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Abstract

Earlier studies have introduced a list of high-level evaluation criteria to assess how well a

language supports generic programming. Languages that meet all criteria include Haskell

because of its type classes and C++ with the concept feature. We refine these criteria into a

taxonomy that captures commonalities and differences between type classes in Haskell and

concepts in C++ and discuss which differences are incidental and which ones are due to other

language features. The taxonomy allows for an improved understanding of language support

for generic programming, and the comparison is useful for the ongoing discussions among

language designers and users of both languages.

1 Introduction

Generic programming is a programming style that cross cuts traditional program-

ming paradigms: its features can be traced in languages from different provenances,

and there exist many definitions for it, as Gibbons (2007) noted. In the Haskell

community, datatype-genericity is normally the most important one. However, in this

paper, we are interested in what Gibbons calls property-based generic programming:

both Haskell-type classes and C++ concepts support it. It is remarkable that these

languages, normally considered far apart, are closely related when it comes to their

support for generic programming.

Folklore has it that C++ concepts are much like Haskell classes, that Haskell

classes are very similar to concepts, or that the two correspond to each other—

which all is true but rather vague. The goal of this paper is to work out in detail

how Haskell-type classes and C++ concepts are similar, and in what way they differ.

This paper is an extended version of Bernardy et al. (2008) and similar comparative

work has also been done earlier. An “extended comparative study of language
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support for generic programming” (Garcia et al. 2007) compared not just Haskell

and C++, but a total of 8 languages, based on a set of recommended language

features for generic programming that served as evaluation criteria.

However, both Haskell and C++ are changing. The current version of GHC (the

Glasgow Haskell Compiler) provides new features for associated types and Con-

ceptGCC (Gregor 2008a), the only C++ compiler that currently supports concepts,

turns concepts from mere documentation artefacts to a full-fledged C++ language

feature (Dos Reis & Stroustrup 2006). Hence, when we refer to Haskell we mean

the language implemented in the 6.10 release of GHC, and when we refer to C++

we mean the C++ standard draft (Becker 2009), the last one to support concepts

in this round of standardisation. Concepts have been recently voted out from

the next version of C++, but with a clear intention of revisiting the decision in

only a few years (Gregor 2009; Stroustrup 2009b). The discussion in this paper

is still relevant despite the removal of concepts from the standard draft: one of

the reasons for delay is the need to work out some details of concept semantics.

Our detailed comparison of concepts with type classes is a useful tool in the future

discussion.

Due to those developments, the deficiencies that the comparison made by Garcia

et al. (2007) revealed—in particular on the part of C++—no longer exist: C++ now

provides as much support for concepts, associated types, and retroactive modelling as

Haskell does. If one were to apply the taxonomy of Garcia et al. (2007) again, Haskell

and C++ would, thus, be indistinguishable as languages for generic-programming.

The differences that undoubtedly exist between the two languages therefore call for

a refinement of the previous evaluation criteria, which we provide in this paper.

We take the previous taxonomy as our starting point and identify more fine-

grained differences in the syntax and semantics of concepts, modellings and con-

straints. While the previous comparison found that C++ lacked support for five of the

altogether eight evaluation criteria and discussed various workarounds, we reckon

that today all but one of the criteria are met (separate compilation is the remaining

“failing” criterion—see Section 6.3 for details). Instead, we focus on the different

ways in which they are supported in the two languages. Our guiding question

thereby is not just where, but also why differences exist. It is particularly important

to understand whether the design decisions motivating the differences are intrinsic

to each of the languages, and where it is possible for one language to adopt a feature

that the other language introduced. As we show, many design details are rooted in

other major language features: in C++, many decisions stem from the motivation

to integrate concepts with the existing mechanisms for overloading, while many

Haskell decisions are motivated by support for type inference. Yet, we also found

that each language could incorporate some features of the other language, and thus

each could improve both the expressivity of its generic-programming facilities and

the convenience with which they can be used.

In summary, our contributions, condensed in Table 1, are:

• a refined set of criteria for evaluation of property-based generic-programming

language facilities;
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Table 1. Comparison criteria and their support in C++ and Haskell. The first column gives the section where the feature is discussed

3
C

o
n
ce

p
ts

3.1 Multi-type concepts � � Multiple types can be simultaneously constrained.

3.1 Multiple constraints � � More than one constraint can be placed on a type parameter.

3.2.1 Type-functions as parameters � � Concepts accept type-level functions as parameters.

3.2.2 Value-level parameters �� Concepts accept value-level parameters.

3.2.3 Defaults for parameters � Default values can be given to concept parameters.

3.2.4 Functional dependencies � Type parameters can be specified to be functionally related.

4
M

o
d
el

li
n
g

4 Retroactive modelling � � New modelling relationships can be added after a concept (or type) has been defined.

4.1 Monomorphic modelling � � The simplest modelling: monomorphic types declared to model a concept.

4.1.1 Parametric modelling � � Support for declaring parametric families of modellings.

4.1.2 Overlapping modelling � � A type can model a concept via two modellings or more.

4.1.3 Free-form modelling � � Free-form contexts and heads can be used in modellings.

4.2 Default definitions � � Associated entities can be given default definitions in concept definition.

4.2.1 Structure-derived modelling �� Modellings can be generated by structure of type definition.

4.2.2 Modelling lifting � Modellings can be generated by lifting through wrapper types.

4.2.3 Modelling propagation � Modelling of a refining concept can define modellings for refined concepts.

4.2.4 Implicit definitions � Default modellings, definition of associated entities by names/signatures.

4.2.5 Automatic modelling � For a concept, modellings are generated automatically.

5
C

o
n
st

ra
in

ts

5.1 Constraints inference �� �� Constraints to generic algorithms can be deduced.

5.2 Associated types access � � Concepts can have types as associated entities.

5.3 Constraints on associated types � � Concepts may include constraints on associated types.

5.3 Type-equality constraints � � Type variables can be constrained to unify to the same type.

5.4 Constraint aliases �� A mechanism for creating aliases for concept expressions is provided.

5.4 Type aliases � � A mechanism for creating aliases for type expressions is provided.

6
G

en
er

ic
A

lg
o
ri
th

m
s 6.1 Implicit argument deduction � � The arguments for the type parameters of an algorithm can be deduced.

6.1 Result-based overloading � � Inference of the modelling to use can be based on the return type.

6.2 Concept-based specialisation � � Algorithms can be specialised on existence of modelling.

6.3 Separate type-checking �� � Generic functions can be type-checked independent of calls to them.

6.3 Separate compilation � � Generic functions can be compiled independent of calls to them.

Italics is used for features previously introduced (by Garcia et al.). Double arrows ( ) denote a missing feature that could be ported from the other

language. For terminology, see Table 2.
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• refined answers to the questions posed by Garcia et al. (2007), updated to the

latest versions of C++ and Haskell;

• a distinction between accidental and necessary differences, and some sugges-

tions on how to cross-breed Haskell and C++. Some of the improvements

emerging from the comparison have not been suggested before, such as

modelling propagation for Haskell (Section 4.2.3).

2 Background and terminology

2.1 Examples

To set the scene, the examples in Figures 1 and 2 give a general idea of how generic

code is written in C++ and Haskell. In the following, text typeset in italics refers to

concepts in a language-independent context, while text typeset in teletype refers

to concrete syntax of C++ or Haskell. To reduce confusion and to better show

similarities and differences between C++ and Haskell, we use the terminology of

Garcia (Garcia et al. 2007) uniformly for both languages (see Table 2).

In Figure 1, we show the correspondence between C++ and Haskell by means

of an example so that readers can transpose knowledge of one syntax to the

other. This example features every important construct: a concept, a modelling, a

generic algorithm constrained by the concept, and an admissible instantiation of the

algorithm. The Hashset concept has one parameter x , and Hashset refines HasEmpty .

The body of the concept introduces an associated type, element , and an associated

function, size. The associated type is required to be Hashable. The subsequent

modelling is abstracted over the type parameter k and states that intmap(list(k ))

models the Hashset concept for every k that models Hashable (see Section 4.1.1

for more details). The body of the modelling states the values for the associated

types and functions of the Hashset concept: the type element is defined to be the

type parameter k , and the function size is given a definition, in the ellipsis. Then

we show a generic algorithm almostFull , whose type parameter T is constrained

by the Hashset concept. In Haskell, the constraint is written before => in the type

signature while, in C++, it is either expressed by replacing the usual typename keyword

preceding a type parameter with the name of the constraining concept or by listing

one or more constraints after the requires keyword. In the remainder of this paper,

we mostly use the “predicate” syntax, but in some examples we either augment it

or replace it with the requires syntax. Finally, in the last two lines, we show an

instantiation of almostFull where the type argument, intmap(list(int)), is left implicit.

In Figure 2, we show two variants of the concept of equality, which we use

throughout the paper to discuss various language features. Figure 2(a) shows the

C++ Equality-Comparable concept as given in the ConceptGCC compiler. We often

abbreviate it to EqComp in the text. The concept EqComp has two parameters, of

which the second is by default set to the first, and two associated functions, of which

the second is by default defined in terms of the first. The keyword auto indicates

that it supports automatic modelling (explained in Section 4.2.5). The two type

parameters allow for comparison of values of different types. This allows comparing
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Fig. 1. Example of the same generic code in C++ and Haskell, showcasing the syntactical correspondence, line by line, for every major feature. Due

to the differences between idiomatic Haskell and C++ styles, this example is necessarily artificial. Figure 2 provides a more realistic example.
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Fig. 2. Example of similar concepts from the standard libraries of C++ and Haskell. Due to

the difference in style between Haskell and C++, differences exist between the implementations.

Figure 1 provides an example with close correspondence.

Table 2. Terminology and keywords

Term Haskell C++

Concept Type class Concept

class Concept

Refinement Subclass Refinement

=> :

Modelling Instance Concept map

instance concept_map

Constraint Context Requires clause

=> requires

Generic algorithm Polymorphic function Function template

(no keyword) template

apples and oranges, but a more typical example would be comparing apples and

references to apples with a modelling like EqComp(Apple,Apple&). Figure 2(b)

shows the Eq concept from the Haskell prelude (Peyton Jones 2003). The concept

Eq has one parameter and two associated functions, each with a default definition

given in terms of the other. The defaults mean that it is enough to define the more

convenient of the two methods in each modelling; if neither is defined, they will

both be non-terminating.

2.2 Historical background

On the surface, the motivation and the origins of Haskell types classes and C++

Concepts seem to differ: type classes were added to support overloading, while

C++ Concepts were added to improve type checking. However, careful examination

reveals that the underlying ideas are similar, if not identical.

C++ had overloading capabilities from its inception. The meaning of the operator

+, for example, is potentially different for each combination of argument types.

Overloading is commonly used in combination with templates, by parameterisation
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of a template definition over types. The definition can then be instantiated at

various actual types, and the effect is that each occurrence of the template argument

is substituted by its actual value. In the presence of overloading, the net result is that

the meaning of the various template instantiations are unrelated. Therefore, template-

style parameterisation is a form of ad-hoc1 polymorphism. The unpredictability of

ad-hoc polymorphism, however, is in direct opposition to the intent of authors of

generic libraries. When they write +, they have in mind an operation with the usual

properties of addition. Instantiating a template with a type that provides a + operator

that does not meet these properties would then fail to meet the programmer’s

expectations. To address this problem, authors of C++ generic libraries started

to document more precisely which assumptions were made about each operation

used in the template. Famously, this practice was institutionalised in the Standard

Template Library (STL) (Stepanov & Lee 1995). In essence, concepts in STL serve

as a specification, much in the style of algebraic specification languages, such as

Tecton (Kapur & Musser 1992).

While such specifications are useful to make sense of generic programs, they cannot

help the compiler as long as they remain external to the language. In particular,

a template cannot be type checked. Therefore, language support for concepts was

recently proposed (Dos Reis & Stroustrup 2006; Gregor et al. 2006; Becker 2009),

based on the practice established by the STL and other generic libraries.

On the other hand, the designers of Haskell quickly realised that the addition

of unconstrained overloading to a language with parametric polymorphism would

cause issues in type checking, and therefore overloading was only introduced in the

form of type classes, as it emerged in (Wadler & Blott 1989).

In summary, both Haskell type classes and C++ concepts arose from the need to

structure ad-hoc polymorphism; therefore, one should not be surprised that they

turned out very similar to each other.

2.3 Terminology

The same generic-programming feature is often named differently in different

languages; our two subject languages, Haskell and C++, each come with their own

vocabulary. To reduce confusion, we follow the terminology introduced by Stepanov

and Austern for C++ (Stepanov & Lee 1995; Austern 1998), which Garcia et al.

(2007) mapped to Haskell. Table 2 summarises it, updated with the new terminology

from C++.

A concept can be considered an abstract specification of a set of (tuples of) types.

The arity of a concept is the size of the tuple—the number of type parameters. Below,

when we write predicate, one should understand (n-ary) predicates (or equivalently

n-ary relations) for any n. Semantically, a concept has two aspects:

1. It corresponds to a predicate over types. When a tuple of types satisfies this

predicate, we say that it is a model for the concept. Intuitively, such a type

meets the concept specification.

1 Cardelli & Wegner (1985) give a detailed exposition of the various flavours of polymorphism.
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2. It has a number of associated entities: values, functions, or types2. Definitions

for these entities are provided separately, for all models of the concept.

A concept C1 is said to refine concept C2 when the predicate of C1 implies the

predicate of C2. In other words, the models of C1 form a subset of the models of

C2. As a corollary, the associated entities of C2 are available whenever entities of

C1 are available.

A monomorphic modelling specifies how the associated entities of a concept are

defined for one particular n-tuple of types. A concept can be described by a set of

modellings, or equivalently, by a function from (tuples of) types to implementations

of the associated entities. A parametric modelling (see Section 4.1.1) specifies a whole

family of monomorphic modellings at once.

Generic algorithms are traditionally parametric over the types they accept, and

thus correspond to template functions in C++ and polymorphic functions in Haskell.

Concepts can then be used to constrain the type parameters to those algorithms, and

conversely make the associated entities available inside the algorithms. A generic

algorithm can then be instantiated, that is, applied to concrete types (which must

satisfy the constraints). The type of the generic algorithm is polymorphic; it becomes

monomorphic when instantiation binds all type parameters. The algorithm can then

only be used for the types it was instantiated with.

2.4 Evaluation criteria

Beyond the fundamental difference in motivation and approach, which is detailed in

Section 3.1, we identify many points of comparison between Haskell and C++ concept

abstractions, and break them down along the terms introduced in Section 2.3. Table 1

summarises the 28 criteria and the rest of the paper goes through them in more

detail; the subsection where a criterion is discussed is given in the first column of

the table. In Section 3, we examine how concepts in general and their parameters

in particular are treated in each language. In Sections 4 through 6, we focus, in the

following order, on modellings, constraints, associated types, and generic algorithms.

3 Concepts

3.1 Concept-checking

From a high-level perspective, type-checking of concepts in C++ and type classes

in Haskell are very similar. On the one hand, an algorithm may use the associated

entities of a concept, and thus require certain modellings to be defined for the types

for which it is instantiated. In general, there is no limitation on the number of

the constraints that can be put on an algorithm. The compiler, on the other hand,

ensures that algorithms are only instantiated to those types for which the required

modelling exists. The entities of the modellings chosen to fulfil the constraints

2 A fourth kind of associated entity are axioms (Becker 2009): laws that other entities must satisfy.
Because neither language supports axioms, we choose to leave them out of the discussion.
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are then used by the instantiated algorithm. Finally, we note that both languages

support concepts with multiple type arguments, in which case the concept describes

a relation between types.

However, the differences in approach outlined in Section 2.2 have consequences

on the particulars of the compiler checks. In order to discover the differences, we

start by outlining how concepts are checked and used in both languages.

Haskell In Haskell, the constraints of an algorithm are inferred from its defini-

tion. Each usage of an associated entity or of another constrained algorithm

induces the corresponding constraints. Using known modellings and refinements,

these constraints are then simplified and checked against those provided by the

programmer if a type signature is provided. If a constraint is discharged during

simplification, it has to be done using a particular modelling. This modelling

determines which version of the associated entities will be used at run time.

When a generic algorithm is instantiated, the compiler tries to infer its type

arguments. If the compiler does not succeed, it deems the call ambiguous and

rejects the code.

C++ In C++, the programmer specifies constraints explicitly when defining a generic

algorithm. These constraints make the associated entities available in the definition

of the algorithm. Constraints are not inferred from the definition of the algorithm,

but some constraints can be propagated from the types used in the algorithm

signature (see Section 5.1). Note that the compiler does not refer to the set of

modellings known at this point: modellings are not used to extend the set of

constraints or to provide more symbols implicitly. Still, concept refinements are

taken into account: it suffices for the programmer to specify the most refined

concept.

If a generic algorithm is instantiated to a monomorphic type, the compiler

decides which modellings to use, and checks the instance. If a generic algorithm

is called from within another generic algorithm with one or more type variables

as arguments, the compiler uses archetypes, i.e., placeholder types generated in the

outer generic algorithm, to check the call. Archetypes automatically fulfil all the

constraints placed in the outer algorithm, effectively propagating outer algorithm’s

constraints to the checking of the inner call. Importantly, the actual selection of

modellings is delayed until algorithms are instantiated with monomorphic types,

so that compile-time algorithm selection can be performed based on the available

modellings. When a generic algorithm is instantiated, its type parameters are

inferred, if possible. As a fall-back, the programmer can explicitly state them

using angle brackets, as in almostFull<MyHashSet>(x).

We can summarise the differences as follows:

• Haskell can infer the constraints from the use of associated entities, while C++

just checks that the entities used are in scope given the constraints provided

by the programmer. In other words, Haskell infers constraints when the type

of the function is not provided; C++ only propagates constraints arising from

the signature.
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• Haskell uses the “current set of known modellings” (i.e., instance declara-

tions) at every definition to simplify constraints. C++ resolves modellings at

instantiation time.

3.2 Concept parameters

In their simplest form, concepts have one type parameter. More evolved forms

include multi-parameter concepts and type-function or value-level parameters, and

allow default bindings. We discuss these extensions along with functional dependen-

cies in this section.

3.2.1 Type-functions as parameters

Since version 1.3, Haskell offers “constructor classes” (Jones 1993). This means that

concepts cannot only apply to types, but also to type constructors. This feature has

proven very useful in practice to model concepts like Functor or Monad.

1 class Functor f where -- f :: * -> *
2 fmap :: (a -> b) -> f a -> f b

3

4 instance Functor List where -- example: parametric List

5 fmap f Nil = Nil

6 fmap f (Cons a as) = Cons (f a) (fmap f as)

C++ does not offer type-constructors as such (see Lincke et al. 2009, for examples

of applications where such machinery is needed). One, perhaps the most obvious,

way to mimic the functionality of type functions is to use templates. Given this

convention, it is possible to translate the Functor concept directly from Haskell to

C++ as follows, taking advantage of the possibility to parameterise a concept by a

parameter ranging over templates:

1 concept Functor<template<typename> class F> {

2 template<typename A, typename B>

3 function1<F<A>, F<B>> fmap (function1<A,B>);

4 }

In this concept, functions are represented by the function1 class template from

the Boost libraries (Boost). The fmap operation takes a function from some A to

some B (a -> b in Haskell) and returns a function from F<A> to F<B> (f a -> f b

in Haskell). Then, a modelling for lists can be written as follows:

1 template<typename T>

2 class List {

3 /* some implementation */

4 };

5

6 concept_map Functor<List> {

7 template<typename A, typename B>

8 function1<List<A>, List<B>> fmap(function1<A,B> f) {

9 /* some implementation */

10 }

11 }
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Yet, there is a problem with this solution. Parameters ranging over templates are

not used widely in C++ for technical reasons (Vandevoorde & Josuttis 2002).

As a workaround the Functor concept can be rewritten using another concept,

TypeConstructor, to encode type constructors:

1 concept TypeConstructor<typename F> {

2 template<typename T>

3 class Rebind;

4 };

5

6 concept Functor<TypeConstructor F> {

7 template<typename A, typename B>

8 function1<F::Rebind<A>,F::Rebind<B>> fmap (function1<A,B>);

9 }

The TypeConstructor concept requires the modelling to contain a Rebind class

template that explicitly represents type constructor application in Haskell. In

the above example, Rebind is applied to A and B, corresponding to constructor

applications f a and f b in the corresponding Haskell example. In such an encoding,

the type F has a different “kind” than in the previous encoding, as F is no longer a

template itself, but it is required that a template application Rebind be provided in

modellings of the Functor concept. In a sense, the functionality of a type constructor

is disconnected from the type itself, and is stated as an associated entity. Thus,

concepts make it possible to encode constructor classes by requiring templates, such

as Rebind, that correspond to constructor application.

We should note that Haskell restricts the type functions that can be defined: the

language of type-level expressions is purely applicative. This has an impact from a

generic programming point of view: it means that some type-functions cannot be

made models of any concept. This example works:

1 data Map key value = ...

2 instance Functor (Map key) where ...

but if we instead had the opposite order of the arguments: data Map value key then

the Functor modelling would become:

1 instance Functor (Λ value -> Map value key) where ...

but Haskell does not support type-level abstraction, and indeed unification is only

first-order, so this is invalid.

3.2.2 Value-level parameters

In C++, concepts can also be parameterised over constants instead of types:

1 concept Stack<typename T, int size> { ... }

2 concept_map Stack<char, 512> { ... }

In both Haskell and C++, types and values are completely separate universes;

therefore, no run-time value could influence the selection of a value-dependent

modelling. This C++ feature can therefore be emulated in Haskell by encoding the
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structures of the value level at the type level (Kiselyov & Shan 2007). However, the

syntax of expressions under the above encoding is not natural, and thus one risks

producing unreadable programs by using it. Therefore, the ability to parameterise

concepts by values would be useful to port to Haskell. However, work towards full-

fledged support for type-level data has been underway for a while (Sheard 2007),

and we feel that it is now about to bear its fruits in the form of the Strathclyde

Haskell Enhancement (McBride 2010) — thus it makes little sense to port the feature

from C++ at this point.

3.2.3 Defaults for parameters

In C++, the last few parameters of a concept (it can be the entire parameter list) can

be given defaults. When referring to such a concept, some or all of those parameters

may be omitted. As an example (based on Figure 2), uses of EqComp(T ) are treated

as EqComp(T ,T ). Widespread usage of multi-parameter concepts is envisioned for

the future C++ standard library, and defaults for parameters are important to reduce

the tedium of using such concepts.

The semantics of default parameters for concepts in C++ is simple: every time a

parameter to a concept is omitted in a constraint, its default value is inserted. If the

default value contains occurrences of other parameter names, these are substituted

with the actual parameters provided.

This mechanism does not rely on any C++-specific feature; therefore, it could in

principle be ported to Haskell, which does not currently provides any similar feature.

In practice, some potential obstacles may arise:

• the syntax for constraints mimics that of function application: the class appears

to be applied to its parameters to form a constraint. Therefore, a class missing

a parameter might feel like a partially applied relation – which is a totally

different meaning from that given if the missing parameters would be filled in

with default values. A different syntax for application of default parameters

could then be invented to avoid the problem.

• The substitution mechanism might multiply the number of type variables

in a constraint in a way that is not apparent to the programmer. Because

limiting the number of type-variable occurrences in constraints is essential to

ensure termination of type-checking, as we discuss in Section 4.1.3, the errors

stemming from careless usage of default parameters could be very confusing.

• Type classes with many parameters are rare in Haskell compared to C++.

3.2.4 Functional dependencies

Jones (2000) describes an extension to the Haskell type system where users can

specify functional dependencies between the arguments of a given concept. In the

example below, we give an alternate definition of the Hashset concept of Figure 1.

Instead of having element as an associated type, it becomes an extra parameter, with

a functional dependency stating that element is uniquely determined by set .
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1 class Hashset set element | set -> element where

2 ...

This means that when Hashset(set , element) holds, a given type for set yields a

unique, concrete type for element: a modelling declaration that violates this property

will be rejected. If the functional dependency were not present in the concept

Hashset(set , element), the dependency would be implicit by the non-existence of

some models.

Making the restriction explicit in the concept declaration allows the compiler to

use that knowledge, improving the type checking of generic algorithms: inferred

types become more precise and type errors can be detected early. In some cases,

the compiler can even accept a declaration that it would have to reject without the

functional dependency.

Despite thorough analysis (Sulzmann et al. 2007b), functional dependencies remain

a controversial feature: Chakravarty et al. (2005a) argues that associated types

provide much of the functionality but cause less complexity in the type system.

Functional dependencies are not available in C++. In C++, constraints are not

inferred, so the usefulness of the feature would be more limited, but it could be used

to enhance checking of type equality constraints. Functional dependencies could be

enforced in exactly the same way as in Haskell. We do not list an example of the

possible syntax, because the example would just transliterate Haskell code in into

C++ without any significant insight.

4 Modelling

Given native support for concepts, the relation between specification and implemen-

tation is non-intrusive: it is possible to add modelling relationships after a type or a

concept has been defined, and it is possible to add concepts and their modellings after

types have been defined. Beyond basic support for retroactive modelling, advanced

modelling features found in C++ and Haskell can be grouped in two categories that

we call modelling flexibility (Section 4.1) and modelling shortcuts (Section 4.2).

4.1 Modelling flexibility

The simplest way to define modellings, trivially supported by both Haskell and

C++, is to state that a monomorphic type models a concept, and to supply the

value of the methods and other associated members. For example, if the proper

concept has been previously defined, stating that Booleans can be compared for

equality is done with a simple modelling declaration: instance Eq Bool where ...

in Haskell or concept_map Eq<bool> {...} in C++. In this section, we prefer a

language-independent notation where we also name modellings but abstract from

the associated entities: M1 ≡ Eq(bool ).

Such monomorphic modellings are very easy to deal with: constraints can be

simplified only if all the concept parameters are monomorphic, and therefore the

concept-checking behaviours of Haskell and C++ are almost identical in such a

limited context.
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4.1.1 Parametric modelling

Monomorphic modelling is quite restrictive, however, and one often wishes to define

modellings parametrically. For example, we may want to state that all lists of a cer-

tain type are comparable: M2 ≡ ∀a.Eq(list(a)); or more realistically, lift comparison

on elements to comparison on lists, using a constraint: M2 ≡ ∀a.Eq(a) → Eq(list(a)).

The left-hand side of → in this notation is called a context, or an assertion, whereas

the right-hand side is the head. Note that there can be only one arrow: both in C++

and Haskell the assertion must be a simple conjunction of concepts.

Parametric modellings are supported both in Haskell and C++. In C++, quantifi-

cation is denoted by the template keyword, while in Haskell all free type variables

are implicitly universally quantified at the top-level.

4.1.2 Overlapping modelling

One might want to have a parametric modelling for most cases and specialise it

for some cases, for performance, better customisation, or other reasons. A typical

example, is that one wants a pretty printer for all lists, and a specialised version for

lists of characters, which displays them as strings: Ml ≡ ∀a.Show (a) → Show (list(a)),

Ms ≡ Show (list(char)). For list(char), both modellings Ml and Ms apply: we say

that they overlap. In such a case, the language must define, which modelling is

preferred. Both Haskell and C++ try to use the most specific modelling.

Most Haskell implementations allow overlapping modellings. When a constraint

is discharged, the dictionary of the most specific modelling is used. In C++, the most

specific modelling is chosen upon template instantiation, and this usage pattern is

called concept map specialisation.

Sometimes, in the presence of multi-type concepts, a most specific modelling

does not exist. For example, given M1 ≡ ∀a.C (int , a) and M2 ≡ ∀a.C (a , int), the

constraint C (int , int) can be satisfied using either M1 or M2, but neither is more

specific than the other. An instantiation using the concept at (int , int) will therefore

be rejected: the modelling to use is ambiguous. This behaviour is the same in C++

and in Haskell with overlapping instances.

In Haskell, overlapping instances raise issues not only at instantiation, but every

time constraints are simplified (during type inference or type checking). Indeed,

every time a constraint is simplified out, a specific modelling has to be chosen. The

situation is more complex than in the monomorphic instantiation case explained

above because type variables may be only partially unified to concrete types: the

difficulty is to ensure that, when the type variables become fully unified to concrete

types in further instantiations, the most specific modelling will then be used. This

tricky issue is discussed in more detail by Peyton Jones et al. (1997). Because C++

does not try to simplify constraints, this difficulty does not arise.

4.1.3 Free-form modelling

If no restriction is placed on the form of contexts and heads of modellings, the

modelling language is very powerful: it is possible to express very complex properties
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of types. Conversely, one then faces the problem of undecidability of the concept-

checking algorithm. In Haskell indeed, solving a set of constraints given a set of

rules (given by modellings) can be potentially non-terminating: using a parametric

modelling that has non-trivial assertions can make the set of constraints bigger, and

if the rule can be applied again, the solver will never converge (Sulzmann et al.

2007b). In C++, non-termination can also occur in a corresponding situation. When

trying to instantiate a template function, the compiler will use the modellings to

look up possible assignments to the type parameters. If those yield infinitely many

possibilities for the type assignments, the lookup will not terminate if none is valid.

To prevent this unfortunate occurrence, one can restrict the form modellings can

take. In Haskell 98, modellings take the form ∀a1 . . . an. (Cr1 ar1 , . . . , Crk ark )Cm (t a1 . . .

an), where t is a type constructor and a1 . . . an are distinct type variables. While this

is sufficient to ensure that a terminating algorithm exists, a number of more flexible

strategies can be adopted. For example, GHC offers the following rule: 1. No type

variable has more occurrences in the assertion than in the head; 2. The assertion

has fewer constructors and variables occurrences (taken together and counting

repetitions) than the head.

The C++ community is less concerned by the undecidability issue; C++ type-

checking is already undecidable because of templates. While this may sound very

dangerous, programmers are already used to non-termination in the realm of values

and have proven to be able to apply their intuition in the realm of types. Indeed,

Haskell programmers have also found that disabling termination checking can be

very useful, in order to encode complex type rules as constraints and modellings

(Kiselyov & Shan 2007).

Finally, we note that C++ modellings may be given in completely free form. Yet,

to provide any non-trivial definitions, at least one argument of the modelled concept

must be specialised, either by being unified with a type-constructor (either a built-in

type constructor such as pointer formation, or a user-defined template) or restricted

by a concept.

4.1.4 Summary

Flexibility in modelling has a price: overlapping modellings can yield ambiguity,

complex assertions can bring undecidability. The Haskell community is conservative

in this respect: GHC disables these features by default, requiring the use of compiler

flags to turn them on. While C++ gives almost full flexibility, knowledge of the

tradeoffs can be useful to programmers, so that complexity and the ensuing costs

are understood.

4.2 Modelling shortcuts

Specifying modellings using the above constructs can sometimes be quite repetitive

and therefore both C++ and Haskell provide syntactic sugar to define them concisely.

Beyond the ability to give default definitions to associated entities in the concept

declaration, the mechanisms in these languages are quite different.
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4.2.1 Structure-derived modelling

While concepts allows for case-by-case (ad-hoc) modelling, the modellings themselves

are often datatype-generic (Gibbons 2007). Examples include serialisation functions,

equality checking, etc. For some concepts, deriving the modelling from the structure

of types is sensible as a default, but for some types the programmer wants to override

with their own modelling. For example, structural equality can be used most of the

time, but does not make sense for some data structures, like balanced trees.

Haskell offers a mechanism for deriving modellings from type structure:

1 data Bool = False | True

2 deriving Eq

Until recently, derived modellings have been coupled with type definitions but that

restriction has been lifted since GHC 6.8, enabling retroactive derived modellings

(also called stand-alone deriving).

Unfortunately, the standard restricts the deriving construct to a few predefined

concepts (Eq , Show , etc.). A few generalisations (involving some extension to the

Haskell language) have been implemented (Jansson & Jeuring 1997; Hinze & Peyton

Jones 2001). Notably, Template-Haskell (Sheard & Peyton Jones 2002) provides a

generic mechanism that suffices to implement a customised derivation construct

(Mitchell 2007). There are also around ten proposals for the design of a generic

library of concepts supporting polytypic modelling in Haskell (see Rodriguez et al.

2008 for a comparison).

C++ supports certain operations in a similar way; for example, a compiler

automatically defines the equality operator == for every type, unless the operator is

given explicitly. Together with automatic modelling, discussed later in this section,

the generated operator == also automatically produces modellings for the EqComp

concept (from Figure 2). However, in general, the structure of a type in C++ is much

less informative than in a functional language such as Haskell; a type often reflects

low-level details of implementation, while, in a functional language, the structure

of an algebraic data-type more often reflects the intended, logical functionality of

the type. Munkby et al. (2006) discuss the issue in more detail, and they propose

interface traversal as a way to improve usability of automatic constructs that depend

on the structure of a type in an imperative language such as C++. In summary, we

mark this feature with “ ” (portable) in Table 1, because a compiler could support

structure-derived modellings for concepts such as EqComp as easily as it already

supports generation of definitions for operators such as ==.

4.2.2 Modelling lifting through wrapper types

Both Haskell and C++ provide type aliases to name and reuse type expressions. An

example is type IM = IntMap (List Int) corresponding to typedef intmap<list<

int>> IM. In addition to that, the Haskell newtype construct allows defining a type

that has exactly the same representation as another, but is treated as a completely

separate type by the type checker. C++ does not offer a construct equivalent to

newtype, but one can still define a wrapper structure by hand, without any special
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support from the language, as a structure with a single field. The following example

shows such a wrapper for integers:

1 struct Age { int age; };

Because wrappers define fresh types, they do not inherit the modellings of their

wrapped type. This can be problematic in the case where the wrapper is there to

change only a few aspects of the wrapped type: one would like to reuse most

modellings, but they must be given an explicit definition. Being mainly composed of

wrapping and unwrapping, such a definition is typically easy but tedious do write.

Therefore, to facilitate this process, Haskell provides the newtype deriving construct

to lift modellings of given concepts to a newtype. A mere mention of the concept to

model is enough to specify the whole modelling.

1 newtype Age = Age Int

2 deriving (Hashable)

In the above example, the deriving clause stands for the following modelling

declaration:

1 instance Hashable Age where

2 hash (Age i) = hash i

Modelling lifting works only when it has the form newtype TC v1 . . . vn = T (

t vk+1 . . . vn) deriving (C1 . . . Cm), where Ci are partially applied concepts, with the

restriction that the type variables vi must not occur in t nor Ci. This restriction

ensures that the implicit definition of the modelling makes sense.

There is no C++ construct corresponding to newtype deriving that transposes

modellings of the wrapped type to the wrapper, so this feature is a natural candidate

to port. A difficulty is that newtype has no direct equivalent in C++, so the feature

must be adapted to work on single-field structures.

4.2.3 Modelling propagation

C++ concepts can include associated entities of other concepts in two different ways,

either through refinement or through nested constraints. The two mechanisms differ

syntactically. Refinement is specified after the concept name, separated by a colon,

but before the concept body. Nested constraints are given in the body of a concept

and are preceded by the requires keyword. Semantically, the two mechanisms differ

in two respects. First, they differ in how modellings are provided, which is the

subject of this section. Second, the two mechanisms differ in how associated entities

participate in name lookup within a concept: associated entities of refined concepts

are included and associated entities of nested constraints are not.

The Hashset concept from Figure 1 uses both mechanisms, refining the HasEmpty

concept and including a nested constraint for the Hashable concept:

1 concept Hashset<typename X> : HasEmpty<X> {

2 typename element;

3 requires Hashable<element>;

4 int size(X);

5 }
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When a modelling for Hashset is provided, for example, the modelling for Hashable

must be provided beforehand, while the modelling for HasEmpty is generated by the

compiler if it has not been given before:

1 // must be given before modelling for Hashset

2 concept_map Hashable<int> { /* ... */ }

3

4 // The compiler verifies that modelling Hashable<int> is already defined

5 concept_map Hashset<int> {

6 /* Hashset<int> definitions */

7 /* HasEmpty<int> definitions */

8 // Compiler generates a modelling for HasEmpty<int> from definitions

9 // and the surrounding scope

10 }

The programmer may provide definitions for the associated entities of the HasEmpty

concept in the modelling declaration for Hashset; these definitions are then used to

generate, or propagate, a modelling for HasEmpty when necessary. Because modellings

for HasEmpty may be defined before modellings for Hashset, the semantics of C++

concepts gives compatibility rules by which definitions in the existing modellings

of HasEmpty are checked for any possible conflicts with definitions in modellings

of Hashset. The support for modelling propagation does not affect the power of

concepts but it greatly simplifies use of concepts in practice—in large libraries

refinements are often more numerous than in our simple example, and modelling

propagation decreases the number of modellings that have to be written out by a

programmer. While there is no corresponding mechanism in Haskell, it should be

possible to add a similar feature and it could have the same effect of easing the use

of type classes in practice as it has for concepts in C++.

A concrete application would be a proposed refactoring of the numeric class in

Haskell:

1 class (Eq a, Show a) => Num a where

2 (+), (-), (*) :: a -> a -> a

3 negate :: a -> a

4 abs, signum :: a -> a

5 fromInteger :: Integer -> a

It has been suggested many times that the class should be split in (at least) two

components, for example the following:

1 class Additive a where

2 (+), (-) :: a -> a -> a

3 negate :: a -> a

4 abs, signum :: a -> a

5 fromInteger :: Integer -> a

6

7 class Multiplicative a where

8 (*) :: a -> a -> a
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Then Num could be defined as follows:

1 class (Eq a, Show a, Additive a, Multiplicative a) => Num a where

2 -- no methods

While such a finer-grained hierarchy is arguably better, it is not backward compatible

without modelling propagation. Indeed, a modelling such as

1 instance Num Bool where

2 (+) = (||)

3 (*) = (&&)

4 {- etc. -}

would become invalid: Num Bool has no associated method, and no modelling

for Additive Bool or Multiplicative Bool would be provided. What is needed is

exactly the equivalent of C++’s feature: the above instance declaration should be

translated into an Additive and a Multiplicative instance. In general, in an instance

declaration, any set of methods belonging to a superclass should be translated to an

instance declaration for the superclass.

Other, similar solutions to the problem have been proposed before. Notably,

Meacham (2006) proposes class aliases. In that context, Num would be defined as

1 class alias Num a = (Additive a, Multiplicative a)

Due to the informal character of the proposal, it is difficult to compare class aliases

to modelling propagation precisely. Two differences can be identified:

1. a class alias may define default methods for the aliased classes; and

2. there is no restriction on the classes that are aliased.

Orchard & Schrijvers (2010) note that some class aliases appear problematic:

1 class alias Eq’ a b = (Eq a, Eq b)

Instances of Eq’ should implement two equality operations, but the type instance to

which each belongs may be indistinguishable in some cases. The same problem seems

to arise with modelling propagation. We observe that it is much milder however.

Consider:

1 class (Eq a, Eq b) => Eq’ a b

2

3 instance Eq’ Bool Int where

4 x == y = {- Primitive comparison on booleans -}

Presented with the above instance, the compiler will note that the method (==)

does not belong to Eq’, and searches for superclasses where it can fit, based on the

method name. In this case, both Eq Int and Eq Bool fit. Therefore, the following

instances are created. Because the first one is type-incorrect, the code is rejected.

1 instance Eq Int where

2 x == y = {- Primitive comparison on booleans -}

3

4 instance Eq Bool where

5 x == y = {- Primitive comparison on booleans -}
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In summary, in certain pathological cases, modelling propagation cannot be used to

shorten definitions, but this restriction does not compromise its usefulness when the

superclasses have nonoverlapping method names.

4.2.4 Implicit definitions

In C++, a modelling may leave out the definitions of associated entities, making the

definitions implicit. Implicit definitions are filled in by the compiler. In a nutshell,

default definitions are considered first and, if no default definition is available,

entities required by the modelled concept are looked up in the enclosing scope.

Entities whose name and types match those given in the concept declaration are

bound to the associated entities automatically. We give a simple example based on

the concept from Figure 2 where != has a default implementation in terms of ==:

1 concept_map EqualityComparable<int> {/* implicit */}

The modelling EqComp(int) leaves all definitions implicit. The definition of == is

deduced by the compiler, because int has an operator == with matching type. Then

!= can use its default implementation, forwarding to ==. The actual rules for implicit

definitions are much more complex to allow for optimisations (Gregor 2008b)—our

discussion is meant to give a basic idea of how the feature works.

In Haskell, direct porting of implicit definitions as performed in C++ is not realistic

because, if a class is in scope, the functions that match the name and types of the

methods of the class are coming from the class itself. Using the class methods as a

definition for the instance method would effectively create a circular definition, which

one would like to avoid. The mechanism could be adapted, though, if definitions

could be taken from a different scope. Such a feature could be useful to retrofit old

code to a new class. For example, imagine that a set data structure is defined in an

existing module OldSet. It is likely that the names and types used in that module

would largely match that of a new class, say the Hashset concept used as an example

earlier. In that case, one can state that OldSet is an instance of Hashset as follows:

1 instance Hashset OldSet.Set where

2 type Element OldSet = OldSet.Element

3 size = OldSet.size

Because it is typical for a class to have many methods, a modelling declaration such

as the above can be quite tedious to write. It would be more convenient to have

the compiler pick definitions automatically from a specified scope, maybe using the

following syntax:

1 instance Hashset OldSet.Set where

2 import OldSet -- picking all definitions from the OldSet module.

The situation that we describe above occurs in practice: the module Data.Edison.

Assoc.AssocList includes several modellings with up to 38 such trivial method

declarations.
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4.2.5 Automatic modelling

To further alleviate the burden of defining modellings and to ease retrofitting of

existing types, C++ allows programmers to mark concepts with the keyword auto.

The compiler then tries to generate modellings automatically for that concept. Note

that, in contrast to most other shortcut facilities, automatic modelling works on

the level of the concept, instead of type by type. Modellings for auto concepts can

still be provided explicitly but, if they are not, the compiler can generate them on

demand, when they are actually necessary to instantiate a generic algorithm. In

such a case, the compiler uses the default definitions and the implicit definition

mechanism to assign values to each associated entity in the concept. If this fails,

then the concept predicate is deemed not to hold for that instantiation, and the

instantiation is rejected.

The following listing shows an example using automatic modelling (again using

the concept from Figure 2):

1 template<EqualityComparable T>

2 bool f(T t1, T t2) { ... }

3

4 bool test = f(1, 2);

The listing shows an algorithm f where the type parameter T is constrained to be

EqComp. When the algorithm is instantiated to the built-in type int on Line 4 the

compiler will try to generate a modelling EqComp(int) as if the following declaration

had been in scope:

concept_map EqualityComparable<int> { }

Because int has the operator == defined, the implicit definitions feature kicks in and

the appropriate definitions of the associated functions are automatically generated

as above (Section 4.2.4).

A disagreement on whether non-auto or, using an equivalent term, explicit

concepts should be the default or whether they should even be allowed at all

has been an important factor in rejecting concepts from the next C++ standard

(Gregor 2009; Stroustrup 2009b). Some committee members argued that most,

if not all, modelling declarations would be such that the compiler could resolve

them automatically and that forcing programmers to write “empty” modellings (see

Section 4.2.4) would be a roadblock for many non-expert C++ programmers. Yet,

explicit modellings are necessary to resolve cases where concepts do not differ or

differ only minimally in the required syntax, but are considerably different in the

required semantics. An example of such a situation are the ForwardIterator and

the InputIterator concepts where ForwardIterator refines InputIterator without

providing any new associated entities but only adds semantic requirements such

as multiple-pass iteration. Accidental similarities between concepts can occur as

well, but the proponents of automatic-only modelling argued that such cases are

extremely rare. Stroustrup (2009a) proposed that automatic modelling should be

the only kind and that only in cases such as the distinction between forward and

input iterators a special kind of explicit refinement should be required. Explicit
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refinement would enable non-automatic modelling only where it is necessary to

resolve ambiguities. To summarise, there were two positions in the C++ committee

during deliberations on concepts: one that automatic modelling should be the only

kind except for cases where non-automatic modelling is necessary, and another that

non-automatic modelling should be predominant with automatic modelling used

only for ubiquitous concepts.

Can the experience of the Haskell community, which has been using concepts for

a while, bring any useful information to the debate? There is no form of automatic

modelling in Haskell: programmers must supply all modelling declarations explicitly.

This has not proven a problem in practice: programmers are happy to type a few

extra words per type declaration in order to be sure that each modelling is intended.

Therefore, we believe that explicit concepts should be the default.

What would a mechanism similar to auto mean in Haskell? Whenever the compiler

finds that a constraint is not satisfied, it should try to generate a modelling for an

auto-concept to plug the hole. While this on-the-fly instantiation makes sense on the

surface, it raises the question of how to generate the bindings of such an instance.

Taking matching functions which are in scope, as described in Section 4.2.4, is

not applicable: matching identifiers are in scope, but they come from the class,

and thus do not make for a sensible definition. A possible solution would be to

rely on structure-derived modelling (Section 4.2.1) to generate an instance on the

basis of the structure of the type. What this amounts to is to provide a datatype-

generic default definition for the methods of the class (GHC implements the Haskell

extension “Generics” based on Hinze & Peyton Jones 2001). Lots of research have

already been devoted to implementing seamless cohabitation of datatype-based

and property-based generic programming in Haskell (Rodriguez et al. 2008). Our

comparison adds just one more motivating point.

4.3 Summary

Property-based generic programming gives great flexibility: types can be made

models of concepts arbitrarily. A cost for this flexibility is that modelling definitions

can be lengthy. Hence, features for shortening the definitions of modellings, or

omitting them entirely are important. In this area, Haskell and C++ provide

different kinds of mechanisms, and each provides a good source of inspiration

for improvement of the other.

5 Constraints and associated types

5.1 Constraint inference

We have briefly explained the difference regarding constraint inference in Section 3.1:

Haskell infers constraints when the type of the function is not provided, C++ only

propagates constraints arising from the signature. In this section, we refine this

statement and give some intuition for why they are different.

First, we note that Haskell allows the programmer to omit the constraint

specification, but only if the type signature is omitted entirely. In other words,
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it is an “all-or-nothing” choice: either the programmer specifies type information

completely, including constraints, or gives up control, completely relying on the

inference mechanism3. Also, C++ supports a limited form of inference, called

requirement implication (requirements correspond to constraints in our terminology),

in declarations of generic algorithms (Becker 2009). Basically, if an algorithm

declaration is ill-formed because some constraints are missing, the compiler can

automatically fill in these constraints. The constraints can be propagated from other

algorithms used in the declaration or implied by language constructs. The following

examples illustrate requirements implication:

1 template<Hashable T> class hashSet { ... };

2

3 template<EqualityComparable T>

4 void g(hashSet<T> s, T value);

The use of hashSet<T> on Line 4 implicitly adds the constraint Hashable<T> to g.

Similarly, to make the return type of h well formed in the following example:

1 template<Hashset T>

2 Hashset<T>::element h(T&);

the compiler adds the constraint Returnable<Hashset<T>::element> to h and sim-

ilarly the use of a reference to T adds the constraint ReferentType<T>. Both

Returnable and ReferentType are standard-library, compiler-supported concepts

that correspond to basic properties of C++ types. Compiler-supported concepts are

unusual in the sense that they do not list any associated entities explicitly, but

they indicate that a certain language construct can be used with a given type. The

Returnable concept, for example, signifies that a value of the modelling type can be

returned from a function, but there is no way provided to express such requirement

explicitly as an associated entity, and, consequently, the body of the Returnable

concept is left empty. The standard library contains 23 such compiler-supported

concepts to provide an interface between the concept system and the existing C++

type system (Becker 2009).

Second, we recall that Haskell has no overloading mechanism beside type

classes, and this is what makes constraint inference sensible: an identifier identifies

the concept it belongs to unambiguously, so one can recover the concept from

the associated entity. This is not the case in C++ because of standard function

overloading. An identifier can refer to entities in many concepts, and the process of

selecting which one applies is guided by the constraints provided by the programmer.

Adding inference of constraints of top of this behaviour would be awkward.

Gottschling (2008) proposed constraint inference for C++ based on explicit inference

declarations provided by the programmer, but his proposal was never fully integrated

into the concepts proposal, leaving the idea only partially tested.

In summary, we can say that C++ trades inference of types for an extra, more

flexible overloading mechanism.

3 There is a trick to guide the inference mechanism using dummy definitions—see http://okmij.org/
ftp/Haskell/partial-signatures.lhs
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5.2 Associated types

It was previously noted by Garcia et al. (2007) that one can encode associated

types in Haskell with functional dependencies, but that such an encoding can

be cumbersome. Partly in reaction to that observation, Chakravarty et al. (2005b)

proposed an extension to allow associated data types, and not long after an extension

supporting the full power of associated types (Chakravarty et al. 2005a), which was

finally implemented by Schrijvers et al. (2008). In contrast, C++ concepts have

included associated types from their inception, although concepts are not standard

C++ yet.

In Figure 1, element is an associated type of Hashset . Note that Haskell allows

one to specify on which parameters the associated type depends, whereas the closest

C++ equivalent implicitly assumes that it depends on all the arguments of the

concept.

An associated type can be seen as a function defined by pattern matching on

the type level. Each modelling provides one equation explaining how a particular

“type pattern” maps to a resulting type. The fact that modellings can be provided

separately from the concept and the type means that these type functions are open

functions—they can be extended with new equations in other modules. Haskell

allows such type level functions (called type families) to be defined without defining

a concept (type class) explicitly. As an example, the associated type Element from

Figure 1 could be separated out from the Hashset concept:

1 type family Element x

2 type instance Element (IntMap (List k)) = k

5.3 Constraints on associated types

It is important to be able to constrain associated types as well as class parameters.

For example, converting a hash set to a string requires that the elements of the hash

set can be converted to strings themselves.

1 toString :: (Hashset s, Show (Element s)) => s -> String

In the above type signature, a constraint is placed on the associated element type of

s, Element s. In C++, associated types can be similarly accessed and constrained:

1 template<Hashset S>

2 requires Show<Hashset<S>::element>

3 string toString(S);

In particular, type-equality constraints on associated types are useful. For instance,

to make sure that two hash sets have the same type of element, one can write the

following constraint in Haskell.

1 insertAll :: (Hashset s1, Hashset s2,

2 Element s1 ~ Element s2) =>

3 s1 -> s2 -> s2
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Associated types are accessed as in the previous example, and type equality is

required using the ~ syntax (think of ~ as a two-parameter concept written as an

infix operator between its two type arguments). In C++, type equality is expressed

using a compiler-supported concept SameType, as shown in the following declaration.

1 template<Hashset S1, Hashset S2>

2 requires std::SameType<Hashset<S1>::element,

3 Hashset<S2>::element>

4 S2 insertAll(S1, S2);

An extension for support of type-equality constraints has recently been imple-

mented in GHC and has been studied as an extension to System F (Sulzmann

et al. 2007a). Schrijvers et al. (2008) show that their extension keeps the type-system

decidable, which is an important property for Haskell extensions.

In C++, type equality is represented by a built-in, compiler-supported concept, std

::SameType<T,U>. The concept can be used in constraints of generic algorithms, but

its models are fixed: none can be declared. The implementation design for checking

of type equality constraints in C++ has been discussed by Gregor & Siek (2005).

Note that it suffices to specify SameType<T,U> to get type-equality between F<T>

and F<U>, where F is any type-level function (a template, or any C++ standard type-

constructor like pointer, reference, etc.). This means that the semantics of SameType

are similar to those of Haskell’s type-equality constraints.

5.4 Constraint aliases

In Garcia et al. (2007) type aliases are recognised as an important feature for generic

programming: abbreviating long type expressions reduces clutter, and the ability to

define abstractions improves maintainability. Both Haskell and C++ acknowledge

this and provide type aliases. One would then naturally expect aliases for constraints

(which are concept-level expressions).

As we have seen in Section 4.2.3, modelling propagation provides this feature

to some extent. If, for example, we define a concept Numeric refining Additive and

Multiplicative then Numeric(a) can be used in constraints in place of Additive(a),

Multiplicative(a). However, this ability breaks down when part of the expression

contains equality constraints or associated types. Indeed, such constructs are not

allowed in the head of a modelling declaration. Orchard & Schrijvers (2010) give

the example of the Monadic Constraint Programming framework (Schrijvers et al.

2009), which contains functions with complex constraints, such as the following:

1 eval :: (Solver s, Queue q, Transformer t,

2 Elem q ~ (Label s, Tree s a, TreeState t),

3 ForSolver t ~ s) => ...

While the concept triple (Solver s, Queue q, Transformer t) could be abstracted

as a refined concept and the type triple (Label s, Tree s a, TreeState t) could

be abstracted as a type synonym, the resulting constraint would still be awkward to

manipulate. There is a clear need for a separate constraint aliasing feature.
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Sadly, neither Haskell nor C++ currently provides such a feature. The need has

been recognised though: Orchard & Schrijvers (2010) propose to extend Haskell

with constraint aliases.

While no top-level constraint aliasing is available in C++, local constraint aliasing

has been proposed for C++ (Brown et al. 2008). Constraints in C++ have to be written

out explicitly and, when associated types are constrained, parts of them are often

repeated within a single constraint expression. To reduce repetition, a part of a

constraint can be named for later use in the expression. For example, the constraints

of an STL algorithm std::inner_product repeat a single constraint (see the use of

Multiplicable) three times:

1 template<InputIterator Iter1, InputIterator Iter2, typename T>

2 requires Multiplicable<Iter1::reference, Iter2::reference> &&

3 Addable<T, Multiplicable<Iter1::reference, Iter2::reference>::

4 result_type> &&

5 Assignable<T, Addable<T, Multiplicable<Iter1::reference,

6 Iter2::reference>::result_type>::result_type>

7 T

8 inner_product(Iter1 first1, Iter1 last1, Iter2 first2, T init);

Using the proposed constraint aliases, particular constraints can be named and

reused:

1 template<InputIterator Iter1, InputIterator Iter2, typename T>

2 requires mult = Multiplicable<Iter1::reference, Iter2:reference> &&

3 add = Addable<T, mult::result_type> &&

4 Assignable<T, add::result_type>

5 T

6 inner_product( Iter1 first1, Iter1 last1, Iter2 first2, T init );

Thorough usage of concept-based programming naturally results in complex con-

straints. Therefore, we believe that both top-level and local constraint aliases should

be integrated to both Haskell and C++.

6 Generic algorithms

6.1 Type arguments deduction

Both Haskell and C++ try to deduce arguments for the type parameters of an

algorithm. However, C++ only uses the type information of the value arguments to

the function to infer the template (type) arguments. This is to be contrasted with

Haskell that also uses the return type information.

This difference has an influence on how concepts are written in practice: in C++

the return type of a function is often either an associated type (and modellings

provide a value for it) or it is also the type of an argument.

6.2 Concept-based algorithm specialisation

One sometimes wishes not only to overload based on a type, but also depending on

whether a concept applies to a given type or not (Kiselyov & Peyton Jones 2008).
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1 instance Show t => Print t where

2 print x = putStrLn (show x)

3 instance Print a where

4 print x = putStrLn "no Show"

The above intends to capture that idea: one wishes to use the first modelling when

Show is available, and fall back to the second otherwise, taking advantage of “most-

specific” rules. Unfortunately, this is invalid Haskell: the heads of the two modellings

are identical, and it is the only part that is taken in account to choose a modelling

in case of overlap.

The above modelling is possible in C++ as parametric modellings can be overloaded

on constraints. However, it is more natural to overload a generic print algorithm

without a Print concept:

1 concept Show<typename T> { string show(T); }

2

3 template<Show T>

4 void print(T x) { cout << show(x) << endl; }

5

6 template<typename T>

7 void print(T x) { cout << "no Show" << endl; }

Porting this feature to Haskell is not possible because there is no legacy overloading

mechanism (beside type classes) to extend.

6.3 Separate type checking and separate compilation

The concept systems of Haskell and C++ both enable type checking of generic

algorithms separately from their uses. In Haskell, separate type checking always

guarantees safe instantiation of generic algorithms; C++, on the other hand, allows

exceptions to separate type checking safety in the interest of generating optimal

code. In the current concepts proposal, safety can be broken by concept-based

specialisation, discussed in the previous subsection, or by allowing overloading

resolution during instantiation, for details see (Gregor 2008b). These breaches in

separate type checking reflect the long-standing practice of choosing the most efficient

implementation (Jazayeri et al. 2000) and are commonly used in the non-concept

implementations of STL and other generic libraries.

The Haskell system, furthermore, enables separate compilation: generic algorithms

can be compiled to polymorphic object code that can be applied to (representations

of) its type arguments at run time. This is realised by a dictionary-passing translation

(Wadler & Blott 1989). Jones (1995) explored how to compile away the dictionaries

to obtain faster code, and current GHC often specialises away the overhead of

dictionary passing when the type is statically known.

A similar style of separate compilation could be possible in the context of C++

(Gregor & Siek 2005; Gregor et al. 2006), but it would require serious changes to

the language, such as adding virtual tables (dictionaries) for template parameters.

Furthermore, concept-based specialisation and template specialisation would have

to be restricted to cases where no ambiguity is ever possible. The cost of run-time
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mechanisms is not compatible with the efficiency goals set out for templates. In

summary, while separate compilation is possible, it would require changes that are

unacceptable to the C++ community.

7 Related work

There is a considerable body of literature that analyses concepts, and their im-

plementation in various languages, but to our knowledge only our earlier work

(Zalewski et al. 2007; Bernardy et al. 2008) compares C++ and Haskell directly. We

have first considered how to translate Haskell type signatures with class constraints

to C++ concept-constrained templates. The purpose of such translation was to

aid a development model where a prototype was first developed in Haskell and

then translated to a C++ implementation. Our subsequent work was the direct

predecessor of this paper. Here, we extend our previous investigation, in particular

by substantiating the claims we made about portability of features. Besides, we

include more code and examples, and we update our comparison for the recent

developments in both Haskell and C++.

Peyton Jones et al. (1997) explored the tradeoffs of various features and choices

in designing a concept system. While their results are useful to compare languages

from a generic-programming point of view, they focus on extensions of Haskell type

classes, and some of the results need to be reinterpreted to make them accessible to

a larger community.

Willcock et al. (2004) give a language-independent definition of concepts and use

that common framework to interpret the implementation of concepts in various

languages, including Haskell and C++. As in Garcia et al. (2007), the version of C++

that they considered did not include language support for concepts.

Siek & Lumsdaine (2005) design a type system for concepts as an extension for

System F, and identify a number of important features of concept systems in the

process. Most of them are mentioned by Garcia et al. (2007) or by us in the current

paper, except for scoped modellings. Scoped modellings help the programmer to

control which modelling to apply. Scope control for modellings is implemented with

namespaces in C++, but lacking in Haskell, although named modellings have been

studied (Kahl & Scheffczyk 2001). We have left a more thorough comparison of this

feature to future work.

8 Conclusions and future work

In order to precisely compare C++ and Haskell from a generic programming point

of view, we have refined the previous taxonomy of Garcia et al. (2007) with

respect to the level of support for concepts. More specifically, our criteria capture

differences in the way concept parameters, modelling definitions, constraints, and

generic algorithms are treated in the two languages.

As Garcia et al. (2007) identified previously, concepts allow for flexible pro-

gramming of generic algorithms. However, the modelling machinery can be rather

verbose, and this creates a tension with one of the driving forces behind generic
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programming, namely, obtaining concise code. Therefore, it is important to provide

modelling shortcuts, and this area of language design has received much attention

in both Haskell and C++, as we have seen in Section 4.2. Also, inference is very

important: omitting inferable details allows the compiler to fill them in “on demand”

and this directly allows code to work in more varied contexts. We discussed these

aspects in Sections 5.1 and 6.1.

Our study also points towards possible improvements both in Haskell and C++.

On the Haskell side, we mainly add weight behind existing proposals: such as

constraint aliases (Orchard & Schrijvers 2010), type-level data (McBride 2010), and

data-type generic programming (Rodriguez et al. 2008). Additionally, the evolution

of existing type-class hierarchies would be made much easier by porting modelling

propagation (Section 4.2.3) from C++, and this does not seem to have been proposed

before. Finally, implicit modelling definitions (Section 4.2.4) may become a useful

feature as retrofitting existing code to a growing type-class hierarchy becomes also

more common. On the C++ side, the imperatives of backward compatibility and

performance consideration complicate porting features from Haskell. For example,

separate compilation would significantly impact the runtime cost of concepts.

However, we have identified some low hanging fruits: automatic lifting of modelling

through wrapper types (Section 4.2.2) and structure-derived modelling (Section 4.2.1).

Our point-by-point comparison of Haskell and C++ features can be used as a

tutorial for either type classes or concepts by a programmer coming from the other

background. Therefore, we see our comparison not as much as a “benchmark” of

support for generic programming, but rather as a bridge between two communities

that consider generic programming as important.

Finally, by carefully explaining how concepts are supported in state-of-the-art

implementations of generic programming, we hope to affect the development of

language support for generics in general. The criteria we identified closely map

various features of Haskell and C++. While such mapping is important in its own

right, for the future it is also important to understand which features are fundamental

for generic programming. Finding orthogonal comparison criteria will help to guide

the design of languages with orthogonal generic programming features.

Out of our 28 criteria, summarised in Table 1, 16 are equally supported in both

languages, and only three come from fundamental differences in approach. So, we

can safely conclude as we started — C++ concepts and Haskell type classes are very

similar.
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