
A Classi�cation of Value for Software Architecture

Decisions

Ulrik Eklund & Thomas Arts
Department of Applied IT

Chalmers Univ. of Technology/Göteborg University, Sweden
ulrik.eklund@ituniv.se

25 August 2010

Abstract

This paper introduces a classi�cation for decisions originating from

work performed by architects. With the creation of a new architecture,

all observed decisions were documented using an existing taxonomy ex-

tended with the introduced classi�cation. In the �rst four months, 80

decisions were documented. Not all decisions have the same value for

the architecture and one needed a classi�cation to reason about im-

portance of decisions. After realization of the �rst increment of the

architecture a sanity check was performed: The architects showed how

the six most important design artefacts and the �fteen most important

architectural constraints and prerequisites were related. The relation-

ship was via decisions and the classi�cation helps to reduce the work

to make and maintain this connection over time. The classi�cation is

dynamic and over time decisions can be classi�ed di�erently. This en-

ables architectural learning by pointing out which decisions were taken

too early or had little impact.

1 Introduction

The classi�cation introduced in this paper originates from a practical prob-
lem a group of architects was confronted with. In their preparation of a
software architecture for a new product, they have to take a large number of
decisions. Design artefacts such as speci�cations, models and code remain,
but the `why' is lost over time. In the lifetime of a product, but in particular
when an architecture for a new product is created, an answer to the `why'
question is of utmost importance; �Did we base this decision on technology
that now is replaced?�; �Did we take this decision because the company de-
cided for a speci�c business unit to implement it?�. If the reasons for a
decision has been invalidated, then it would be wise to revisit that decision,
but one can only do so, if the reasoning around the decision is documented.

1



The architects were in particular interested in the relationship between
design artefacts and the prerequisites for the architecture, which includes
business and technical requirements, and design constraints. During the
work we noticed a demand among the architects to discuss and understand
more in detail how prerequisites and artefacts were related, especially as a
rationale for the architecture as a whole. This lead to a new classi�cation of
decisions supporting reasoning about the value or usefulness of a decision,
also over time.

We aim to aid in answering questions like �do the architects spend their
time on the right/best decisions?�, �Are there some decision the architects
should not make?� and �which decisions could be reused?�. Our contribution
is a classi�cation of decisions and show that this helps architects to:

• detect possible decisions that need to be elaborated on,

• detect decisions that need discussion with stakeholders,

• detect over time whether the architects spend their time on taking the
right decisions, those that create true value for the organisation. These
are the decisions that would be impossible, less e�cient or more costly
if they would be made by an other stakeholder, for example an acquirer
or programmer.

The focus on the vital decisions become even more necessary if architects
are a limited resource or one has a lean perspective on software development,
i.e. eliminate spending time on issues not creating value.

1.0.1 Related Work.

Kruchten et al. [5] have noticed the need of explicitly documenting design
decisions and recognize that this is often omitted in practice. They present
an ontology to help documenting and analysing design decisions. In our case
the architects build upon this existing ontology. Tang et al. [6] focus much
on the relation between prerequisites, decision and artefacts and have tool
support for documenting this by means of a UML model pro�le [7]. This
approach would support a change impact analysis of the architecture, e.g.
[3].

A di�erence between the two mentioned approaches is that Tang et. al.
only describes relationship between prerequisites and design outcomes and
not between decisions themselves. If such relations need to be expressed,
then a design outcome from one decision must be modelled as a prerequisite
for another. Kruchten et al. on the other hand give no extra status to
prerequisites; these are decisions at the beginning of the chain of relations
and one may use a decision attribute to document their special rationale.

2



2 The Case of Documenting Decisions

How can one help the architect to make a limited set of decisions, and still do
a proper job? We expect that each �architectural requirement� or prerequisite
relates via a number of decisions to at least one design artefact, most likely
a few. Similarly we would expect each design artefact to be traceable to at
least one prerequisite. If we consider the software architect to be the link
between the requirement owners (stakeholders) and the software design, then
part of the job of the software architect is to take decisions such that the set
of architectural artefacts is a smallest set covering the prerequisites.

In our case a team of software architects is appointed to deliver a new
software architecture, but one of them has the extra task as an industrial
PhD student to document all decisions taken. This is communicated to the
team and everyone agrees on the usefulness of that extra task being carried
out. The decisions were documented in a systematic way with attributes1

similar to the ones by Kruchten et al. [5]. Additional notes were taken
describing how the decision was taken, e.g. was it made by the lead architect,
by consensus after discussion, or if alternatives were not even discussed?

In the �rst four months, 80 decisions were documented relating to both
the process of de�ning the architecture and the resulting artefacts. After
�rst increment of the software architecture a sanity check on the work was
to be performed. In order to do so, the architects showed how the six most
important design artefacts and the �fteen most important architectural pre-
requisites and constraints were related by various decisions.

When documenting decisions care was taken to relate them. Whenever
a new decisions was added, it was related to already existing decisions if
possible. Kruchten et. al. have a rather elaborate categorisation of di�erent
relationships [4], [5], but in practice this richness of relations is a bit over-
whelming; the simplest thing to determine is whether a decision depends
upon another. We propose a very simple relationship of �is in�uenced by�2.
If decision B is in�uenced by decision A then decision B must be re-evaluated
if decision A is removed or changed. This simple relationship would make it
possible to evaluate how far the in�uence of a single decision reaches. The
link between artefacts and decisions and between decisions and prerequisites
were made as part of the documentation process (Fig. 2), sometimes within
the team of architects, sometimes by the PhD student alone. These relations
are also characterized as �in�uenced by�.

Future work involves evaluation of this classi�cation together with an
analysis of the bene�ts at Volvo Cars.

1Epitome (or decision itself), Rationale, Scope, Authors, State, and Category.
2Note that the relation `in�uenced by' is the inverse of Kruchten's `depends on'.

3



Design Artefact II

Prerequisite I

Design Artefact I

Decision A

Decision D Decision B

Decision C

Quality Attributes,

Constraints

and Functionality

Decisions and

Relationships

Design Artefacts

Prerequisite II

Decision E

Figure 1: The relationship between decisions and other elements in a simple
graphical notation. The relationships to other architectural artefacts are
inspired by [6].

3 Classes of Architectural Design Decisions

We now want to talk about the decisions by characterizing the decisions
based upon how valuable the decisions are for the organization. Our point
of view is that each design artefact should be based upon a decision taken
and that decisions are taken to meet some prerequisite.

If we consider for simplicity the prerequisites and design artefacts as
decisions as well, then in this way one obtains a directed graph of decisions.
When the Ph.D. student studied this graph, it was observed that certain
relations were missing, since it was believed that two nodes were related, but
no path existed between them. In those cases it turned out that an implicit
decisions was taken they were added to the graph (similar to �Implicit and
undocumented decisions� mentioned in [5]3. Obviously, there may still be
implicit decisions not recognized this stage and therefore not made explicit,
hence undocumented. The implicit decisions are the �rst we want to de�ne
a name for in order to talk about them.

3.0.2 Oblivious Decisions

are the decisions that the architects are not aware that they are making and
at best are documented in hindsight. Examples include earlier experience,
implicit company policies to use certain approaches, standards, and the like.
These were the most di�cult decisions to observe since the observer was

3�The architect is unaware of the decision, or it concerns `of course' knowledge.�

4



native to the setting he observed, i.e., he was as accustomed to the `of course'
knowledge as the other architects. The existence of them is based on a
theoretical reasoning rather than empirical observation.

Example: Typical examples are decisions where there is only one altern-
ative. This can be due to technical limitations, but also that the consensus
is so strong or the decisions was taken so long ago that no-one is aware of
any alternatives.

3.1 Classi�cation by Relations in the Decision Graph

We base our terminology on the directed graph, of which Fig. 2 is an ex-
ample, obtained by relating all decisions and including prerequisites and
design artefacts as nodes in the graph. We �rst divide the decisions in four
main classes, corresponding to the following relation with the decision graph:

Exterior Decision A node in the graph that has a path to a prerequisite.

Interior Decisions A node in the graph that has no path to a prerequisite.

E�ectual Decisions A node in the graph for which there exists a path
from a design artefact to this node.

Ine�ectual Decisions A node in the graph for which there exists no path
from a design artefact to this node.

3.1.1 Exterior decisions

have a clear stakeholder that drives the decision and the decisions give value
to the organization by bringing the requirements of a stakeholder closer to
the design artefacts. Decision A, C and D in Fig. 2 are typical Exterior
decisions.

Example: A typical example of an exterior decision is the use of the
AUTOSAR standard [2], which supports a number of business decisions and
de�nes a number of standardized software components that are part of the
design outcomes (cf. Table 1 for the documented observed decision).

3.1.2 Interior decisions

are decision necessary for the architecture to progress. Decision B in Fig. 2
is a typical Interior decision. Within this class of decisions, we discriminate
two kinds of decisions: Imposed Decisions and Supporting Decisions.

Imposed decisions Decisions that are imposed on the architects and need
to be resolved for the design of the architecture to progress. There is
no stakeholder that drives the decision, but a choice needs to be made
in order to progress. Normally the choice made limits certain future

5



Table 1: Example of a decision directly a�ecting the design outcomes driven
by a number of business concerns.

Name: #35 AUTOSAR Basic Software

Epitome: The basic software of the electronic control units (ECU) in
the electrical system shall follow the AUTOSAR standard.

Rationale:

Scope: All software in the electrical system

History: Director nn, 200x-xx-xx, 1st version

Category: Exterior E�ectual decision

Note: This is an assumption that the architects have worked on
since the project start in 2008 and was observed as a de-
cided fact rather than when the actual decision was made
by management.

business cases. An experienced architect will need a solid knowledge
about the system and what needs to be resolved in order to have a
�nished product.

Example: For a connected car [1] it is important to know if the car
manufacturer will o�er all services or if 3rd parties also shall have
a possibility to o�er services (in some sort of open innovation scen-
ario). This is really a business decision which acts as an architectural
prerequisite but if it is not known the architects need to make an as-
sumption to progress the work with the technical solution in the car
anyway.

Supporting Decisions A supporting decision is a decision necessary for
the architects to progress, but not discernible for other stake holders
than the architects themselves.

Example: An architecture team is tasked with developing both a product
line architecture and the architecture for the �rst instance. They can
then decide between �rst developing the product line architecture and
use that as a basis for the product architecture. Or they can �rst
de�ne a product architecture and then generalise that to a product
line. Either way it is not discernible for any stakeholders which de-
cision they made if they are both delivered at the same time.

3.1.3 E�ectual decisions

result in a visible Design Outcome. In a design document driven organiza-
tion, these are typically the decisions that the software architects are expec-
ted to make and document the outcomes in various views. An example of

6



an e�ectual decision is seen in Table 2 stating how the design outcome will
be presented. However, the software architect should obey to the principle
of �an architect should make as few decisions as possible, deferring the rest
until later in the lifecycle� [8].

Table 2: Example of a decision directly a�ecting the design outcomes

Name: #25 Choice of deployment views

Epitome:

The logical architecture components will have three deploy-
ments:
1. Logical architecture components onto hardware (ECUs)
2. Logical architecture components onto systems
3. Logical architecture components onto organisation
The deployment will be modelled separately from the lo-
gical package structure in the UML model.

Rationale:

Scope: The entire logical architecture, the entire life-span

History: Architect nn1, 2009-06-08, 2nd version

Category: Exterior E�ectual decision

Note: Consensus decision after several discussions. Original de-
cision observed at working meetings of the logical architec-
ture team.

3.1.4 Ine�ectual Decisions

are those decisions that address a prerequisite but are never visible in a
design artefact.

We have not found any examples of Ine�ectual decisions in our study but
an analysis of design decisions and their relationship to Concerns and Out-
comes shows that these types of decisions can also exist if the classi�cation
should be considered complete. Decision E in Fig. 2 is a typical Ine�ectual
decision.

4 Value of Decisions

By de�ning classes of decisions as above, one can determine by the position
in the graph what kind of decision is taken (Exterior or Interior, E�ectual or
Ine�ectual) and for those that are Interior, one can determine by studying the
decisions whether it is an Imposed decision or a Supporting decision. This
can then help to determine the value of a decision or to detect decisions that
need elaboration or more discussion with stakeholders. The value depends

7



on the organizational context. In the context of Volvo Cars, some guidelines
can be formulated for decisions that probably need more attention than
other decisions. For example, interior imposed decisions are most important
to document, since they indicate that a technical decisions is made before
the business stakeholders have made up their mind. In other words, further
discussion with stakeholders is required; either immediately for the software
release under development or at a later stage when the business propositions
are clearer.

Ine�ectual decisions may in the case of Volvo Cars indicate that the ar-
chitects are not yet ready with their work, since the rôle of the software
architect is seen to produce the initial top-level design and Volvo Cars is
a design artefact-driven organization. In other organizations it may be the
other way around, where many e�ectual decisions may indicate overambi-
tious software architects that deal too much with details.

Exterior and e�ectual decisions are, of course, also important to docu-
ment, since the �why� will be forgotten when the Design Outcome is �xed,
but these decisions are relatively easy to trace in the organization and can
potentially be reconstructed.

5 Classifying Decisions over Time

The classes of decisions we described before are statically determined. How-
ever it was observed that decisions change over time for various reasons and
this needs to be addressed when evaluating the value or usefulness of them.
Two classes emerged after the involved architects analysed the 80 observed
decisions in our case. In order to asses the value of the decisions over time
the analysis needs to be iterated.

5.0.5 Unstable decisions

are those decisions that change over time due to added or changed prerequis-
ites, given that these prerequisites were hard to foresee. At the moment of
this analysis, we have not yet been able to identify such decisions, but since
our study only lasted four months and the products based on the architecture
are manufactured in more than seven years this is not unexpected.

5.0.6 Premature decisions

are decisions that show to be erroneous over time. They had to be changed
without new prerequisites emerging, because they were based upon incorrect
interpretation of prerequisites or forgotten prerequisites.

Example: A decision on what to include in the architecture description
was changed from: Items/headings that are known to be included in the
reference architecture description with a comment that future information

8



will be included in future versions of the document, to: There will not be any
empty headings with TBD (to be de�ned) in the architecture description.
This decision was changed by the lead architect after three months. Because
of too little contextual information available at the moment that the decision
was taken, this precise decision had to be adjusted quickly after.

5.0.7 Expedient decisions

are those decisions that do not change over time (thus it depends upon
when in time one determines their status whether they are expedient or
not). Expedient decisions are unchanged when prerequisites are added or
changed.

6 Conclusion

With the proposed classi�cation of decisions it should be possible to reason
about the value of decisions, as seen from the architects perspective, both
when the decisions are are made and later in retrospective. The classi�cation
should support post-mortem analysis if the architects spend their time on
the most useful issues, especially in the view of the architects being a limited
resource.

A software architect should observe and take care of Interior Imposed
decisions, since they form a potential risk for the architecture. If one is to
re-use decisions in a next project, then the Interior Imposed and Interior
supported decisions need to be evaluated thoroughly. Exterior decisions also
need to be re-evaluated, but the situation of having a stakeholder for them
eases that task.

When gaining experience from working with software architecture it is
important to observe which decisions become unstable, premature or stay
expedient throughout the product lifetime. In particular premature decisions
indicate a learning opportunity for software architects.

In practice it seems impossible to document all architectural decisions in
the lifetime of a car, in particular to maintain the documentation of these de-
cisions. A learning organization starting to document decisions will become
better in choosing which decisions to maintain.

If an organisation is interested in re-using architectural knowledge from
previous projects and systems, it should also be interested in what subset
of this knowledge that is useful for the architects to re-use. We believe this
paper presents a classi�cation and an associated in-depth terminology to use
in such analyses.

9



6.0.8 Acknowledgements.

This work has been �nancially supported by the Swedish Agency for Innov-
ation Systems (VINNOVA) as part of the FFI program. We are grateful for
all the time fellow architects have contributed in discussions.

References

[1] Automotive technology: The connected car. The Economist, June 2009.

[2] AUTOSAR. AUTomotive open system ARchitecture (AUTOSAR), 2009.

[3] Anton Jansen, Paris Avgeriou, and Jan Salvador van der Ven. Enriching
software architecture documentation. Journal of Systems and Software,
82(8):1232�1248, August 2009.

[4] Philippe Kruchten. An ontology of architectural design decisions in soft-
ware intensive systems. In 2nd Groningen Workshop on Software Vari-

ability, pages 54�?61, 2004.

[5] Philippe Kruchten, Patricia Lago, and Hans van Vliet. Building up and
reasoning about architectural knowledge. In Quality of Software Archi-

tectures, volume 4214 of Lecture Notes in Computer Science, pages 43�58.
Springer Berlin / Heidelberg, 2006.

[6] A. Tang, J. Han, and R. Vasa. Software architecture design reasoning:
A case for improved methodology support. IEEE Software, 26(2):43�49,
2009.

[7] Antony Tang, Yan Jin, and Jun Han. A rationale-based architecture
model for design traceability and reasoning. Journal of Systems and

Software, 80(6):918�934, June 2007.

[8] J. Tyree and A. Akerman. Architecture decisions: demystifying archi-
tecture. IEEE Software, 22(2):19�27, 2005.

10


