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Abstract Two algorithms for blind polarization demultiplexing, based on the constant modulus criterion
and independent component analysis, are compared. It is found that the latter converges significantly
faster to within a given SNR penalty tolerance.

Introduction
The data rate can be doubled by using dual-
polarization transmission in systems with coher-
ent detection. Typically, polarization diversity is
then used in the receiver and polarization demul-
tiplexing (POLDEMUX) is performed through dig-
ital signal processing (DSP). The constant mod-
ulus algorithm (CMA)1 is often used for POLDE-
MUX, but has the drawback that the two polariza-
tion tributaries can converge to the same chan-
nel, requiring ad-hoc solutions2,3. Furthermore,
CMA is not designed for non-constant modulus
formats such as 16 quadrature amplitude modu-
lation (16-QAM). Independent component analy-
sis (ICA) is a more rigorous alternative to CMA
and relies on the assumption that the two chan-
nels are statistically independent. Although ICA
has been suggested for POLDEMUX, very few
results have been published4. The objective of
both CMA and ICA is to quickly estimate the po-
larization state. This allows the system to switch
to decision-directed mode5 and the convergence
time should be made short, in particular in packet-
switched networks where rerouting is expected.

In this paper we make a direct comparison of
the convergence properties of CMA and ICA for
POLDEMUX. We find that ICA is capable of better
estimating the polarization state from a given set
of data within a given processing time.

Problem formulation
We assume that chromatic dispersion has
been compensated for in prior receiver com-
ponents and that polarization-mode dispersion
and polarization-dependent losses are negligible.
Hence, we consider a system with polarization
mixing, phase noise, and ASE noise. An equiv-
alent block diagram is shown in Fig. 1. At time k,

ak sk xk yk
Ak Bk

nk eiφk

Fig. 1: System model showing the addition of noise,
the phase drift, and the polarization change before the
signal is sampled as x.

the independent and identically distributed (i.i.d.)
complex data symbols on the two polarizations,
ak, are affected by complex additive white Gaus-
sian noise (AWGN), nk, and an unknown phase
rotation, φk. The symbol phases need not be i.i.d.
and can have an arbitrary distribution, possibly in-
cluding symbol-by-symbol phase shifts from self-
phase modulation. The sampled output is writ-
ten xk = Aksk, where sk = (s(X)

k , s
(Y)
k )T contains

the two polarizations of the signal and T denotes
transposition. The complex 2 × 2 matrix Ak is
modeled as unitary, i.e., AH

kAk = I and static
over the observation time. Here, H denotes Her-
mitian conjugation and I is the identity matrix.

The goal of both CMA and ICA is to quickly con-
verge so that yk = Bkxk is a good estimate of sk.
This estimate of Bk is based on the observations
x0,x1, . . . ,xk.

Algorithm description
In CMA1, we solve the optimization problem

B̂CMA = arg min
B

E

 ∑
m∈{X,Y}

(|y(m)
k |2 − ρ2)2

 ,
(1)

where E[·] is the expectation operator and ρ2 =
E[|s(X)|4]/E[|s(X)|2] = E[|s(Y)|4]/E[|s(Y)|2]. The
stochastic gradient descent update rule is

Bk+1 = Bk − µψ(yk)xH
k , (2)
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where µ > 0 is a step size parameter and ψ =
(ψ(X), ψ(Y))T with ψ(m)(yk) = (|y(m)

k |2 − ρ2)y(m)
k ,

m ∈ {X,Y}.
In ICA6, we aim to find B such that the distri-

bution of yk is close to the marginal distribution
of sk, averaged over all possible realizations of
φk. Here, closeness is measured in terms of the
Kullback-Leibler divergence between both distri-
butions, leading to the optimization problem

B̂ICA = arg min
B

∫
pY(s) log

pY(s)
pS(s)

ds, (3)

where the integration occurs over C2. The corre-
sponding stochastic gradient minimization rule is
found to be6

Bk+1 = Bk − µ
[

1
pS(yk)

∂pS(yk)
∂s∗︸ ︷︷ ︸

≡ϕ(yk)

yH
k − I

]
Bk. (4)

In the derivation we have used the approach
called the relative gradient descent 6 that does not
require inversion of Bk. An alternative update rule
when E(sksH

k ) = I is the orthogonal update 6

Bk+1 = Bk − µ[ϕ(yk)yH
k − ykϕ(yk)H

+ ykyH
k − I]Bk. (5)

To perform the update of B in ICA, the PDF
pS(s) needs to be known. The values s(X) and
s(Y) are not independent, due to the common
phase, but we approximate pS(s) = pS(s(X)) ×
pS(s(Y)). Now, s(m) has a uniform phase and an
amplitude that is a mixture of Ricean PDFs. At
typical medium-to-high SNR values, we can ap-
proximate the PDF pS(·) as

pS(s(m)) =
∑
a

1
Da

exp
[
− (|s(m)| − |a|)2

N0

]
, (6)

where m ∈ {X,Y}, Da = Da(N0, |a|) is a normal-
ization constant, and the summation occurs over
the set of symbols in the constellation.

Numerical simulation results
Numerical simulations have been performed to
compare the convergence rate of CMA and ICA.
For ICA the update rule in (5) has been used to-
gether with the approximate PDF in (6). The A
matrix is drawn uniformly from the set of 2 × 2
unitary matrices, and is then held constant during
the simulation. This is reasonable for limited ob-
servation times, say, 2000 symbols, as this corre-
sponds to 0.2 µs at 10 Gbaud, which is too short

a time to have any significant changes of the po-
larization state. The initial estimate of B is set to
B0 = I. A symbol sequence is generated and
complex AWGN noise is added, corresponding to
a nominal BER of 10−3. To measure the conver-
gence performance, we compute the SNR degra-
dation as follows: Let Es be the average energy
per symbol, and N0 the noise PSD so that the
nominal SNR is Es/N0. Introducing C = BkA,
the measured SNR at time k on polarization X is

SNR(X)
k =

|C1,1|2Es

|C1,2|2Es +N0(|C1,1|2 + |C1,2|2)
. (7)

Calculating SNR(Y)
k in a similar way, the SNR

penalty at time k is

SNRpen
k = Es/N0 −min[SNR(X)

k ,SNR(Y)
k ]. (8)

Running a large number of simulations using dif-
ferent A matrices we can compute the probabil-
ity of being below a given SNR penalty thresh-
old at every iteration. This value is then used as
a measure of the convergence rate and we have
set the convergence threshold value to 1 dB SNR
penalty. The step sizes µ have been selected to
maximize the final probability of being below 1 dB
penalty.

Figs. 2 and 3 show results for QPSK and 16-
QAM, respectively. The thick lines correspond to
symbol-by-symbol updates (2) and (5). The thin
lines show cumulative updates where at time k we
perform a gradient descent based on all obser-
vations up to time k. This cumulative approach
has higher computational complexity but shows
the achievable performance gains by making use
of all available information at every time step.

For the symbol-by-symbol updates, ICA corre-
sponds to the blue line (marked with circles) and
CMA to the two red lines. The solid line for CMA
corresponds to an implementation suggested by
Kikuchi2, orthogonalizing the rows of Bk at every
time step. It is seen that ICA outperforms CMA
for both modulation formats since it has a signif-
icantly lower probability of being above the SNR
penalty threshold. This shows that ICA is much
more efficient in estimating the polarization state
from a given set of data. However, the probabil-
ity for being below 1 dB penalty is above 10−3 for
both algorithms also after 2000 symbols in the 16-
QAM case. For ICA this is because local minima
in the problem (3) slow down the convergence.
We expect that a more careful selection of B0

would improve the situation.



0 50 100 150 200
10

−3

10
−2

10
−1

10
0

Symbol index k

P
ro

ba
bi

lit
y(

pe
na

lty
 >

 1
 d

B
)

 

 

μ = 4.0E−3

μ = 4.1E−2

μ = 4.0E−2

μ = 1.0E−1

μ = 4.0E−2

μ = 3.6E−1

CMA
CMA ortho
ICA
CMA, cumulative
CMA ortho, cumulative
ICA, cumulative

Fig. 2: Probability for being below 1 dB penalty for CMA
and ICA on 200 symbols of QPSK data. The step size,
µ, is indicated close to the different curves.

For the cumulative updates, the simulation re-
sults are shown using thin lines in Figs. 2 and 3.
Particularly striking is the improvement for CMA in
the QPSK case, showing that basing the gradient
estimate on more than one symbol has the poten-
tial of speeding up the convergence rate consid-
erably.

Computational complexity
CMA is widely used due to its simplicity and low
computational complexity. For 16-QAM the de-
scribed ICA algorithm is quite costly (without ap-
proximations), but for QPSK the difference from
CMA is small. To see this we write out the two
corresponding expressions explicitly.

As seen from (2) the updating for CMA is done
according to Bk+1 = Bk + Mk, where the update
matrix Mk has the elements

M1,1 = −µ(|y1|2 − ρ2)y1x∗1, (9)

M1,2 = −µ(|y1|2 − ρ2)y1x∗2, (10)

M2,1 = −µ(|y2|2 − ρ2)y2x∗1, (11)

M2,2 = −µ(|y2|2 − ρ2)y2x∗2, (12)

where y1 = y
(X)
k etc for brevity. Using ICA as de-

scribed by (5) and (6), the update is multiplicative
according to Bk+1 = NkBk, where Nk has the
elements

N1,1 = 1 + µ(1− |y1|2), (13)

N1,2 =
µ|a|
2σ2

(eiφ1y∗2 − y1e−iφ2)− µy1y∗2 , (14)

N2,1 =
µ|a|
2σ2

(y∗1e
iφ2 − e−iφ1y2)− µy∗1y2, (15)

N2,2 = 1 + µ(1− |y2|2), (16)
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Fig. 3: Probability for being below 1 dB penalty for CMA
and ICA on 2000 symbols of 16-QAM data. The step
size, µ, is indicated close to the different curves.

with the phases φ1 = ]y1 and φ2 = ]y2. Count-
ing the multiplications we see that (9)–(12) need
16 and (13)–(16) need 14. In addition, ICA needs
2 phase extractions and 8 multiplications to com-
pute NkBk. How much difference this makes in
practise depends on the exact hardware imple-
mentation, but we see that the extra computa-
tional effort in ICA is very limited.

Conclusions
We have compared the constant modulus algo-
rithm and independent component analysis for
POLDEMUX in terms of their convergence speed.
It was found that, for a given number of symbols
and a set SNR penalty limit, ICA has a signifi-
cantly lower probability of failure. The difference
is more than a factor of ten and the increase in
computational effort is small.
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