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Quantization Noise Minimization in
ΣΔ-modulation based RF Transmitter Architectures

Ulf Gustavsson, Student Member, IEEE, Thomas Eriksson and Christian Fager, Member, IEEE

Abstract—This paper describes an optimization method for
minimization of quantization noise in ΣΔ-based RF transmitters.
The aim of the method is to enable the use of reconstruction filters
with wider passband, or alternatively, a lower switch-rate.

The method uses a general representation of the ΣΔ-
converters in combination with a differentiable approximation
of the quantizer. Based on this, a Monte-Carlo based algorithm
is developed around the damped Gauss-Newton iteration. As a
result of the suggested algorithm, the residual quantization noise
after reconstruction filtering is significantly decreased.

Finally, simulations using a bandlimited signal with a Gaussian
distribution are used to demonstrate the capabilities of the sug-
gested algorithm when applied with the proposed ΣΔ-modulator
representation. The resulting performance is compared to several
cases of ΣΔ-converters designed using traditional methods,
demonstrating significant improvements in terms of reduced
reconstruction normalized mean square error (NMSE). This
implicates that the transmitter efficiency can be improved with
minor changes in the modulator implementation.

Index Terms—ΣΔ-modulation, Pulse-Density Modulation
(PDM), Noise-Shaped Coding (NSC), Quantization Noise, Gauss-
Newton iteration, Monte-Carlo based algorithms, RF transmitter
architectures.

I. INTRODUCTION

MODERN wireless systems use advanced, high order
modulation schemes to maximize the capacity. As a

consequence, the signal has very large peak to average power
ratio. Traditional amplifiers need therefore to be operated in
a backed off, low efficiency, region to satisfy the linearity
requirements. However, a large number of efficiency enhance-
ment techniques have been proposed in order to circumvent
this problem and techniques like the Doherty amplifier [1],
Chireix outphasing systems [2] and envelope tracking (ET)
[3] have therefore gained popularity during the last decade.
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Other promising techniques proposed to achieve high effi-
ciency, while maintaining high linearity, are based upon the
use of 1-bit quantization in different forms with the amplifiers
[4]. This means that the PA is operated only in either of its
two most efficient points: in deep compression or completely
off. These types of quantization schemes usually map the
amplitude and phase information of the signal to either the
width and position of each pulse (pulse width modulation,
PWM), or to the density of pulses with a fixed duration (pulse
density modulation, PDM).

Unfortunately, the 1-bit quantized representation of the
signal contains large amounts of undesired distortion. Due to
regulations imposed upon all wireless communication systems
one can not simply transmit the quantized signal. Therefore,
reconstruction filters, in general of bandpass type, are needed
to avoid violations of the spectral mask. The required frac-
tional bandwidth of these filters are, however, very small which
causes the insertion loss in the pass-band to be large for the
practical implementation [5]. This reduces the power delivered
to the load, thus decreasing the power efficiency of the system
considerably. The amount of quantization noise produced
within the filter passband can be reduced by increasing the
pulse rate. However, this leads to increased switch losses in
the power amplifier circuit, and very high clock rates in the
digital signal processing units.

One possible remedy for this problem is to apply pulserates
at a moderate level in combination with Noise Shaped Coding
(NSC) [6]. NSC maps the signal by PDM in a manner where
the quantization noise is minimized in a specific part of the
spectrum. The most common type of implementation of NSC
mappings are so called ΣΔ-modulators [7], [8]. In this type
of modulator, the NSC properties are directly determined by
the coefficients of the loop-filters inherent to the structure. As
shown in Fig. 1, the key idea is to minimize the energy of the
quantization noise within a specified frequency band, BWF ,
considerably larger than the bandwidth of the signal which
is to be quantized, BWs. Increasing BWF while keeping the
quantization noise within BWF to a minimum, can potentially
relax the bandwidth requirements for the reconstruction filters
used and therefore also reduce their losses.

Determining the loop-filter coefficients for desired NSC
is however far from trivial, since the loop comprises an
extreme nonlinearity in the form of a quantizer. Regular linear
systems theory lacks straight-forward methods to compute
these coefficients for arbitrary input signal statistics. Thus, an
optimization-based method needs to be deployed in which the
coefficients derived from the linear models can serve as good
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Fig. 1: Illustration of the optimization criteria in the frequency
domain.

start-points.
In this paper we first survey some state of the art analysis

approaches for ΣΔ-modulators and their use in high efficiency
RF transmitters. We then suggest an algorithm in which a
differentiable approximation of the quantizer is introduced. In
combination with a generalized IIR-filter based representation
of the ΣΔ-modulator, we enable the use of gradient-based
search algorithms. As a result, it is possible to reduce the
quantization noise within BWF , significantly compared to the
common modulator implementations.

The paper is organized as follows. First, we will review the
state-of-the-art in ΣΔ-modulator analysis and ΣΔ-modulator
based transmitter architectures in section II. This serves as
a background to section III, which introduces a highly gen-
eralized mathematical representation of the ΣΔ-modulator. In
section IV we move toward describing a working optimization
algorithm. The equations for implementing the damped Gauss-
Newton iteration are then described in section IV-A. Further
on, a differentiable approximation of the quantizer is suggested
in section IV-B, which enables the use of the damped Gauss-
Newton iteration. An optimization algorithm is then suggested
in section IV-C, using the damped Gauss-Newton in com-
bination with a Monte-Carlo based technique for reducing
overall start-value sensitivity of the algorithm. The outcome
of the algorithm in combination with the generalized ΣΔ-
representation is then benchmarked against regular integrator-
based solutions as well as against modulators comprising
Noise Transfer Functions (NTF) optimized with traditional
methods. This benchmark is performed by experimental simu-
lations in section V. Finally, conclusions are drawn in section
VI.

II. STATE OF THE ART

A. ΣΔ-modulator analysis

One of the most common topologies used in ΣΔ-
modulation is the integrator based low-pass modulator. This
topology is commonly used in applications where a very large
oversampling ratio (OSR) is feasible, e.g. for audio coding. For
wideband RF applications, however, the headroom for using
high OSR is not as generous. An oversampling ratio below 20
is typically used when it comes to baseband ΣΔ-modulation

[9]. The need for optimized NSC is therefore of paramount
importance in pulsed RF transmitters.

Several methods of mathematical analysis of the quanti-
zation noise have been suggested in [10], [11]. However,
these approaches are mainly aimed for linear and nonlinear
reconstruction approaches in digital systems and are highly
complex. Further on, they leave little insight of how to
determine the modulator parameters in order to achieve desired
NSC, e.g. desired spectral shape of the quantization noise from
a given criterion. Another recently developed approach for
optimizing the NSC properties of a ΣΔ-modulator is presented
in [12]. Here, the 1-bit quantization problem is analyzed
as a maximum likelihood sequence detection, for which the
Viterbi-algorithm is the optimal solution.

The vast majority of published analysis methods are how-
ever based on empirical methods [13], [14], [15], [16]. These
methods are typically derived under the assumption that the
quantization noise is a stochastic process with a uniform
or Gaussian distribution, usually modeled as independent of
the quantizer input. From this assumption, the quantizer is
replaced with a noise source in order to enable regular linear
analysis (thus the term quantization ”noise”). These types of
models are useful for determining the filter-coefficients for a
subclass of simplified problems, as for example the low-pass
integrator-based ΣΔ-modulators.

B. ΣΔ-modulator based transmitter architectures

The use of 1-bit quantization for efficiency enhancement of
power amplifiers has been demonstrated using different types
of transmitter system topologies. Some applications suggests
that the quantization should be performed at RF-rate or above,
as for example RF pulse-width modulation (RF-PWM, [4]) or
band-pass ΔΣ-modulation (BPΣΔ [17], [18]). These types of
architectures are in general very difficult to implement since
the harmonic content of the pulse train ranges over several
multiples of the carrier frequency and therefore put extreme
requirements on the modulator implementation, as well as the
bandwidth of the interconnect between the modulator and the
power amplifier circuits. Systems performing the quantization
on a baseband level have also been suggested, either in
Cartesian or polar form, [19], [20]. The quantized signal can
then be applied by either modulating the RF input of the PA
[21], [22], but it can also be applied by switching the DC
voltage supply [9].

A common baseband type of pulsed transmitter architecture
is called Cartesian pulse modulation, which is illustrated in
Fig. 2. Here, the signal is treated in Cartesian form, e.g. on
the orthogonal quadrature components I and Q. These are
then separately quantized by two ΣΔ-modulators before they
are recombined and up-converted to the RF-carrier frequency
[20]. The figure also shows the reconstruction filter in form
of a bandpass-filter connected at the PA output. In all of these
cases, the residual quantization noise needs to be suppressed
in order to comply with spectral requirements of the output
signal.

Further on, there have been several methods suggested
to cope with the filtering issue by selective cancellation of
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Fig. 2: Simplified schematic view of a Cartesian pulse modulated system, using ΣΔ-modulators for quantization of the
quadrature components of the signal. The orthogonal I and Q components are then combined and upconverted to RF, creating
a constant envelope drive signal for high efficiency operation of the power amplifier. The reconstruction filter is then used to
recreate the bandlimited communication signal.

quantization noise close to the carrier. In [23] a feed-forward
method quite commonly used to perform linearization in
regular RF PA systems is suggested, to cancel the quantization
noise close to the modulated RF-carrier. An alternative to this
is suggested in [24], which requires no additional hardware,
but suppresses the adjacent quantization noise by imposing an
amplitude component onto the pulses.

A quite different use for the ΣΔ-modulator related to
high efficiency RF transmitters is presented in [25], where a
asynchronous, continuous-time ΣΔ-modulator is used for sta-
bilizing a very wideband feedback-loop used for pre-distorting
a RF PA.

We now move on to describe the suggested, generalized
ΣΔ-modulator structure, and the algorithm designed to opti-
mize its NSC performance.

III. GENERALIZED ΣΔ-MODULATOR REPRESENTATION

In order to enable a gradient-based method to search for the
coefficients that provides the desired NSC properties, we need
a highly generalized structure able to represent as many ΣΔ-
modulator implementations as possible. The quantizer function
Q(·) can be arbitrarily defined, but within the scope of this
paper we will consider a 1-bit quantizer only. The generalized
ΣΔ-modulator representation suggested in this paper is shown
in Fig. 3, where we H and G are considered to be generic IIR-
filters with coefficients

H � {a1, . . . , aQH , b0, . . . , bPH} (1)

G � {c1, . . . , cQG , d0, . . . , dPG} (2)

PG and PH are the feedforward orders and QG, QH are the
feedback orders of G and H , respectively. Note that we can
obtain the case of FIR-filters by simply setting QG = QH = 0.
The equations governing this system, at time instant n and at

each node of the system, are described in (3) - (6).

pn = xn − rn (3)

rn =
1

c0

(
PG∑
k=0

dkqn−k−1 +

QG∑
k=1

ckrn−k

)
(4)

zn =
1

a0

⎛
⎝PH∑

k=0

bkpn−k +

QH∑
j=1

ajzn−j

⎞
⎠ (5)

qn = Q(zn) (6)

The constant scaling factor α included with the general repre-
sentation in Fig. 3 is applied to accommodate arbitrary input
signal variance σ2

x. This particular representation is capable
of representing a very large set of different implementations
which makes is suitable for use in the forthcoming analysis.
For example, by setting H and G to

H(z) =
1

1− z−1
(7)

G(z) = 1 (8)

we obtain the NSC-properties of a first order single loop,
integrator-based implementation of a low-pass ΣΔ-modulator
shown in Fig. 4 (a). Further on, by setting

H(z) =
1

(1 − z−1)2
(9)

G(z) = b + (a− b)z−1 (10)

where a and b are the constant gain coefficients of the two
feedback branches as shown in Fig. 4 (b), we can achieve the
NSC-property of a second order dual loop, integrator-based
low-pass ΣΔ-modulator. Both of these implementations are
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Fig. 3: A general representation of a ΣΔ-modulator. The
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Fig. 4: Examples of common implementations of ΣΔ-
modulators. (a) 1st order low-pass ΣΔ-modulator. (b) 2nd order
low-pass ΣΔ-modulator.

described in [26]. Analogously, the generalized representation
in Fig. 3 can, via simple analysis, be used to describe the NSC-
properties of higher order ΣΔ-modulators, both low-pass or
even band-pass.

IV. OPTIMIZATION OF THE NOISE-SHAPED CODING

PROPERTIES

We now proceed by showing how a differentiable approxi-
mation of the quantizer can enable a gradient based search over
the parameter space of the generalized ΣΔ-representation.
This is illustrated by deriving the equations for the damped
Gauss-Newton iteration, as described in [27]. Further on, it
will also be shown that by using the search repeatedly while
iteratively letting the approximation approach the quantizer
by incrementing the slope-factor λ, we can move toward one
set of parameters θ∗ that provides a good minimum for our
reconstruction error criteria.

A. Damped Gauss-Newton iteration

In this subsection we derive the expressions necessary to
form the damped Gauss-Newton iteration applied to the par-
ticular problem described in previous sections. By introducing
the reconstruction filter, F (z), we can use the reconstructed

output sequence yn to formulate the optimization criterion in
the terms of mean square error:

{α∗, θ∗} = arg min
{α,θ}

1

N

N−1∑
n=0

|xn − yn(α, θ)|2 (11)

where θ � {H, G} and α is the scalar constant used to
adapt the structure to arbitrary signal variance σ 2

x. In this case,
the reconstruction-filter is represented by the impulse response
F � {fk}Lk=1 of a linear phase filter with selected pass-band
BWF . The expression for the output sequence yn can now be
formed as

yn(α, θ) = α

L−1∑
k=0

fnqn−k(θ) (12)

Since convolution and differentiation are both linear operators
and F is linear, it is straight forward to calculate the partial
derivatives ∂yn/∂θi by filtering the partial derivative ∂qn/∂θi
as

∂yn
∂θi

= α

L−1∑
k=0

fk
∂qn
∂θi

(13)

From here, it is now easy to apply this in any gradient-
based search of choice. For this paper we have selected the
damped Gauss-Newton method, where the parameter vector
for the k + 1:th iteration is calculated as

θ(k+1) = θ(k) + μH†
[
x − y(α(k), θ(k))

]
(14)

where μ is the step-size and

x = [x1 x2 . . . xN ]
T (15)

y(α(k), θ(k)) =
[
y1(α

(k), θ(k)) . . . yN (α(k), θ(k))
]T
(16)

are the N × 1 vectors containing the input data sequence
and reconstructed output data sequence, respectively. Finally,
† denotes the Moore-Penrose generalized matrix inverse,

H† =
[
HT H

]−1
HT (17)

Further on, H is the N × P Jacobian matrix for parameter
vector θ(k), written as

H =

⎡
⎢⎢⎢⎣

∂y1(α
(k),θ(k))

∂θ
(k)
1

. . . ∂y1(α
(k),θ(k))

∂θ
(k)
P

...
...

∂yN (α(k),θ(k))

∂θ
(k)
1

. . . ∂yN (α(k),θ(k))

∂θ
(k)
P

⎤
⎥⎥⎥⎦ (18)

where P = dimθ and N is the data record length. The
elements needed to calculate H are given in (19)-(22), which
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Fig. 5: Approximation of the ±1 quantizer with different
settings of the slope-factor λ.

forms a closed, recursive expression.

∂pn
∂θi

= −∂rn
∂θi

(19)

∂rn
∂θi

=
1

c0

PG∑
k=0

(
∂dk
∂θi

qn−k−1 + dk
∂qn−k−1

∂θi

)

+
1

c0

QG∑
j=1

(
∂cj
∂θi

rn−j + cj
∂rn−j

∂θi

)
(20)

∂zn
∂θi

=
1

a0

PH∑
k=0

(
∂bk
∂θi

pn−k + bk
∂pn−k

∂θi

)

+
1

a0

QH∑
j=1

(
∂aj
∂θi

zn−k + aj
∂zn−k

∂θi

)
(21)

∂qn
∂θi

= 0 (22)

A consequence of (22) is that the Jacobian H in (18)
becomes a zero-matrix when a true quantizer is used. Gradient
based search algorithms can therefore not be directly used to
find θ∗. In the next section we describe a method where the
quantizer is replaced with a differentiable approximation to
circumvent this problem.

B. Differentiable quantizer approximation

Within the framework of this paper we will only consider
the case of the ±1-quantizer, but the analysis below is easy
to generalize for arbitrary choice of quantizer. The proposed
method solves the issue pointed out in (22) by a simple
differentiable approximation of Q(·). In this work, we have
used the quantizer approximation described by (23), which is
illustrated in Fig. 5 over several slope-factor values, denoted
λ.

Sλ(x) =
2

π
tan−1(λx) (23)

By using (23), qn can now be approximated as

qn = Sλ(zn) (24)
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Fig. 6: One-dimensional error-surface over the H-filter coef-
ficient a2, with three different settings of the slope-factor λ
and the quantizer Q(·).

Since Sλ(zn) now is a differentiable expression approximating
the quantizer, we can derive the expressions leading up to the
elements in the Jacobian matrix H without problems. This is
done by using the equations in the previous section, derived
from Fig. 3, but with (6) replaced with (24) which results in
a recursive calculation, i.e. ∂qn/∂θi is calculated as

∂qn
∂θi

=
∂Sλ(zn)

∂θi
=

2

π

∂zn
∂θi

λ

1 + (λzn)2
(25)

which after replacing (22) will enable the use of a gradient-
based optimization approach.

The necessity of this differential approximation is clearly
visible in Fig. 6, where a 1-dimensional error-surface is
plotted, using several cases of the approximation Sλ. The error
surface is created by iteratively running the modulator with a
predetermined signal sequence xn over several settings of a
parameter of choice. In this case, a2 ∈ H is swept. The same
error-surface is further on shown for the case of a quantizer,
which illustrates the fact stated in (22), e.g. that the partial
derivative ∂qn/∂θi = 0 almost everywhere. One observation
easily made, is the locus of the local minimum as λ → ∞.
Thus, a progression over a sequence of λ-values is necessary
for the algorithm to converge to a good, final minimum.

We will now continue with the description of the Monte-
Carlo based approach in which the start-value sensitivity of
the damped Gauss-Newton iteration is reduced. Further on, an
optimization algorithm designed for selection of the set {θ, α}
improving the NSC-performance of the ΣΔ-modulator given
a certain reconstruction-filter F is described and simulated.

C. Monte-Carlo based optimization algorithm

In this section we aim to develop an optimization algorithm
based on the damped Gauss-Newton iteration. It is a com-
monly known fact that gradient-based search algorithms can be
quite sensitive to local minima when it comes to convergence.
In particular, the number of local minima will grow rapidly
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if the dimensionality of the problem is large. Identifying the
global minimum in an optimization problem as nonlinear
as the one described here could be considered practically
impossible. Therefore, a simple Monte Carlo-based approach
to the algorithm is developed in order to approach a good
enough local minima. Further on, for computational simplicity
and increased robustness, the damped Gauss-Newton is split
up to be performed iteratively over three partitions of the
parameter space, instead of over the complete space.

The proposed algorithm described here is illustrated in
Fig. 7. The algorithm starts off by scattering M different
parameter vectors using the selected start vector, θ (1) and
Gaussian noise. This scattering provides the set Θ(1) contain-
ing M parameter vectors.

Θ(1) = {θ(1)
i }Mi=1 = {θ(1) + w(1)

i }Mi=1 (26)

where w(1)
i is drawn from a Gaussian distribution

w(1)
i ∼ N (0,Cw(1)) (27)

with variances

Cw(1) = diag
(
σ2
w1

(1) , σ
2
w2

(1) , . . . , σ
2
wP

(1)

)
(28)

Note that the notation θ
(k)
i refers to the i:th parameter vector

in Θ(k), of the k:th iteration of the algorithm. If the index i is
left out, as in θ(k), the notation refers to the parameter vector
used generating the set Θ(k), as in (26).

From each of the M generated vectors, we now perform the
same optimization sequence shown in Fig. 7 until convergence.
As further depicted in Fig. 7, the damped Gauss-Newton is
executed sequentially over partitions of the parameter set θ,
i.e. on H and G separately, to further improve the convergence
properties. The optimization of α is then done separately by
solving

α
(k)
i = argmin

α

1

N

N∑
n=1

|xn − yn(α, θ
(k)
i )|2 (29)

This routine is then repeated until convergence. After these
procedures are done for all parameter vectors θ (k)

i ∈ Θ(k), the
i:th parameter vector and scaling factor, (α(k)

i , θ
(k)
i ), 1 ≤ i ≤

M , that minimizes the normalized mean square error (NMSE),
is selected as the next start vector,

(α(k+1), θ(k+1)) = min
1≤i≤M

NMSE(α(k)
i , θ

(k)
i ) (30)

where the NMSE is defined after reconstruction as

NMSE(α, θ) =

N∑
n=1

|xn − yn(α, θ)|2

N∑
n=1

|xn|2
(31)

From this parameter vector, we then generate the set Θ (k+1)

as described in (26) and repeat the procedure until we reach
a k:th iteration of the algorithm that satisfies the convergence
criteria

NMSE(α(k−1), θ(k−1))− NMSE(α(k), θ(k)) < ε (32)

for any sufficiently small ε. Further on, as the algorithm
is moving toward a good minima, the variance Cw(k) , is
continuously decreased as k increases,

Cw(k+1) � Cw(k) (33)

where � denotes the component-wise matrix inequality. For
numerical simplifications and in order to reduce computation
time, the number of new start points generated, M , can be
reduced for each iteration as well. To further decrease the
overall computational time it is possible to start with a small
number of samples N1 for a large M , and sequentially increase
the number of samples, N (k) < N (k+1), used in each damped
Gauss-Newton iteration while also decreasing the number of
scattered vectors M in each iteration.

After convergence in NMSE is reached, the slope-factor λ
is then increased and the optimization routine is reset to start
over again by generating M new vectors from θ ∗ according
to (26). The algorithm is performed until a λ large enough is
reached, i.e. when the approximation error is arbitrary small,
thus making it possible to replace the approximation with the
quantizer with good performance.

V. SIMULATION RESULTS

A. Prerequisites

In order to verify the performance of the suggested al-
gorithm, the optimization routine and the generalized, IIR-
filter based ΣΔ-modulator representation was implemented
in MATLAB using direct form 2 (DFII) IIR-filters, along
with the damped Gauss-Newton search. The DFII-filter based
modulator has a computational complexity of 1 delay-tap, 1
addition and 1 multiplication per parameter.

The input signal was generated using a low-pass filtered
Gaussian noise sequence {xn}Nn=1 ∼ N (0, σ2

x), where σ2
x =

0.1, resulting in BWS = fs/10, i.e. an effective OSR of 10.
Further on, a wideband reconstruction filter with bandwidth
BWF = fs/4 was used to reconstruct the signal (see Fig. 1).
The optimization used iterations of λ in coarse steps, from
λ = 1 up to λ = 104, after which the quantizer could be
reinserted. The results for the generalized ΣΔ modulator are
based on simulations using PH = 4, QH = 4, PG = 4 and
QG = 4.

The simulations evaluating the final results are put in terms
of reconstructed SQNR = 1/NMSE, since this is the most
common figure of merit throughout the literature [26]. The
performance of the proposed implementation is then compared
against both 1st and 2nd order integrator-based lowpass ΣΔ-
modulators, as well as two ΣΔ-modulators with optimized
NTFs. The NTFs of these modulators has been optimized
using the ΣΔ-toolbox [28], described in detail in [26]. These
two ΣΔ-modulators will be labeled ΣΔ#1 and ΣΔ#2 from
here on. The NTF of ΣΔ#1 were optimized using the
constraint ‖NTF (z)‖∞ ≤ 1.5 and the NTF of ΣΔ#2 were
optimized using the constraint ‖NTF (z)‖∞ ≤ 1.75. In order
to achieve a fair comparison, the order of the NTFs in both
cases were set to 7, which is the order of the resulting NTF
in the proposed modulator.
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Fig. 7: Block diagram of the proposed algorithm which sequentially uses the damped Gauss-Newton (DGN), in combination
with a Monte-Carlo based approach, to minimize the quantization noise within the selected bandpass region.

B. Simulations of the proposed algorithm

Fig. 8 shows one example of the proposed method described
in section IV-C. The figure illustrates, over three iterations of
k at λ = 5, how the suggested algorithm overcomes the start-
value sensitivity by iteratively forcing the set of parameters
toward a good minimum. Note the decreasing number of start-
points per iteration, M , and the increasing sequence length,
N , as presented in Table I. For simplicity, the same variance
is used for all positions when generating the M vectors, e.g.
σ2
w1

(k) = σ2
w2

(k) = . . . = σ2
wP

(k) (given by σ2
w in Table I).

Simulations clearly illustrate how the algorithm results in
reduced variance of the estimate and thus a reduction of the
start-value sensitivity. The figure shows that, for this λ setting,
the minimum NMSE that can be obtained is approximately -
25 dB. It should be noted that, in the following iterations of
the algorithm, as λ → ∞ and approaches the true quantizer,
the minimum NMSE is higher.

A spectrum plot of the final optimized NSC is shown
in Fig. 9, where it is compared to the other modulator
implementations as described in V-A. It is clearly shown in
Fig. 9, as well as within the SQNR-calculations in Table II,
that the quantization noise power within the reconstruction
filter passband is significantly reduced in comparison with the
other modulators.

TABLE I: Summary of simulation parameters for Fig. 8

Iteration Sequence length Nr of scattered initial vectors Variance

k N M σ2
w

1 100 300 1

2 500 200 0.8

3 1000 100 0.4
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Fig. 8: One example of three iterations in the Monte-Carlo
based algorithm at λ = 5. Decreasing noise-variance Cw(k)

and increased sequence length is used according to Table I.

C. Signal- and Noise-Transfer Functions

Using a linear Gaussian noise approximation of the quan-
tizer [15], the Signal Transfer Function (STF) and the Noise
Transfer Function (NTF) of the generalized ΣΔ modulator
can be derived. Given that H(z) = B(z)/A(z) and G(z) =
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Fig. 9: A comparison of the PSD of the quantization noise
produced by the proposed ΣΔ-modulator in comparison with
(a) regular integrator-based 1st and 2nd order ΣΔ-modulators,
and with (b) ΣΔ#1 and ΣΔ#2 as described in V-A. Both
plots also shows the original signal as well as the magnitude
frequency response of the reconstruction filter.

D(z)/C(z), we end up with the expressions

STF(z) =
1

1 + z−1H(z)G(z)

=
A(z)C(z)

A(z)C(z) + z−1B(z)D(z)
(34)

and

NTF(z) =
H(z)

1 + z−1H(z)G(z)

=
B(z)C(z)

A(z)C(z) + z−1B(z)D(z)
(35)

from which we can calculate STF and NTF using the op-
timized generalized ΣΔ parameter-set, θ∗. The result is
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Fig. 10: Calculated magnitude signal- and noise-transfer func-
tions, |STF| and |NTF|, for the proposed modulator.
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Fig. 11: Poles and zeroes of the NTF for the proposed
modulator.

presented in the magnitude plot Fig. 10 and the pole-zero
diagram in Fig. 11. As can be seen, the calculated NTF shows
resemblance to the quantization noise presented in Fig. 9,
which indicates that a linear analysis could be useful for
providing starting values to the optimization algorithm and
thus further improve its robustness.

D. Signal to Quantization Noise Ratio and Modulator Robust-
ness Simulations

In order to extract the SQNR characteristics for the
optimized modulator, several new band-limited data-sets
{xn}Nn=1 ∼ N (0, σ2

x) of length N = 100000 were generated
with σ2

x ranging from 10−3 to 1. These data-sets were encoded
and reconstructed using both the proposed generalized ΣΔ
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with parameters θ∗, as well as the modulator implementations
listed in V-A. In the case of the 2nd order integrator-based
modulator, the constant gain-factors were set to a = b = 1
(see Fig. 4).

The simulated results in terms of maximum SQNR after
reconstruction is shown in Table II, where a 1.7 dB improve-
ment of SQNR is shown compared to ΣΔ#2. The SQNR
characteristics are shown in Fig. 12 as a function of the
input signal variance, σ2

x. The figure also shows the points
at which ΣΔ#2 and the 2nd order ΣΔ-modulator becomes
instable. The 1st order integrator-based modulator, ΣΔ#1
and the generalized ΣΔ-modulator stays stable, even when
severely overdriven. Despite the high order of modulator, the
generalized ΣΔ-structure has a relatively large stable input
amplitude-range due to the use of the optimization algorithm.
The algorithm inherently eliminates parameter-sets θ causing
instability since these will score poorly with the optimization
cost-function.

The need of an optimization based approach can be
further motivated by calculating the maximum NTF -gain,
or ‖NTF (ω)‖∞, of the optimized modulator. Generally,
‖NTF (ω)‖∞ < 1.5 is required for a stable 1-bit modula-
tor [26], [29]. Calculating the NTF stated in (35) for the
optimized modulator, we get that ‖NTF (ω)‖∞ ≈ 2.5. This
illustrates how the linear approximation-based design methods
are likely to rule out high performance modulators such as the
one proposed in this paper, thus providing a strong motivation
for an optimization based approach.

VI. CONCLUSION

A generalized structure able of representing a large set of
ΣΔ-modulator implementations has been suggested. Using
this representation, and a differentiable approximation of the
quantizer, an algorithm for minimization of the quantization
noise within a custom frequency band has been proposed. The
algorithm combines this approximation with a Monte Carlo
approach in order to decrease the start value sensitivity.

Simulations of a generalized, low OSR ΣΔ-modulator have
been used to demonstrate that significant improvements in
reconstructed SQNR can be obtained with a optimized, gen-
eralized ΣΔ-modulator. These results were compared to the
regular 1st and 2nd order modulators, as well as against two
modulators with NTFs optimized using the classical AWGN-
approximation. Increased robustness in terms of modulator
stability were also shown by studying the SQNR performance
over a wide range of input signal variance.

These results implies that when used in pulsed RF transmit-
ter architectures, the requirements for narrowband reconstruc-

TABLE II: Summary of simulated results.

Modulator Type Max. SQNR (dB)

Optimized, generalized ΣΔ modulator 16.6

ΣΔ#1 13.5

ΣΔ#2 14.9

1st order ΣΔ 12.2

2nd order ΣΔ 7.3
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Fig. 12: Signal to Quantization Noise Ratio (SQNR) vs input
signal variance (σ2

x) for the benchmarked ΣΔ implementa-
tions.

tion filters can be relaxed, or the switching frequency reduced.
In either case the result is that the transmitter efficiency can
be improved at the cost of a small increase in modulator
complexity.
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