the 1-terminal, that is recursively computed. A
pseudo-algorithm of this process is presented in [18].

B. Guard Attachment

Since , the generated guard will be a
combination of (or) and (or

) expressions. Each variable holds the current
location of EFA . However, since they are not defined in
the model, they should be declared and added to the set of
variables in the model. Thus, the variable is extended to

. Hence, the transition func-
tion of each automaton is extended as follows:

Nevertheless, this extension can be performed implicitly so that
it becomes transparent to the user. Finally, for each EFA
in the model, each generated guard is conjuncted with the
guards in that include event ; forming a new EFA ,
where

Consequently, the supervisor can be represented in a modular
manner, deducing that satisfies the specifica-
tion without any forbidden states.
Example IV.1: Recall the nim game in Example

IV.1. The controllable events are and
. After converting the model and performing

the fixed point computations, we get 10 reachable states. The
nonblocking and controllable supervisor consists of 5 states.
After the guard generation procedure, the following guards are
obtained:

This means that event is allowed to be
executed everywhere in the closed-loop model. On the other
hand, 5 forbidden states are prevented to be reached by adding

to the guard in the transition of the EFA that has
as its event.

VI. CASE STUDIES

In this section we will show the results of applying our frame-
work to a set of academic and industrial benchmark examples.

A. Model Classification

In order to be able to compare different models, we can
classify them from two perspectives: computational and
tractability. In the sequel, we assume that a model is given
as a set of EFAs and variables .
Based on this model a supervisor is computed and represented
as guards added to the original EFAs.
1) Computational Measures: By introducing a number of

measures we try to get a clue on how hard the reachability anal-

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

ysis is. One way is to analyze the interaction between the au-
tomata by looking at their common events. Originally, the idea
comes from [28] by introducing a simple communication map
for interacting ordinary automata, i.e., not EFAs, called process
communication graph (PCG). Each node in a PCG corresponds
to an automaton. Each edge between two nodes is weighted,
where the weight is equal to the number of common events be-
tween the two automata. The dependency set of an automaton
, denoted by , is itself plus the set of automata di-

rectly connected to . Hence, for each automaton it is possible
to calculate a measure that shows how dependent it is to the
rest of the automata. For an automaton , we call this measure

and compute it is as follows:

where is the cardinality of the set and is
the number of automata in model. Since this measure is defined
on ordinary automata, we have to convert our EFAs to DFAs
based on [6].
The measures that will be used for computational purposes

related to synthesis are as follows.
• : Number of EFAs and variables in the model.1

• : Number of theoretically reachable states in the
model, which is equal to .

• : The minimum, maximum, and average LD among the
automata.

• : The number of reachable states in the closed-loop
model, i.e., .

• : The number of states in the supervisor.
The number of EFAs and the number of reachable states are
the most common measures used in SCT. However, it has been
shown that there is a stronger connection between LD and the
hardness of a problem compared to and [33]. In par-
ticular, the higher is, the harder it will be to perform reach-
ability analysis.
2) Tractability Measures: In this part we use some measures

to decide the compactness of a guard and how much advanta-
geous it will we for the users to deal with guards on modular su-
pervisors rather than a monolithic supervisor. Hence, for these
measures we assume that the supervisor has been computed. The
considered measures are as follows.
• : The number of forbidden states, which is equal to

.
• : The number of controllable events in the model,
which is equal to the number of generated guards.

• : The minimum, maximum, and average size of the
guards.

The size of a guard , denoted by , is defined by the number
of atomic equality and nonequality terms in the guard expres-
sion. For instance, the size of the guard expression

is 3. Often smaller guards are more tractable and understandable
for the users.

1This is equal to the number of automata in the flattened model.

B. Benchmark Examples

We will first present the examples that are going to be ana-
lyzed.
1) Resource Allocation System (RAS): In [34], a RAS repre-

senting a flexibly automated robotic cell has been presented. The
system includes seven resource types with capac-
ities and . It
also has four product types, showing in which
order the resources will be used

It is possible to have multiple instances of a product. The control
problem is to get the maximum number of instances without
having a blocking system.
2) Fabrication Production System (FBS): This benchmark

concerns a fabrication production system that can build different
products [35]. There exist two product families, each one con-
sisting of two product types. There also exist two fixture types
that can be moved to be used in different parts of the system.
The goal is to combine the product types from different fam-
ilies to get a new product and it is possible to have several in-
stances of a product type. This system can be modeled by EFAs,
and the restrictions are that some combinations are not allowed.
Furthermore, the fixtures should be available at certain stations
when needed. The maximum number of instances of a product
type, in the system, may be given with a variable. The control
problem is to have a blocking free system.
3) Collision Avoidance System (CAS): A robot cell with five

robots, a fixture, a conveyor and an automated guided vehicle
(AGV) is analyzed, see Fig. 5. There are two stations in the cell.
At the first station there are two robots close to the conveyor
moving two different parts. The robots will pick up the parts and
weld them together. In the second station there are two other
robots. The fifth robot will move the parts between different
stations and put the final product on the AGV that will move it
out from the cell. We model this system by EFAs and based on
[36] we extend the guards to ensure a collision-free system. The
final EFA model will be the input to the framework presented in
this paper to generate a nonblocking supervisor.
4) Control Logic Development (CLD): A working cell that

contains a fixture for holding a workpiece and an automatic car-
riage is considered. The workpiece is processed in the fixture.
After processing the carriage is brought to the fixture as the
clamp is opened. When the carriage is in place the workpiece
is pushed out and falls into the carriage. The carriage transports
the workpiece to a buffer. The cell is shown in Fig. 6. In [37], an
EFA model for its execution model in the IEC 61499 standard
has been generated and used to develop the control logic.
5) Automated Guided Vehicles (AGVs): Amodel of a flexible

manufacturing cell was introduced in [38]. The cell consists of
three workstations, two input stations and one output station and
five AGVs, each one responsible to route some parts through the
cell by following certain paths. The control problem is that the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MIREMADI et al.: BDD-BASED APPROACH FOR MODELING PLANT AND SUPERVISOR BY EFA 13

Fig. 5. CAS.

Fig. 6. CLD.

TABLE II
COMPUTATIONAL MEASURES

routes intersect or are very close to each other and thus there are
zones in which no two AGVs are allowed to be at the same time.

C. Results

The framework described in this paper has been implemented
and integrated in the supervisory control tool Supremica [39],
[40], which uses JavaBDD [41] as the BDD package. The ex-
amples were conducted on a standard PC (Intel Core 2 Quad
CPU @ 2.4 GHz and 3 GB RAM) running Windows 7.
Table II shows the computational measures. The LD values

are computed for each automaton, then theminimum,maximum
and average values are calculated for the whole model.
Table III shows the results of the reachability analysis. The

table includes the number of reachable states in the closed-loop
model, the number of states in the supervisor and the time for
computing the supervisor. From Table III it can be observed that
it takes more time for the models CLD and CAS to compute the

TABLE III
REACHABILITY ANALYSIS

TABLE IV
TRACTABILITY ANALYSIS

supervisor. This can be deduced from Table II. The LD values
for the CLD model are higher than the other models (except the
FBS model), which means that more iterations might be needed
to reach a fixed point. The CASmodel has the largest state-space
which can make the BDD computations more time consuming.
Table IV shows the results of the guard generation process.

For instance, in the AGV model, 9 million states are prevented
to be reached by only 10 guards with an average size of 17.6.
In the FBS model around 53% of the reachable states are pre-
vented to be reached by 41 guards with an average size of 8.5
terms. Furthermore, in the CASmodel around 63% of the reach-
able states are prevented to be reached by 142 guards with an av-
erage size of 1.4 terms. Hence, it would be easier for the users to
track the synthesis results. It can be observed that with 1 second
computation time, the algorithmworks quite efficiently for these
examples. We believe that by complementing our BDD-based
algorithms by partitioning techniques [12], it is possible to effi-
ciently compute the supervisor and the guards for much larger
and more complicated examples.
Table IV shows the guard compactness measures.

VII. CONCLUSION

In this paper we presented an approach that, given a system
modeled by EFAs, symbolically computes the supervisor. In
particular, this approach provides a seamless framework for
generating and modifying control functions that are modeled
by EFAs. Specifically, after modeling a system with EFAs, the
users can obtain the control function in form of the original
EFAs extended with some additional guards. Hence, during the
design phase, the users remain in the same model domain, i.e.,
EFAs. The main advantage of this approach is that the users, can
iteratively update both the models and the intermediate control
functions. All the computations are performed by BDDs, which
are transparent to the users and the only interface the users deal
with is the EFA framework.
The entire procedure was applied to a set of academic and

industrial benchmark examples.
There are some possible directions for future work that are

worth pursuing. As mentioned in Section VI, the BDD-based
algorithms need to be complemented by partitioning techniques

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

that are normally used for ordinary automata. Then, it would be
possible to handle much larger and more complicated systems.
In addition, there is a potential to improve the variable ordering
of the BDDs. We also believe that the guards can be more re-
duced in some cases, which is a work in progress.

VIII. ACKNOWLEDGEMENT

This work was carried out at theWingquist Laboratory VINN
Excellence Centre within the Area of Advance-Production at
Chalmers.

REFERENCES

[1] P. Ramadge and W. Wonham, “The control of discrete event systems,”
Proc. IEEE, vol. 77, no. 1, pp. 81–98, Jan. 1989.

[2] S. Balemi, G. J. Hoffmann, P. Gyugyi, H. Wong-Toi, and G. F.
Franklin, “Supervisory control of a rapid thermal multiprocessor,”
IEEE Trans. Autom. Control, vol. 38, no. 7, pp. 1040–1059, Jul. 1993.

[3] L. Feng, W. M. Wonham, and P. S. Thiagarajan, “Designing commu-
nicating transaction processes by supervisory control theory,” Form.
Methods Syst. Des., vol. 30, no. 2, pp. 117–141, 2007.

[4] K. Andersson, J. Richardsson, B. Lennartson, and M. Fabian, “Co-
ordination of operations by relation extraction for manufacturing cell
controllers,” IEEE Trans. Control Syst. Technol., vol. 18, no. 2, pp.
414–429, Mar. 2010.

[5] D. Harel, “Statecharts: A visual formalism for complex systems,” Sci.
Comput. Program., vol. 8, pp. 231–274, 1987.

[6] M. Sköldstam, K. Åkesson, andM. Fabian, “Modeling of discrete event
systems using finite automata with variables,” inProc. 46th IEEEConf.
Decision Control, 2007, pp. 3387–3392.

[7] Y.-L. Chen and F. Lin, “Modeling of discrete event systems using fi-
nite state machines with parameters,” in Proc. IEEE Int. Conf. Control
Appl. (CCA), 2000, pp. 941–946.

[8] Y. Yang and R. Gohari, “Embedded supervisory control of discrete-
event systems,” in Proc. IEEE Int. Conf. Autom. Sci. Eng., 2005, pp.
410–415.

[9] B. Gaudin and P. H. Deussen, “Supervisory control on concurrent
discrete event systems with variables,” in Proc. Amer. Control Conf.
(ACC), 2007, pp. 4274–4279.

[10] L. Ouedraogo, R. Kumar, R. Malik, and K. Åkesson, “Symbolic ap-
proach to nonblocking and safe control of extended finite automata,”
in Proc. IEEE Int. Conf. Autom. Sci. Eng., 2010, pp. 471–476.

[11] S. B. Akers, “Binary decision diagrams,” IEEE Trans. Comput., vol.
27, pp. 509–516, Jun. 1978.

[12] A. Vahidi, M. Fabian, and B. Lennartson, “Efficient supervisory
synthesis of large systems,” Control Eng. Pract., vol. 14, no. 10, pp.
1157–1167, Oct. 2006.

[13] C. Ma and W. M. Wonham, “Nonblocking supervisory control of
state tree structures,” IEEE Trans. Autom. Control, vol. 51, no. 5, pp.
782–793, May 2006.

[14] R. Su and W. M. Wonham, “Supervisor reduction for discrete event
systems,” Discrete Event Dyn. Syst., vol. 14, no. 1, pp. 31–53.

[15] R. Kumar and V. K. Garg, “On computation of state avoidance con-
trol for infinite state systems in assignment program framework,” IEEE
Trans. Autom. Sci. Eng., vol. 2, no. 1, pp. 87–91, 2005.

[16] T. Le Gall, B. Jeannet, and H. Marchand, “Supervisory control of in-
finite symbolic systems using abstract interpretation,” in Proc. 44th
IEEE Conf. Decision Control, Euro. Control Conf. (CDC-ECC), 2005,
pp. 30–35.

[17] C. de Oliveira, J. E. R. Cury, and C. A. A. Kaestner, “Synthesis of
supervisors for parameterized and infinity non-regular discrete event
systems,” in Proc. 1st IFAC Workshop Depend. Control Discrete Syst.
(DCDS), 2007, pp. 77–82.

[18] S. Miremadi, B. Lennartson, and K. Åkesson, “Symbolic computation
of reduced guards in supervisory control,” IEEE Trans. Autom. Sci.
Eng., vol. 8, no. 4, pp. 754–765, Oct. 2011.

[19] A. Hellgren, B. Lennartson, andM. Fabian, “Modelling and PLC-based
implementation of modular supervisory control,” in Proc. 6th Int.
Workshop Discrete Event Syst., 2002, pp. 371–376.

[20] K. Åkesson, “Methods and tools in supervisory control theory: Oper-
ator aspects, computation efficiency and applications,” Ph.D. disserta-
tion, Dept. Signals Syst., Chalmers Univ. Technol., Göteborg, Sweden,
2002.

[21] A. Voronov and K. Åkesson, “Verification of supervisory control prop-
erties of finite automata extended with variables,” Dept. Signals Syst.,
Chalmers Univ. Technol., Göteborg, Sweden, 2009.

[22] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang,
“Symbolic model checking: states and beyond,” in Proc. 5th
Annu. IEEE Symp. e Logic Comput. Sci. (LICS), 1990, pp. 428–439.

[23] S. Miremadi, K. Åkesson, M. Fabian, A. Vahidi, and B. Lennartson,
“Solving two supervisory control benchmark problems using
supremica,” in Proc. 9th Int. Workshop Discrete Event Syst. (WODES),
2008, pp. 131–136.

[24] C. Ma and W. M. Wonham, “STSLib and its application to two bench-
marks,” in Proc. 9th Int. Workshop Discrete Event Syst. (WODES),
2008, pp. 119–124.

[25] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379–423, 1948.

[26] H. R. Andersen, “An introduction to binary decision diagrams,” Dept.
Inf. Technol., Tech. Univ. Denmark, 1997.

[27] B. Bollig and I. Wegener, “Improving the variable ordering of OBDDs
Is NP-complete,” IEEE Trans. Comput., vol. 45, no. 9, pp. 993–1002,
Sep. 1996.

[28] A. Aziz, S. Tasiran, and R. K. Brayton, “BDD variable ordering for
interacting finite state machines,” in Proc. 31st Annu. Design Autom.
Conf. (DAC), 1994, pp. 283–288.

[29] R. E. Bryant, “Symbolic Boolean manipulation with ordered binary-
decision diagrams,” ACM Comput. Surv., vol. 24, no. 3, pp. 293–318,
1992.

[30] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Sys-
tems, 2nd ed. New York: Springer, 2008.

[31] E. M. Clarke, K. L. Mcmillan, X. Zhao, M. Fujita, and J. Yang, “Spec-
tral transforms for large Boolean functions with applications to tech-
nology mapping,” Form. Methods Syst. Des., vol. 10, no. 2–3, pp.
137–148, 1997.

[32] J. Gunnarsson, “Symbolic methods and tools for discrete event
dynamic systems,” Ph.D. dissertation, Dept. Elect. Eng., Linköping
Univ., Linköping, Sweden, 1997.

[33] A. Vahidi, “Efficient analysis of discrete event systems,” Ph.D. dis-
sertation, Dept. Signals Syst., Chalmers Univ. Technol., Göteborg,
Sweden, 2004.

[34] A. Nazeem and S. Reveliotis, “A practical approach to the design of
maximally permissive liveness-enforcing supervisors for complex re-
source allocation systems,” in Proc. 6th IEEE Conf. Autom. Sci. Eng.
(CASE), Toronto, ON, Canada, 2010, pp. 451–458 [Online]. Available:
http://www.isye.gatech.edu/~spyros/publications/CASE-2010.pdf

[35] P. Magnusson, N. Sundström, K. Bengtsson, B. Lennartson, P.
Falkman, and M. Fabian, “Planning transport sequences for exible
manufacturing systems,” presented at the 18th IFAC World Congr.
Milano, Italy, 2011.

[36] M. R. Shoaei, B. Lennartson, and S. Miremadi, “Automatic genera-
tion of controllers for collision-free flexible manufacturing systems,”
in Proc. 6th IEEE Int. Conf. Autom. Sci. Eng., 2010, pp. 368–373.

[37] G.Čengić, O. Ljungkrantz, andK. Åkesson, “Formalmodeling of func-
tion block applications running in IEC 61499 execution runtime,” pre-
sented at the 11th IEEE Int. Conf. Emerg. Technol. Factory Autom.,
Prague, Czech Republic, 2006.

[38] L. E. Holloway and B. H. Krogh, “Synthesis of feedback control logic
for a class of controlled petri nets,” IEEE Trans. Autom. Control, vol.
35, no. 5, pp. 514–523, May 1990.

[39] K. Åkesson, M. Fabian, H. Flordal, and R. Malik, “Supremica—An in-
tegrated environment for verification, synthesis and simulation of dis-
crete event systems,” in Proc. 8th Int. Workshop Discrete Event Syst.
(WODES), 2006, pp. 384–385.

[40] K. Åkesson, M. Fabian, H. Flordal, and A. Vahidi, “Supremica—A tool
for verification and synthesis of discrete event supervisors,” presented
at the 11th Med. Conf. Control Autom., Rhodos, Greece, 2003.

[41] JavaBDD, 2007. [Online]. Available: http://javabdd.sourceforge.net

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MIREMADI et al.: BDD-BASED APPROACH FOR MODELING PLANT AND SUPERVISOR BY EFA 15

Sajed Miremadi was born in Linköping, Sweden,
in 1983. He received the B.Sc. degree in computer
engineering from Sharif University of Technology,
Tehran, Iran, in 2006 and the M.Sc. degree in com-
puter science from Linköping University, Linköping,
Sweden, in 2008. He is currently pursuing the Ph.D.
degree in automation from Chalmers University of
Technology, Gothenburg, Sweden.
His current research interests include supervisory

control and optimization of (timed) discrete event
systems, using formal methods.

Bengt Lennartson (M’10) was born in Gnosjö,
Sweden, in 1956. He received the Ph.D. degree
in automatic control from Chalmers University of
Technology, Gothenburg, Sweden, in 1986.
Since 1999, he has been a Professor of the Chair

of Automation, Department of Signals and Systems,
Chalmers University of Technology, and was Dean
of Education from 2004 to 2007. Since 2005, he is
a Guest Professor with University West, Trollhättan,
Sweden. , He is (co)author of two books and 180 peer
reviewed international papers with more than 2200

citations. His main areas of interest include discrete event and hybrid systems,
especially for manufacturing applications, as well as robust feedback control.
Dr. Lennartson was the Chairman of the Ninth International Workshop on

Discrete Event Systems,WODES’08, and currently is amember of the Advisory
Board for IEEE TASE. He was an Associate Editor for Automatica.

Knut Åkesson received the M.S. degree in computer
science and engineering from Lund Institute of Tech-
nology, Lund, Sweden, in 1997 and the Ph.D. degree
in control engineering from Chalmers University of
Technology, Gothenburg, Sweden, in 2002.
Currently, he is an Associate Professor with the

Department of Signals and Systems, Chalmers Uni-
versity of Technology, where his main research in-
terest is to develop and applying formal methods for
verification and synthesis of control logic.

