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Abstract. We present QuickSpec, a tool that automatically generates
algebraic specifications for sets of pure functions. The tool is based on
testing, rather than static analysis or theorem proving. The main chal-
lenge QuickSpec faces is to keep the number of generated equations
to a minimum while maintaining completeness. We demonstrate how
QuickSpec can improve one’s understanding of a program module by
exploring the laws that are generated using two case studies: a heap
library for Haskell and a fixed-point arithmetic library for Erlang.

1 Introduction

Understanding code is hard. But it is vital to understand what code does in
order to determine its correctness.

One way to understand code better is to write down one’s expectations of
the code as formal specifications, which can be tested for compliance, by us-
ing a property-based testing tool. Our earlier work on the random testing tool
QuickCheck [2] follows this direction. However, coming up with formal specifi-
cations is difficult, especially for untrained programmers. Moreover, it is easy to
forget to specify certain properties.

In this paper, we aim to aid programmers with this problem. We propose
an automatic method that, given a list of function names and their object code,
uses testing to come up with a set of algebraic equations that seem to hold for
those functions. Such a list can be useful in several ways. Firstly, it can serve as a
basis for documentation of the code. Secondly, the programmer might gain new
insights by discovering new laws about the code. Thirdly, some laws that one
expects might be missing (or some laws might be more specific than expected),
which points to to a possible miss in the design or implementation of the code.

Since we use testing, our method is potentially unsound, meaning some equa-
tions in the list might not hold; the quality of the generated equations is only as
good as the quality of the used test data, and care has to be taken. Nonetheless,
we still think our method is useful. However, our method is still complete in a
precise sense; although there is a limit on the complexity of the expressions that
occur in the equations, any syntactically valid equation that actually holds for
the code can be derived from the set of equations that QuickSpec generates.

Our method has been implemented for the functional languages Haskell and
Erlang in a tool called QuickSpec. At the moment, QuickSpec only works for



purely functional code, i.e. no side effects. (Adapting it to imperative and other
side-effecting code is ongoing work.)

Examples Let us now show some examples of what QuickSpec can do, by
running it on different subsets of the Haskell standard list functions. When we
use QuickSpec, we have to specify the functions and variable names which
may appear in equations, together with their types. For example, if we generate
equations over the list operators

(++) :: [Elem] -> [Elem] -> [Elem] -- list append

(:) :: Elem -> [Elem] -> [Elem] -- list cons

[] :: [Elem] -- empty list

using variables x, y, z :: Elem and xs, ys, zs :: [Elem], then Quick-
Spec outputs the following list of equations:

xs++[] == xs

[]++xs == xs

(xs++ys)++zs == xs++(ys++zs)

(x:xs)++ys == x:(xs++ys)

We automatically discover the associativity and unit laws for append (which
require induction to prove). These equations happen to comprise a complete
characterization of the ++ operator. If we add the list reverse function to the
mix, we discover the additional familiar equations

reverse [] == []

reverse (reverse xs) == xs

reverse xs++reverse ys == reverse (ys++xs)

reverse (x:[]) == x:[]

Again, these laws completely characterize the reverse operator. Adding the
sort function from the standard List library, we compute the equations

sort [] == []

sort (reverse xs) == sort xs

sort (sort xs) == sort xs

sort (ys++xs) == sort (xs++ys)

sort (x:[]) == x:[]

The third equation tells us that sort is idempotent, while the second and fourth
strongly suggest (but do not imply) that the result of sort is independent of the
order of its input.

Higher-order functions can be dealt with as well. Adding the function map
together with a variable f :: Elem -> Elem, we obtain:

map f [] == []

map f (reverse xs) == reverse (map f xs)

map f xs++map f ys == map f (xs++ys)

f x:map f xs == map f (x:xs)

All of the above uses of QuickSpec only took a fraction of a second to run, and
the equations shown here is the verbatim output of the tool.



Main related work The existing work that is most similar to ours is [4]. They
describe a tool for discovering algebraic specifications from Java classes using
testing, using a similar overall approach as ours (there are however important
technical differences discussed in the related work section later in the paper).
However, the main difference between our work and theirs is that we gener-
ate equations between nested expressions consisting of functions and variables
whereas they generate equations between Java program fragments that are se-
quences of method calls. The main problem we faced when designing the al-
gorithms behind QuickSpec was taming the explosion of equations generated
by operators with structural properties, such as associativity and commutativ-
ity, equations that are not even expressible as equations between sequences of
method calls (results of previous calls cannot be used as arguments to later ones).

Contributions We present a efficient method, based on testing, that automati-
cally computes algebraic equations that seem to hold for a list of specified pure
functions. Moreover, using two larger case studies, we show the usefulness of the
method, and present concrete techniques of how to use the method effective in
order to understand programs better.

2 How QuickSpec Works

The input taken by QuickSpec consists of three parts: (a) the compiled pro-
gram, (b) a list of functions and variables, together with their types, and (c) test
data generators for each of the types of which there exists at least one variable.
As indicated in the introduction, the quality of the test data determines the
quality of the generated equations. As such, it is important to provide good test
data generators, that fit the program at hand. In our property-based random
testing tool QuickCheck [2], we have a range of test data generators for standard
types, and a library of functions for building custom generators.

The method The method used by QuickSpec follows four distinct steps: (1) We
first generate a (finite) set of terms, called the universe, that includes any term
that might occur on either side of an equation. (2) We use testing to partition
the universe into equivalence classes; any two terms in the same equivalence class
are considered equal after the testing phase. (3) We generate a list of equations
from the equivalence classes. (4) We use pruning to filter out equations that
follow from other equations by equational reasoning.

In the following, we discuss each of these steps in more detail, plus an opti-
mization that greatly increases the efficiency of the method.

The universe First, we need to pin down what kind of equations QuickSpec
should generate. To keep things simple and predictable, we only generate one
finite set of terms, the universe, and any pair of terms from the universe can
form an equation.

How the universe is generated is really up to the user, all we require is that
the universe is subterm-closed. The most useful way of generating the universe



is letting the user specify a term depth (usually 3 or 4), and then simply produce
all terms that are not too deep. The terms here consists of the function symbols
and variables from the specified API.

The size of the universe is typically 1000 to 50.000 terms, depending on the
application.

Equivalence classes The next step is to gather information about the terms in
the universe. This is the only step in the algorithm that uses testing, and in
fact makes use of the program. Here, we need to determine which terms seem to
behave the same, and which terms seem to behave differently. In other words,
we are computing an equivalence relation over the terms.

Concretely, in order to compute this equivalence relation, we use a refinement
process. We represent the equivalence relation as a set of equivalence classes,
partitions of the universe. We start by assuming that all terms are equal, and
put all terms in the universe into one giant equivalence class. Then, we repeat the
following process: We use the test data generators to generate test data for each
of the variables occurring in the terms. We then refine each equivalence class
into possibly smaller ones, by evaluating all the terms in a class and grouping
together the ones that are still equal, splitting the terms that are different. The
process is repeated until the equivalence relation seems “stable”; if no split has
happened for the last 200 tests. Note that equivalence classes of size 1 are trivial,
and can be discarded; these contain a term that is only equal to itself.

The typical number of non-trivial equivalence classes we get after this process
lies between 500 and 5.000, again depending on the size of the original universe
and the application.

Once these equivalence classes are generated, the testing phase is over, and
the equivalence relation is trusted to be correct for the remainder of the method.

Equations From the equivalence classes, we can generate a list of equations
between terms. We do this by picking one representative term r from the class,
and producing the equation t = r for all other terms from the class. So, an
equivalence class of size k produces k − 1 equations. The equations seem to
look nicest if r is the simplest element of the equivalence class (according to
some simplicity measure based on for example depth and/or size), but what r is
chosen has no effect on the completeness of the algorithm.

The typical number of equations that are generated in this step lies between
5000 and 50.000. A list of even 5.000 equations is however not something that
we want to present to the user; the number of equations should be in the tens,
not hundreds or thousands.

There is a great potential for improvement here. Among the equations gen-
erated for the boolean operator &&, the constant false, and the variables x and
y we might find for example:

1. x&&false == false 3. y&&false == false 5. false&&false == false

2. false&&x == false 4. false&&y == false 6. x&&y==y&&x

It is obvious that law 5 is an instance of laws 1-4, and that laws 3 and 4 are
just renamings of laws 1 and 2. Moreover, law 6 and 1 together imply all the



other laws. So, the above laws could be replaced by just x&&false == false

and x&&y==y&&x. This is the objective of the pruning step.

Pruning Pruning filters out unnecessary laws. Which laws are kept and which are
discarded by our current implementation of QuickSpec is basically an arbitrary
choice. What we would like to argue is that it must be an arbitrary choice, but
that it should be governed by the following four principles.

(1) Completeness: we can only remove a law if it can be derived from the
remaining laws. We cannot force the method to remove all such laws, firstly
because there is no unique minimal set, and secondly because derivability is not
decidable. (2) Conciseness: we should however remove all obvious redundancy,
for a suitably chosen definition of redundant. (3) Implementability: the method
should be implementable and reasonably efficient. (4) Predictability: the user
should be able to draw conclusions from the absence or presence of a particular
law, which means that no ad-hoc decisions should be made in the algorithm.

That the choice of what is redundant or not is not obvious became clear to
us after long discussions between the authors of the paper on particular example
sets of equations. Also, what “derivable” means is not clear either: Do we allow
simple equational reasoning, something weaker (because of decidability issues),
or something stronger (by adding induction principles)?

Eventually, we settled on the following. First, all equations are ordered ac-
cording to a simplicity measure. The simplicity measure can again be specified by
the user; the default one we provide is based on term size. Then, we go through
the list of equations in order, removing any equation that is “derivable” from
the previous ones.

For “derivable”, we decided to define a decidable and predictable approxi-
mation of logical implication for equations. The approximation uses a congru-
ence closure data-structure, a generalization of a union/find data-structure that
maintains a congruence relation3 over a finite subterm-closed set of terms. Con-
gruence closure is one of the key ingredients in modern SMT-solvers, and we
simply reimplemented an efficient modern congruence closure algorithm [8].

Congruence closure enjoys the following property: suppose we have a set of
equations E, and for each equation s = t we record in the congruence closure
data-structure ≡ the fact s ≡ t. Then for any terms a and b, a ≡ b will be
true exactly if a = b can be proved from E using only the rules of reflexivity,
symmetry, transitivity and congruence of =.

This almost gives us a way of checking whether a = b follows from E. How-
ever, we want to know whether a = b can be proved at all from E, not whether
it can be proved using some restricted set of rules. There’s one more rule we
could use in a proof, that’s not covered by congruence closure: any instance of a
valid equation is valid. To approximate this rule, for each equation s = t in E,
we should record not just s ≡ t but many instances σ(s) ≡ σ(t) (where σ is a
substitution).

3 A congruence relation is an equivalence relation that is also a congruence: if x ≡ y
then C[x] ≡ C[y] for all contexts C.



In more detail, our algorithm is as follows:

1. We maintain a congruence relation ≡ over terms, which initially is the iden-
tity relation. The relation ≡ is going to represent all knowledge implied by
accepted equations so far, so that if s ≡ t then s = t is derivable from the
accepted equations.

2. We order all equations according to the equation ordering <, simplest equa-
tions first.

3. We loop through all equations, starting at the simplest. For each equation
s = t, we check if s ≡ t according to the maintained congruence relation ≡.
If so, the equation s = t is implied by previous equations, and we discard it.

4. If s 6≡ t, we produce s = t as an equation. We then update the congruence
relation ≡ to represent the fact that we have produced the equation s = t. We
do this by picking a finite set of instances of s = t. That is, we choose a finite
set Σ of substitutions; then, for each σ ∈ Σ, we add the fact σ(s) ≡ σ(t) to
the congruence closure data-structure ≡.

5. Once all equations have been taken care of, we are done.

We didn’t specify above which instances of each equation s = t to generate.
Our original choice was to generate all substitutions σ such that σ(s) and σ(t)
were in the universe. This allowed the algorithm to find any proof that only uses
terms from the universe.

Now, instead, we generate substitutions separately for s and t. In the case
of s, we generate all substitutions σ such that σ(s) is in the universe (where σ
ranges over the variables of s) and record σ(s) = σ(t), and similarly in the case
of t. This is a relaxation of our earlier choice.

By doing this, we allow the algorithm to reason also about terms t that lie
outside the universe, but only if that term t is equated by an equation to a term
s that lies inside the universe. This modification does not noticeably influence
performance, but allowing this was vital to prune away equations involving op-
erators with structural properties, such as commutativity and associativity. For
example, generating properties about the arithmetic operator +, only allowing
reasoning within the universe, we end up with:

1. x+y = y+x

2. y+(x+z) = (z+y)+x

3. (x+y)+(x+z) = (z+y)+(x+x)

The third equation can be derived from the first two, but we need to use a term
x+(y+(x+z)) that lies outside of the universe. Adding the modification we just
described to the algorithm, this last equation is also pruned away.

The depth optimisation QuickSpec includes one optimisation to reduce the
number of terms generated. We will first motivate the optimisation and then
explain it in more detail.

Suppose we have run QuickSpec on an API of boolean operators with a
depth limit of 2, giving (among others) the law x&&x==x. But now, suppose
we want to increase the depth limit on terms from 2 to 3. Using the algorithm



described above, we would first generate all terms of depth 3, including such ones
as x&&y and (x&&x)&&y. But these two terms are obviously equivalent (since we
know that x&&x==x), we won’t get any more laws by generating both of them,
and we ought to generate only x&&y and not (x&&x)&&y.

The observation we make is that, if two terms are equal (like x&&x and x

above), we ought to pick one of them as the “canonical form” of that expression;
we avoid generating any term that has a non-canonical form as a subterm. In this
example, we don’t generate (x&&x)&&y, because it has x&&x as a subterm. (We
do still generate x&&x on its own, otherwise we wouldn’t get the law x&&x==x.)

The depth optimisation applies this observation, and works quite straight-
forwardly. If we want to generate all terms up to depth 3, say, we first generate
all terms up to depth 2 (recursively applying the same optimisation) and sort
them into equivalence classes by testing. Then we only generate those terms for
which all the direct subterms are the representative of their equivalence class.

We can justify why this optimisation is sound. If we choose not to gener-
ate a term t with canonical form t’, and there would have been an equation
t==u, there will also be an equation t’==u.4 Furthermore, we will record in the
congruence closure data structure all of the equations necessary to prove t==t’

(all of these terms in these equations have smaller depth than t) so our pruning
algorithm would have been able to prove t==u anyway.)

This optimisation makes a very noticeable difference to the number of terms
generated. For a large list signature, the number of terms goes down from 21266
to 7079. For booleans there is a much bigger difference, since so many terms are
equal: without the depth optimisation we generate 7395 terms, and with it 449
terms. Time-wise, the method becomes an order of a magnitude faster.

3 Case Studies

In this section, we present two case studies using QuickSpec. Our goal is pri-
marily to derive understanding of the code we test. In many cases, the specifica-
tions generated by QuickSpec are initially disappointing—but by extending the
signature with new operations we are able to arrive at concise and perspicuous
specifications. Arguably, selecting the right operations to specify is a key step in
formulating a good specification, and one way to see QuickSpec is as a tool to
support exploration of this design space.

3.1 Case Study #1: Leftist Heaps in Haskell

A leftist heap [9] is a data structure that implements a priority queue. A leftist
heap provides the usual heap operations:

4 This relies on t’ not having greater depth than t, which requires the term ordering
to always pick the representative of an equivalence class as a term with the smallest
depth.



empty :: Heap findMin :: Heap -> Elem

isEmpty :: Heap -> Bool deleteMin :: Heap -> Heap

insert :: Elem -> Heap -> Heap

When we tested this signature with the variables h, h1, h2 :: Heap and x, y, z
:: Elem. then QuickSpec generated a rather incomplete specification. The spec-
ification describes the behaviour of findMin and deleteMin on empty and sin-
gleton heaps:5

findMin empty == undefined deleteMin empty == undefined

findMin (insert x empty) == x deleteMin (insert x empty) == empty,

It shows that the order of insertion into a heap is irrelevant:

insert y (insert x h) == insert x (insert y h),

Apart from that, it only contains the following equation:

isEmpty (insert x h1) == isEmpty (insert x h)

This last equation is quite revealing—obviously, we would expect both sides to be
False, which explains why they are equal. But why doesn’t QuickSpec simply
print the equation isEmpty (insert x h) == False? The reason is that False
is not in our signature! When we add it to the signature, then we do indeed obtain
the simpler form instead of the original equation above.6

In general, when a term is found to be equal to a renaming of itself with
different variables, then this is an indication that a constant should be added to
the signature, and in fact QuickSpec prints a suggestion to do so.

Generalising a bit, since isEmpty returns a Bool, it’s certainly sensible to
give QuickSpec operations that manipulate booleans. We added the remain-
ing boolean connectives True, &&, || and not, and one newly-expressible law
appeared, isEmpty empty == True.

Merge Leftist heaps actually provide one more operation than those we en-
countered so far: merging two heaps.

merge :: Heap -> Heap -> Heap

If we run QuickSpec on the new signature, we get the fact that merge is com-
mutative and associative and has empty as a unit element:

merge h1 h == merge h h1

merge h1 (merge h h2) == merge h (merge h1 h2)

merge h empty == h

We get nice laws about merge’s relationship with the other operators:

merge h (insert x h1) == insert x (merge h h1)

isEmpty h && isEmpty h1 == isEmpty (merge h h1)

5 QuickSpec generates an exceptional value undefined at each type.
6 For completeness, we will list all of the new laws that QuickSpec produces every

time we change the signature.



We also get some curious laws about merging a heap with itself:

findMin (merge h h) == findMin h

merge h (deleteMin h) == deleteMin (merge h h)

These are all the equations that are printed. Note that there are no redundant
laws here. As mentioned earlier, our testing method guarantees that this set of
laws is complete, in the sense that any valid equation over our signature, which
is not excluded by the depth limit, follows from these laws.

With Lists We can get useful laws about heaps by relating them to a more com-
mon data structure, lists. First, we need to extend the signature with operations
that convert between heaps and lists:

fromList :: [Elem] -> Heap

toList :: Heap -> [Elem]

fromList turns a list into a heap by folding over it with the insert function;
toList does the reverse, deconstructing a heap using findMin and deleteMin.
We should also add a few list operations mentioned earlier: ++, tail, :, [], and
sort; and variables xs, ys, zs :: [Elem]. Now, QuickSpec discovers many
new laws. The most striking one is

toList (fromList xs) == sort xs.

This is the definition of heapsort! The other laws indicate that our definitions of
toList and fromList are sensible:

sort (toList h) == toList h

fromList (toList h) == h

fromList (sort xs) == fromList xs

fromList (ys++xs) == fromList (xs++ys)

The first law says that toList produces a sorted list, and the second that
fromList . toList is the identity (up to == on heaps, which actually applies
toList to each operand and compares them!). The other two laws suggest that
the order of fromList’s input doesn’t matter.

We get a definition by pattern-matching of fromList:

fromList [] == empty

insert x (fromList xs) == fromList (x:xs)

merge (fromList xs) (fromList ys) == fromList (xs++ys)

We also get a family of laws relating heap operations to list operations:

toList empty == []

head (toList h) == findMin h

toList (deleteMin h) == tail (toList h)

We can think of toList h as an abstract model of h—all we need to know about
a heap is the sorted list of elements, in order to predict the result of any operation



on that heap. The heap itself is just a clever representation of that sorted list of
elements.

The three laws above define empty, findMin and deleteMin by how they act
on the sorted list of elements—the model of the heap. For example, the third
law says that applying deleteMin to a heap corresponds to taking the tail in
the abstract model (a sorted list). Since tail is obviously the correct way to
remove the minimum element from a sorted list, this equation says exactly that
deleteMin is correct!7

So these three equations are a complete specification of empty, findMin and
deleteMin!

This section highlights the importance of choosing a rich set of operators
when using QuickSpec. There are often useful laws about a library that mention
functions from unrelated libraries; the more such functions we include, the more
laws QuickSpec can find. In the end, we got a complete specification of heaps
(and heapsort, as a bonus!) by including list functions in our testing.

It’s not always obvious which functions to add to get better laws. In this
case, there are several reasons for choosing lists: they’re well-understood, there
are operators that convert heaps to and from lists, and sorted lists form a model
of priority queues.

Buggy Code What happens when the code under test has a bug? To find out,
we introduced a fault into toList. The buggy version of toList doesn’t produce
a sorted list, but rather the elements of the heap in an arbitrary order.

We were hoping that some laws would fail, and that QuickSpec would
produce specific instances of some of those laws instead. This happened: whereas
before, we had many useful laws about toList, afterwards, we had only two:

toList empty == []

toList (insert x empty) == x:[]

Two things stand out about this set of laws: first, the law
sort (toList h) == toList h does not appear, so we know that the
buggy toList doesn’t produce a sorted result. Second, we only get equations
about empty and singleton heaps, not about heaps of arbitrary size. QuickSpec
is unable to find any specification of toList on nontrivial heaps, which suggests
that the buggy toList has no simple specification.

3.2 Case Study #2: Understanding a Fixed Point Arithmetic
Library in Erlang

We used QuickSpec to try to understand a library for fixed point arithmetic,
developed by a South African company, which we were previously unfamiliar
with. The library exports 16 functions, which is rather overwhelming to analyze
in one go, so we decided to generate equations for a number of different subsets

7 This style of specification is not new and goes back to Hoare [5].



of the API instead. In this section, we give a detailed account of our experiments
and developing understanding.

Before we could begin to use QuickSpec, we needed a QuickCheck generator
for fixed point data. We chose to use one of the library functions to ensure a valid
result, choosing one which seemed able to return arbitrary fixed point values:

fp() -> ?LET({N,D},{largeint(),nat()},from_minor_int(N,D)).

That is, we call from_minor_int with random arguments. We suspected that D
is the precision of the result—a suspicion that proved to be correct.

Addition and Subtraction We began by testing the add operation, deriving
commutativity and associativity laws as expected. Expecting laws involving zero,
we defined

zero() -> from_int(0)

and added it to the signature, obtaining as our reward a unit law,
add(A,zero()) == A.

The next step was to add subtraction to the signature. However, this led to
several very similar laws being generated—for example,

add(B,add(A,C)) == add(A,add(B,C))

add(B,sub(A,C)) == add(A,sub(B,C))

sub(A,sub(B,C)) == add(A,sub(C,B))

sub(sub(A,B),C) == sub(A,add(B,C))

To relieve the problem, we added another derived operator to the signature
instead:

negate(A) -> sub(zero(),A).

and observed that the earlier family of similar laws was no longer generated,
replaced by a single one, add(A,negate(B)) == sub(A,B). Thus by adding a
new auxiliary function to the signature, negate, we were able to reduce the
complexity of the specification considerably.

After this new equation was generated by QuickSpec, we tested it exten-
sively using QuickCheck. Once confident that it held, we could safely replace sub
in our signature by add and negate, without losing any other equations. Once
we did this, we obtained a more useful set of new equations:

add(negate(A),add(A,A)) == A

add(negate(A),negate(B)) == negate(add(A,B))

negate(negate(A)) == A

negate(zero()) == zero()

These are all very plausible—what is striking is the absence of the following
equation:

add(A,negate(A)) == zero()

When an expected equation like this is missing, it is easy to formulate it as a
QuickCheck property and find a counterexample, in this case {fp,1,0,0}. We
discovered by experiment that negate({fp,1,0,0}) is actually the same value!
This strongly suggests that this is an alternative representation of zero (zero()
evaluates to {fp,0,0,0} instead).



0 6= 0 It is reasonable that a fixed point arithmetic library should have different
representations for zero of different precisions, but we had not anticipated this.
Moreover, since we want to derive equations involving zero, the question arises
of which zero we would like our equations to contain! Taking our cue from the
missing equation, we introduced a new operator zero_like(A) -> sub(A,A)
and then derived not only add(A,negate(A)) == zero_like(A) but a variety of
other interesting laws. These two equations suggest that the result of zero_like
depends only on the number of decimals in its argument,

zero_like(from_int(I)) == zero()

zero_like(from_minor_int(J,M)) == zero_like(from_minor_int(I,M))

this equation suggests that the result has the same number of decimals as the
argument,

zero_like(zero_like(A)) == zero_like(A)

while these two suggest that the number of decimals is preserved by arithmetic.

zero_like(add(A,A)) == zero_like(A)

zero_like(negate(A)) == zero_like(A)

It is not in general true that add(A,zero_like(B)) == A which is not so
surprising—the precision of B affects the precision of the result. QuickSpec
does find the more restricted property, add(A,zero_like(A)) == A.

Multiplication and Division When we added multiplication and division
operators to the signature, then we followed a similar path, and were led to
introduce reciprocal and one_like functions, for similar reasons to negate
and zero_like above. One interesting equation we discovered was this one:

divide(one_like(A),reciprocal(A)) == reciprocal(reciprocal(A))

The equation is clearly true, but why is the right hand side
reciprocal(reciprocal(A)), instead of just A? The reason is that the
left hand side raises an exception if A is zero, and so the right hand side must
do so also—which reciprocal(reciprocal(A)) does.

We obtain many equations that express things about the precision of results,
such as

multiply(B,zero_like(A)) == zero_like(multiply(A,B))

multiply(from_minor_int(I,N),from_minor_int(J,M)) ==

multiply(from_minor_int(I,M),from_minor_int(J,N))

where the former expresses the fact that the precision of the zero produced
depends both on A and B, and the latter expresses

i× 10−m × j × 10−n = i× 10−n × j × 10−m

That is, it is in a sense the commutativity of multiplication in disguise.
One equation we expected, but did not see, was the distributivity of multi-

plication over addition. Alerted by its absence, we formulated a corresponding
QuickCheck property,



prop_multiply_distributes_over_add() ->

?FORALL({A,B,C},{fp(),fp(),fp()},
multiply(A,add(B,C)) == add(multiply(A,B),multiply(A,C))).

and used it to find a counterexample:

A = {fp,1,0,4}, B = {fp,1,0,2}, C = {fp,1,1,4}

We used the library’s format function to convert these to strings, and found
thus that A = 0.4, B = 0.2, C = 1.4. Working through the example, we found
that multiplying A and B returns a representation of 0.1, and so we were alerted
to the fact that multiply rounds its result to the precision of its arguments.

Understanding Precision At this point, we decided that we needed to un-
derstand how the precision of results was determined, so we defined a func-
tion precision to extract the first component of an {fp,...} structure,
where we suspected the precision was stored. We introduced a max function
on naturals, guessing that it might be relevant, and (after observing the term
precision(zero()) in generated equations) the constant natural zero. Quick-
Spec then generated equations that tell us rather precisely how the precision is
determined, including the following:

max(precision(A),precision(B)) == precision(add(A,B))

precision(divide(zero(),A)) == precision(one_like(A))

precision(from_int(I)) == 0

precision(from_minor_int(I,M)) == M

precision(multiply(A,B)) == precision(add(A,B))

precision(reciprocal(A)) == precision(one_like(A))

The first equation tells us the addition uses the precision of whichever argument
has the most precision, and the fifth equation tells us that multiplication does
the same. The second and third equations confirm that we have understood the
representation of precision correctly. The second and sixth equations reveal that
our definition of one_like(A) raises an exception when A is zero—this is why
we do not see precision(one_like(A)) == precision(A).

The second equation is more specific than we might expect, and in fact it is
true that

precision(divide(A,B)) == max(precision(A),precision(one_like(B)))

but the right hand side exceeds our depth limit, so QuickSpec cannot discover
it.

Adjusting Precision The library contained an operation whose meaning we
could not really guess from its name, adjust. Adding adjust to the signature
generated a set of equations including the following:

adjust(A,precision(A)) == A

precision(adjust(A,M)) == M

zero_like(adjust(A,M)) == adjust(zero(),M)

adjust(zero_like(A),M) == adjust(zero(),M)



These equations make it fairly clear that adjust sets the precision of its argu-
ment. We also generated an equation relating double to single adjustment:

adjust(adjust(A,M),0) == adjust(A,0)

Summing Up Overall, we found QuickSpec to be a very useful aid in devel-
oping an understanding of the fixed point library. Of course, we could simply
have formulated the expected equations as QuickCheck properties, and tested
them without the aid of QuickSpec. However, this would have taken very much
longer, and because the work is fairly tedious, there is a risk that we might have
forgotten to include some important properties. QuickSpec automates the te-
dious part, and allowed us to spot missing equations quickly.

Of course, QuickSpec also generates unexpected equations, and these would
be much harder to find using QuickCheck. In particular, when investigating
functions such as adjust, where we initially had little idea of what they were
intended to do, then it would have been very difficult to formulate candidate
QuickCheck properties in advance.

We occasionally encountered false equations resulting from the unsoundness
of the method. In some cases these showed us that we needed to improve the
distribution of our test data, in others (such as the difference between rounding
in two stages and one stage) then the counterexamples are simply hard to find.
QuickSpec runs relatively few tests of each equation (a few hundred), and so,
once the most interesting equations have been selected, then it is valuable to
QuickCheck them many more times.

4 Related Work

As mentioned earlier, the existing work that is most similar to ours is [4]; a tool
for discovering algebraic specifications from Java classes. They generate terms
and evaluate them, dynamically identify terms which are equal, then generate
equations and filter away redundant ones. There are differences in the kind of
equations that can be generated, which have been discussed earlier. The most
important difference with our method is the fact that they initially generate
only ground terms when searching for equations, then later generalise the ground
equations by introducing variables, and test the equations using the ground terms
as test data. To get good test data, then, they need to generate a large set of terms
to work with, which heavily effects the efficiency of the subsequent generalization
and pruning phases. In contrast, in our system, the number of terms does not
affect the quality of the test data. So we get away with generating fewer terms—
the cost of generating varying test data is only paid during testing, i.e. during
the generation of the equivalence relation, and not in the term generation or
pruning phase. Furthermore, we don’t need a generalisation phase because our
terms contain variables from the start.

There are other differences as well. They use a heuristic term-rewriting
method for pruning equations; we use a predictable congruence closure algo-
rithm. They observe—as we do—that conditional equations would be useful,



but neither tool generates them. Our tool appears to be faster (our examples
take seconds to run, while comparable examples in their setting take hours). It
is unfortunately rather difficult to make a fair comparison between the efficacy
and performance of the two approaches, because their tool and examples are not
available for download.

Daikon is a tool for inferring likely invariants in C, C++, Java or Perl pro-
grams [3]. Daikon observes program variables at selected program points during
testing, and applies machine learning techniques to discover relationships be-
tween them. For example, Daikon can discover linear relationships between in-
teger variables, such as array indices. Agitar’s commercial tool based on Daikon
generates test cases for the code under analysis automatically [1]. However,
Daikon will not discover, for example, that reverse(reverse(Xs)) == Xs, un-
less such a double application of reverse appears in the program under analy-
sis. Whereas Daikon discovers invariants that hold at existing program points,
QuickSpec discovers equations between arbitrary terms constructed using an
API. This is analogous to the difference between assertions placed in program
code, and the kind of properties which QuickCheck tests, that also invoke the
API under test in interesting ways. While Daikon’s approach is ideal for impera-
tive code, especially code which loops over arrays, QuickSpec is perhaps more
appropriate for analysing pure functions.

Inductive logic programming (ILP) [7] aims to infer logic programs from
examples—specific instances—of their behaviour. The user provides both a col-
lection of true statements and a collection of false statements, and the ILP tool
finds a program consistent with those statements. Our approach only uses false
statements as input (inequality is established by testing), and is optimized for
deriving equalities.

In the area of Automated Theorem Discovery (ATD), the aim is to emulate
the human theorem discovery process. The idea can be applied to many different
fields, such as mathematics, physics, but also formal verification. An example of
an ATD system for mathematicians is MathSaid [6]. The system starts by gener-
ating a finite set of hypotheses, according to some syntactical rules that capture
typical mathematical thinking, for example: if we know A⇒ B, we should also
check if B ⇒ A, and if not, under what conditions this holds. Theorem prov-
ing techniques are used to select theorems and patch non-theorems. Since this
leads to many theorems, a filtering phase decides if theorems are interesting or
not, according to a number of different predefined “tests”. One such test is the
simplicity test, which compares theorems for simplicity based on their proofs,
and only keeps the simplest theorems. The aim of their filtering is quite different
from ours (they want to filter out theorems that mathematicians would have
considered trivial), but the motivation is the same; there are too many theorems
to consider.



5 Conclusions and Future Work

We have presented a new tool, QuickSpec, which can automatically generate
algebraic specifications for functional programs. Although simple, it is remark-
ably powerful. It can be used to aid program understanding, or to generate a
QuickCheck test suite to detect changes in specification as the code under test
evolves. We are hopeful that it will enable more users to overcome the barrier
that formulating properties can present, and discover the benefits of QuickCheck-
style specification and testing.

For future work, we plan to generate conditional equations. In some sense,
these can be encoded in what we already have by specifying new custom types
with appropriate operators. For example, if we want x<=y to occur as a precon-
dition, we might introduce a type AscPair of “pairs with ascending elements”,
and add the functions smaller,larger :: AscPair -> Int and the variable
p :: AscPair to the API. A conditional equation we could then generate is:

isSorted (smaller p : larger p : xs) == isSorted (larger p : xs)

(Instead of the perhaps more readable x<=y ==> isSorted (x:y:xs) ==

isSorted (y:xs).) But we are still investigating the limitations and applica-
bility of this approach.

Another class of equations we are looking at are equations between program
fragments that can have side effects.
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