
Supervisor Computation and
Representation: A Case Study

S. Miremadi ∗ K. Åkesson B. Lennartson M. Fabian

∗Department of Signals and Systems, Chalmers University of
Technology, SE-412 96 Göteborg, Sweden

(e-mail: miremads@chalmers.se).

Abstract:
When supervisory control theory is applied to industrial problems the need for a more expressive
modeling formalism than plain event based automata is crucial. The models are typically built
in a bottom-up structure where multiple sub-plant and sub-specifications together compose the
full plant and specification, respectively. Typically, the enabling of an event in a sub-model
may depend on the state of other sub-models. The standard approach is to synchronize on
shared events. However, to build models of large industrial problems with complex constraints
between sub-models are beyond many engineers abilities. One attempt to deal with this problem
is to extend the plain automata with variables and allow guard conditions and action functions
to be associated with transitions. This paper discusses the strengths and weaknesses of one
such formulation that fits well together with the standard supervisory control theory. A related
problem is how to represent the result after the synthesis procedure, i.e., the supervisor. In
this paper we present an approach where the supervisor may be represented as extended guard
conditions on the original sub-models. This allows an efficient and comprehensible representation
of complex supervisors. Hence, it is preferable both from a user, as well as an implementation
perspective. Both the modeling formalism based on extended finite automata and the way to
represent the supervisor as extended guard conditions have been implemented in a supervisory
control tool.

Keywords: Discrete event systems, supervisory control theory, automata.

1. INTRODUCTION

In the supervisory control theory (SCT) Ramadge and
Wonham (1989); Cassandras and Lafortune (2008) a
model of the uncontrolled plant and the specification is
used to synthesize a supervisor that restricts the behavior
of the plant such that the given specification is fulfilled.
SCT can be used in various applications including auto-
mated manufacturing and embedded systems, some appli-
cations are presented in Balemi et al. (1993); Feng et al.
(2007); Andersson et al. (2010).

When applying SCT to industrial problems, two issues
arise. (i) How to model the plant and the specification. (ii)
How to represent the synthesized supervisor. Most of the
formal languages such as finite automata and Petri nets
that are used as modeling formalisms in SCT are more
convenient for modeling the plant and the specification.
It is also common to include a composition operator,
typically the full synchronous composition operator, that
can be used to derive the plant and the specification
models from sub-models. Usually, the same framework
used for modeling is also used to represent the supervisor.

A basic problem with using finite automata and event-
based synchronization between sub-models, in our view, is
that it is common that the condition for a state-change
in one sub-model depends on the current state of some
other sub-models. In simple cases these conditions can be

described with event-based synchronization but when the
logic conditions become more complex and involve con-
junctions, disjunctions, and negations doing this manually
with event-based synchronization is both time-consuming
and error-prone. In SCT, the supervisor influences con-
trol by possibly disabling controllable events from being
generated by the plant. While this is a useful abstraction,
it does not capture that commonly signals are used to
interact between different sub-plants (e.g. different ma-
chines) and also between the logic controllers and the
machines. Typically, signals can also be used to model
sensors and actuators. Since signals can conveniently be
modeled using shared variables, there are good reasons
for including variables in a modeling framework suited for
modeling large-scale applications. As a consequence of in-
troducing variables it is natural to allow guard conditions,
boolean-valued functions, that restrict when state transi-
tions should be allowed. Action functions that update the
current values when a state-transition takes place are also
useful.

The idea of using finite automata extended with vari-
ables, guard conditions, and action functions is not new.
Statecharts, Harel (1987), an extension of ordinary au-
tomata with hierarchy, concurrency and communication
using variables, guards and actions; a variant is used in
the Unified Modeling Language (UML).

When discussing modeling frameworks it is important to
highlight the difference between modeling of a control logic
and the modeling of plants. In the SCT, plant models
spontaneously generate events. Thus, a number of different
events may be generated in each plant state but which
event that is generated and when the event is generated
is determined by the plant itself. Compare, this to the
requirements for modeling of control logic. When modeling
control logic it is desirable to have a deterministic behavior
in the sense that the same input sequences should always
result in the same output sequence because the control
logic will be hard to analyze if it produces different results
in different runs. This, is not desirable when modeling
plants, consider for example the situation where a machine
can do an operation and finish successfully but it is also a
possibility that the operation finish unsuccessfully. Thus,
two different scenarios should be expressed by the plant
model.

The main objective of Statecharts is to model the software,
i.e. control logic, and thus not suitable, in the standard for-
mulation, for modeling of plant behavior that is necessary
within the SCT framework. In addition, there is a causality
between subsystems in Statecharts, which is not desired in
the SCT framework.

There also exist a number of other frameworks that are
based on automata extended with variables such as Chen
and Lin (2000); Yang and Gohari (2005); Gaudin and
Deussen (2006). In Chen and Lin (2000), it is assumed
that a variable can be updated by at most one extended
automaton. In Yang and Gohari (2005), finite state ma-
chines with variables are used to implement a supervisor.
The authors encode the states of a given supervisor using
Boolean variables. The variables are used in guards and
actions attached to the events (not transitions) of the
model. In Gaudin and Deussen (2006), to ensure a least
restrictive supervisor, it is assumed that all variables are
local i.e. not shared between automata.

Another type of discrete event models that are used in
SCT are Petri nets Giua (1992); Giua and DiCesare (1994).
Petri nets can conveniently model systems with huge and
also infinite state-spaces due to its explicit modeling of
concurrency. While Petri nets are an attractive approach,
in some situations they have, in the standard formulation,
weak support for adding state-dependent conditions, with
complex logic conditions since arbitrary guard conditions
and action functions are not supported. Furthermore,
the synthesis problem is not, in general, decidable for
systems with infinite state-spaces. Since arcs are used to
model constraints, standard Petri nets are in one sense a
monolithic approach. Thus, Petri nets are, in our view,
missing a few properties that are necessary for being
suitable in large-scale SCT applications.

In this paper, we present on approach to handle both the
plant and specification modeling, synthesis and represen-
tation of large-scale systems. The modeling framework is
based on automata extended with variables and guard
conditions and action functions, called Extended Finite
Automata (EFAs) Sköldstam et al. (2007). EFAs do not
have many of the restrictions presented in the other frame-
works based on state transition models extended with
variables. The supervisory synthesis has been implemented

symbolically using binary decision diagrams and conse-
quentially much larger state-spaces can be handled than
what is possible using explicit state-space enumeration.

Additionally, a method for representing the synthesized
supervisor as extended guard conditions on the original
plant and specification models has been developed as
part of this research. A goal with our research has been
on generating compact guard conditions that represent a
possible complex supervisor in as comprehensible way as
reasonably possible. Also, the generation of the compact
guard conditions is implemented symbolically using binary
decision diagrams, thus allowing large state-spaces to be
handled. While specific aspects of this research has been
presented in previous papers, the goal of this paper is
to show using an example how all pieces fit together
and, hopefully, also show how the proposed approach is
beneficial to users who work with large-scale systems. The
full framework has been implemented in the supervisory
control tool Supremica (available online); Åkesson et al.
(2003); Miremadi et al. (2008).

Furthermore, there are a number of advantages in having
the output as EFAs. A supervisor that is represented in
a modular manner is more comprehensible and tractable
for the users. In addition, typically, a modular supervisor
consumes less memory on a controller. The reason is
that the synchronization will be performed online on the
controller, see Hellgren et al. (1999, 2002); Åkesson (2002),
which can alleviate the problem of exponential growth of
the number of states in the synchronization. Furthermore,
since EFAs include guards and actions, they can easily be
converted to controller programming languages e.g. SFC
or ladder diagrams and to well-known verification tools
such as NuSMV Voronov and Akesson (2009).

This paper is organized as follows: In Section 2, two types
of modeling formalisms are described. Section 3 presents
a case study related to automated guided vehicles. The
supervisory control theory is briefly explained in Section 4
and is applied to the example. Finally, Section 5 provides
some conclusions.

2. MODELING FORMALISMS

This section provides a brief introduction to two types of
state transition models. We are interested in deterministic
systems, and thus, we describe deterministic models.

Definition 1 (Deterministic Finite Automaton):
A deterministic finite automaton (DFA) A is a 4-tuple

A = 〈QA,ΣA, δA, qA0 〉,
where:

(i) QA is a finite set of states;
(ii) ΣA is a nonempty finite set of events;

(iii) δA : QA × ΣA → QA is a partial transition function
that describes the state transitions;

(vi) qA0 ∈ QA is the initial state;

For a transition function δ(q, σ) = q́, q is called the source-
state and q́ is called the target-state.

A sequence of events is called a string of events. An empty
string is denoted by ε and all possible strings consisting of
events from Σ is denoted by Σ∗.

The domain of the transition function of an automaton
can be recursively extended to strings of events:

δ(q, ε) = q

δ(q, sσ) = δ(δ(q, s), σ) for s ∈ Σ∗ and σ ∈ Σ.
The composition of two automata is defined by the full
synchronous composition operator ‖, which is formally
described in Hoare (1985).

A finite automaton can be extended with variables, guards
and actions associated to the transitions of the automaton.
Such an augmentation of an ordinary automaton is called
an extended finite automaton (EFA) Sköldstam et al.
(2007). The transitions in the EFA are enabled if and only
if the guard formula is true and when a transition is taken,
updating actions of a set of variables may follow.

Definition 2 (Deterministic Extended Automaton):
An extended finite-state automaton E is a 6-tuple

E = 〈L× V,Σ,G,A,→, q0〉,
where:

(i) L× V is the extended finite set of states, denoted by
Q, where L is a set of locations and V is the domain
of definition of the variables;

(ii) Σ is a nonempty finite set of events (the alphabet);
(iii) G = {χW | W ∈ 2V } is the set of guard predicates

over V ;
(iv) A = {a | a is a function from V to V } is a collection

of action functions;
(v) →⊆ L× Σ× G ×A× L is the transition function;

(vi) q0 = (l0, v0) ∈ L× V is the initial state.

The states of the ordinary automaton are extended to L×
V , where V = V 1× ...×V n. The finite set V is the domain
of definition of an n-tuple of variables v = (v1, . . . , vn)
with initial values v0 = (v1

0 , . . . , v
n
0) ∈ V . The guards are

predicates over the variables that relate each element of V
to either 1 (true) or 0 (false). The actions are considered as
functions since we are interested in deterministic systems
in our work. Guards and actions are written as

k = g(v), where k ∈ 0, 1;
v́ := a(v) = (a1(v), . . . , an(v)),where v́ ∈ V.

The symbol Ξ is used to denote implicit actions that do not
update the value of variables. For instance, if ai(vj) = Ξ,
it means that action ai does not update vj .

The transition relation is written as p σ→g/a q, where
p, q ∈ Q, σ ∈ Σ, g ∈ G and a ∈ A. If g is absent, denoted
by p σ→a q, it is assumed that g always evaluates to true.
If a is absent, denoted by p

σ→g q, it is assumed that
a(v) = (Ξ,Ξ, . . . ,Ξ) and no variable is updated during
the transition.

3. CASE STUDY: AUTOMATED GUIDED VEHICLES

In this section, we describe a flexible manufacturing cell
which is a modified version of the cell introduced by

Holloway and Krogh (1990). We will show how such a
system can be modeled by EFAs to be used as input to the
synthesis explained in Section 4. The cell, shown in Fig. 1,
consists of three workstations, two input stations and one
output station. There also exist five Automated Guided
Vehicles (AGVs), each one responsible to route some parts
through the cell by following certain paths. Each path has
an index number associated to the AGV shown in Fig. 1.

Fig. 1. A flexible manufacturing cell with AGVs transport-
ing parts between different stations.

The control problem is that the routes intersect or are
very close to each other and thus there are zones in which
no two AGVs are allowed to be at the same time. These
zones are shaded light-grey with dotted frames in Fig. 1.
We assume that AGV 3 is inside Zone 2 when the system
starts operating and the other AGVs are outside the zones.
When AGV i enters Zone j, event eij-k is fired, where k
is used to distinguish the event with other events in case
the AGV enters the same zone from different places. For
instance, AGV 1 enters Zone 1 from two different places.
Entering events eij-k are controllable to the supervisor.
Similarly, event lij-k is fired when AGV i leaves Zone j,
which is uncontrollable to the supervisor. The input and
output stations and workstations have their own events, all
of them which are uncontrollable. Furthermore, the exists
two other events in the middle of Path 5 labeled by c5
(covered by AGV 5 in Fig. 1) and u5 that are controllable
and uncontrollable, respectively.

3.1 DFA Model

The DFA models of the AGVs, input and output stations
and workstations can be considered as plants. The DFA
model of AGV 2 is shown in Fig. 2. The DFA models of
the other parts can be modeled in an analogous manner.

Fig. 2. DFA modeling AGV 2 presented in Fig. 1.

The restriction that at most one AGV can be inside a
zone at a time can be considered as a specification, while
the AGV paths can be viewed as the plant. Hence, there
are four specifications in this system. The automaton
modeling Zone 2 is shown in Fig. 3.

Fig. 3. DFA modeling Zone 2 presented in Fig. 1.

3.2 EFA Model

Since there are not restrictions on the input and output
stations and workstations, the EFA models of these parts
are equivalent to their corresponding DFA models. The
zones are modeled by five integer variables, i.e zj , with
domains {0, 1}, rather than specification automata. When
an AGV wants to enter Zone j, it is checked whether the
zone is not occupied by any other AGV, i.e. zj > 0. Since
AGV 3 starts from inside Zone 2, the initial value is 0 for z2
and 1 for the other variables. When the AGV enters and
leaves Zone j, zj will be decremented and incremented
by one, respectively. The guards and actions are then
attached to the DFA models of the AGVs. A part of the
EFA modeling AGV 2 is shown in Fig. 4.

If n ≥ 2 AGVs were allowed to enter Zone j, it is sufficient
to extend the domain of variable zj to {0, . . . , n}. For the
DFA case, the automaton for Zone j must be modified
extensively, depending on the value of n. This shows one
of the advantages of modeling using EFAs compared to
DFAs.

Fig. 4. EFA modeling AGV 2 presented in Fig. 1.

4. SUPERVISOR COMPUTATION AND
REPRESENTATION

In this section, we briefly explain the supervisory control
theory and the results of applying it to the AGV example.
Furthermore, we modify the AGV example to face the un-
controllability problem and show how the new supervisor
can be represented by a simple modification of the plant
EFAs.

4.1 Supervisory Control Theory

Supervisory Control Theory (SCT) Ramadge and Won-
ham (1989); Cassandras and Lafortune (2008) is a general
theory to automatically synthesize supervisors based on
some given plant(s) and specification(s). Specifications
describe the allowed and inhibited behaviors. A supervisor
restricts the conduct of plants to guarantee that the system
never violates the given specifications.

In SCT, some states of an automaton A can be considered
as marked states QAm, which are the states that are
desired to be reached from the initial state. The set of
marked states of a composed automaton A1 ‖ A2 is
QA1
m × QA2

m . In addition, some states are specified as
explicitly forbidden QAx , which are states that should not
be reached from the initial state. The set of forbidden
states of a composed automaton A1 ‖ A2 is QA1

x ×QA2 ∪
QA1 ×QA2

x . Furthermore, the events are divided into two
disjoint subsets: controllable events, denoted by Σc, that
can be prevented from executing by the supervisor; and
uncontrollable events, denoted by Σu, that can be executed
independently from the supervisor Ramadge and Wonham
(1989); Cassandras and Lafortune (2008).

In supervisory synthesis, a plant P can be described by
the synchronization of a number of sub-plants P = P1 ‖
P2 ‖ . . . ‖ Pl, and similarly for a specification Sp = Sp1 ‖
Sp2 ‖ . . . ‖ Spm. A first candidate of the supervisor is the
composed automaton S0 = P ‖ Sp. After the synthesis
procedure, some states, referred to as forbidden states, are
identified as blocking and uncontrollable, which should be
excluded from S0 in order to obtain the safe states, i.e. the
states belonging to the supervisor.

To be able to handle large systems, we use the sym-
bolic representations of the models by Binary Decision
Diagrams (BDDs) Akers (1978), powerful data structures
for representing Boolean functions. In Miremadi et al.
(2010b), it is explained how the EFAs can be represented
by BDDs and how the full synchronous operator for EFAs
can be represented symbolically. The synthesis computa-

tions is then carried out on the BDDs using fixed point
computations described in Vahidi et al. (2006).

The AGV example mentioned in Section 3 is both non-
blocking and controllable. The supervisor consists of
25731072 (∼ 2.5× 107) states which is, in this case, equal
to |QP‖Spac |. In other words, all the events are allowed to
occur from the reachable states in P ‖ Sp.

4.2 Guard Generation

Recall that the supervisor influences the plant models by
preventing them to execute some events in their current
states in order to avoid violations of the given specifica-
tions.

Concerning the states that are retained or removed after
the synthesis process, the states that enable an arbitrary
event σ can be divided into three state sets called basic
state sets: forbidden state set, allowed state set and don’t-
care state set.

The forbidden state set, denoted by Qσf , is the set of states
in the supervisor where the execution of σ is defined for S0,
but not for the supervisor. The allowed state set, denoted
by Qσa , is the set of states in the supervisor where the
execution of σ is defined for the supervisor. In other words,
for each event σ in S0’s alphabet, Qσa represents the set of
states where event σ must be allowed to be executed in
order to end up in states belonging to the supervisor (an
analogous argument can be given for Qσf).

In order to obtain compact and simplified guards, inspired
from the Boolean minimization techniques, we determine a
set of states where executing σ will not impact the result
of the synthesis and utilize these states to minimize the
guards.

Consequently, for a given event σ, the states that can
impact the supervisor are only the states where σ must
be allowed, Qσa , or forbidden, Qσf , to occur and the re-
maining states can be considered as don’t-care. For formal
definitions of the state sets and proofs, see Miremadi et al.
(2010a).

Based on the basic state sets, some logic restrictions can
be extracted, expressing under which conditions the events
can be executed without violating the specifications.

For an event σ and a state (qA1
u , qA2

v , . . . , qAM
w) ∈ QS0 , the

following propositional function Gσ : QA1 × QA2 × . . . ×
QAN → B, referred to as guard, is desired:

Gσ(qA1 , qA2 , . . . , qAN) = true (qA1 , qA2 , . . . , qAN) ∈ Qσa
false (qA1 , qA2 , . . . , qAN) ∈ Qσf
don′t care otherwise

where B is the set of Boolean values and qAi represents the
current state of automaton Ai. In particular, σ is allowed
to be executed from the state (qA1 , qA2 , . . . , qAN) if the
guard is true.

By applying minimization methods of Boolean functions
(utilizing the don’t-care state set) and some heuristic
techniques, a more simplified guard can be obtained,
denoted by G. This procedure is defined in details in
Miremadi et al. (2010a).

4.3 Uncontrollability in the AGV Example

To introduce some changes in the AGV system, let event
e23-2 in Fig. 1 (upper part of Zone 3) be uncontrollable.
For the DFA model, it is sufficient to only change the
event’s property. However, for the EFA model, since there
do not exist any specifications (the zone specifications are
replaced by guards using integer variables), we have to
apply a small modification to the plant model. In general,
when the uncontrollability property is going to be modeled
on an EFA plant, the following rule can be applied:
∀ (p σ→g/a q) | σ ∈ Σu :

add (p σ→¬g qx) to the set of partial transitions.
where Σu is the set of uncontrollable events, qx is a new
explicitly forbidden state added to the plant. The rule
holds if the σ is a local event.

By looking at Fig. 4, we can observe that an uncontrol-
lability problem will arise if e23_2 is fired from location
q11 when z3 <= 0. Hence, we can model this by adding a
transition from location q11 to a forbidden location by a
guard z3 <= 0. The new EFA is shown in Fig. 5.

Fig. 5. EFA modeling AGV 2 including uncontrollability.

The supervisor for this model consists of 24993792 (∼
2.5× 107) states. The EFA model has 27376128 reachable
states where 2382336 (∼ 2.4× 106) of those are blocking.
Representing the supervisor’s states explicitly will not be
possible and hard for the user to understand. Therefore,
we apply the approach by Miremadi et al. (2010b), which
is a way of representing the supervisor by symbolically
generating guards and attaching them to the original
EFAs.

By applying the mentioned approach to this example, two
guards are generated for three different events:

Ge43-1 = Ge43-2 : qAGV 2 6= q10
Ge22-2 : z3 == 1

The first guard says that AGV 2 should not be in state
q10 when events e43-1 and e43-2 are going to be fired. By
observing Fig. 2, this means that event e22-2 should not
have been fired before. This can also be concluded from
Fig. 1. If e22-2 is fired, then it is not possible to prevent
AGV 2 of entering Zone 3 because l22-2 and e23-2 are
uncontrollable events. Similarly for the second guard, if
e22-2 is going to be fired, it should be checked whether
Zone 3 is empty, i.e. z3 == 1. In the next step, these
guards are attached to the transitions in the plant EFAs
where the mentioned events are included.

In this way, we have restricted the plant EFAs to end up in
more than 2 million blocking states by merely two simple

guards. The guards were generated in approximately three
seconds.

Worth to mention that the program is implemented in
JAVA programming language using Supremica libraries
Åkesson et al. (2006, 2003), which uses JavaBDD (avilable
online) as the BDD package. The example was conducted
on a standard PC (Intel Core 2 Quad CPU @ 2.4 GHz and
3GB RAM) running Windows XP.

5. CONCLUSIONS

In this paper, we have shown how to model a flexible
manufacturing cell with AGVs by DFA and EFA models.
Furthermore, for the uncontrollable version of the cell, the
synthesis results were given. It was shown that two simple
guards are sufficient to restrict the model to enter around
2 million forbidden states. Since the entire procedure
is based on BDDs, the computations were carried out
efficiently.

Consequently, the controller designers remain within the
same scope, i.e. EFA models, during the modeling phase.
Since designing a controller is typically an iterative pro-
cess, this is considered as a significant feature of the ap-
proach. In essence, the users can make their modifications
to the supervisors on the same type of models. 1

REFERENCES

Akers, S. B., Jun. 1978. Binary decision diagrams. IEEE
27, 509–516.

Andersson, K., Richardsson, J., Lennartson, B., Fabian,
M., 2010. Coordination of operations by relation extrac-
tion for manufacturing cell controllers. IEEE Trans. on
Control Systems Technology 18 (2), 414–429.

Balemi, S., Hoffmann, G. J., Gyugyi, P., Wong-Toi, H.,
Franklin, G. F., 1993. Supervisory control of a rapid
thermal multiprocessor. IEEE Transactions on Auto-
matic Control 38 (7), 1040–1059.

Cassandras, C. G., Lafortune, S., 2008. Introduction to
Discrete Event Systems, 2nd Edition. Springer.

Chen, Y.-L., Lin, F., Sep. 2000. Modeling of discrete event
systems using finite state machines with parameters. In:
Proceedings of the IEEE International Conference on
Control Applications, CCA’00. pp. 941–946.

Feng, L., Wonham, W. M., Thiagarajan, P. S., 2007. De-
signing communicating transaction processes by super-
visory control theory. Form. Methods Syst. Des. 30 (2),
117–141.

Gaudin, B., Deussen, P. H., 2006. Supervisory control
on concurrent discrete event systems with variables
(extended version). Tech. rep., Technical University,
Berlin.

Giua, A., Jul. 1992. Petri nets as discrete event models for
supervisory control. Ph.D. thesis, Rensselaer Polytech-
nic Institute, Troy, New York, USA.

Giua, A., DiCesare, F., Apr 1994. Blocking and controlla-
bility of petri nets in supervisory control. IEEE Trans-
actions on Automatic Control 39 (4), 818–823.

Harel, D., 1987. Statecharts: A visual formalism for com-
plex systems. Science of Computer Programming 8, 231–
274.

1 This work was carried out within the Wingquist Laboratory VINN
Excellence Centre at Chalmers University of Technology.

Hellgren, A., Fabian, M., Lennartson, B., 1999. Synchro-
nized execution of discrete event models using sequential
function charts. In: 38th Decision and Control. Phoenix
AZ, USA.

Hellgren, A., Lennartson, B., Fabian, M., 2002. Modelling
and plc-based implementation of modular supervisory
control. In: Proceedings of the Sixth International Work-
shop on Discrete Event Systems, WODES’02. pp. 371–
376.

Hoare, C. A. R., 1985. Communicating sequential pro-
cesses. Series in Computer Science. Prentice-Hall.

Holloway, L. E., Krogh, B. H., 1990. Synthesis of feedback
control logic for a class of controlled Petri nets. IEEE
Transactions on Automatic Control 35 (5), 514–523.

JavaBDD, avilable online.
URL http://javabdd.sourceforge.net

Åkesson, K., 2002. Methods and tools in supervisory
control theory: operator aspects, computation efficiency
and applications. Ph.D. thesis, Signals and Systems,
Chalmers University of Technology, Göteborg, Sweden.

Åkesson, K., Fabian, M., Flordal, H., Malik, R., Jul. 2006.
Supremica—an integrated environment for verification,
synthesis and simulation of discrete event systems. In:
Proceedings of the 8th international Workshop on Dis-
crete Event Systems, WODES’08. Ann Arbor, MI, USA,
pp. 384–385.

Åkesson, K., Fabian, M., Flordal, H., Vahidi, A., 2003.
Supremica—a tool for verification and synthesis of dis-
crete event supervisors. In: 11th Mediterranean Confer-
ence on Control and Automation. Rhodos, Greece.

Miremadi, S., Akesson, K., Fabian, M., Vahidi, A.,
Lennartson, B., May 2008. Solving two supervisory
control benchmark problems using supremica. In: Pro-
ceedings of the 9th International Workshop on Discrete
Event Systems, WODES’08. pp. 131–136.

Miremadi, S., Åkesson, K., Lennartson, B., 2010a. Sym-
bolic computation of reduced guards in supervisory con-
trol, submitted to IEEE Transactions on Automation
Science and Engineering.

Miremadi, S., Åkesson, K., Lennartson, B., 2010b. Sym-
bolic supervisory synthesis on extended finite automata,
submitted to IEEE Transactions on Control Systems
Technology.

Ramadge, P., Wonham, W., Jan 1989. The control of
discrete event systems. Proceedings of the IEEE 77 (1),
81–98.

Sköldstam, M., Åkesson, K., Fabian, M., Dec 2007. Model-
ing of discrete event systems using finite automata with
variables. In: Proceedings of the 46th IEEE Conference
on Decision and Control. pp. 3387–92.

Supremica, available online. www.supremica.org. The of-
ficial website for the Supremica project.

Vahidi, A., Fabian, M., Lennartson, B., Oct. 2006. Ef-
ficient supervisory synthesis of large systems. Control
Engineering Practice 14 (10), 1157–1167.

Voronov, A., Akesson, K., Aug. 2009. Verification of pro-
cess operations using model checking. In: Proceedings of
the 5th IEEE International Conference on Automation
Science and Engineering, CASE’09. pp. 415–420.

Yang, Y., Gohari, R., Aug. 2005. Embedded supervisory
control of discrete-event systems. In: Proceedings of the
IEEE International Conference on Automation Science
and Engineering, CASE’05. pp. 410–415.

