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AAbbssttrraacctt

Systems biology has matured considerably as a discipline over the last decade, yet some of the
key challenges separating current research efforts in systems biology and clinically useful results
are only now becoming apparent. As these gaps are better defined, the new discipline of systems
medicine is emerging as a translational extension of systems biology. How is systems medicine
defined? What are relevant ontologies for systems medicine? What are the key theoretic and
methodologic challenges facing computational disease modeling? How are inaccurate and
incomplete data, and uncertain biologic knowledge best synthesized in useful computational
models? Does network analysis provide clinically useful insight? We discuss the outstanding
difficulties in translating a rapidly growing body of data into knowledge usable at the bedside.
Although core-specific challenges are best met by specialized groups, it appears fundamental that
such efforts should be guided by a roadmap for systems medicine drafted by a coalition of
scientists from the clinical, experimental, computational, and theoretic domains.
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CCoorrrreessppoonnddeennccee
Recent years have seen the rise of systems biology as a

legitimate discipline. Although consensus exists about what

the fundamental tools are (high-throughput data from

several biologic scales, high-definition imaging, and compu-

tational modeling), no such consensus exists as to what

defines the broad agenda of systems biology. A growing

awareness is found that, despite such major technologic

advances, fundamental obstacles separate systems biology

from clinical applications. Bridging these gaps will require a

focused and concerted effort. What defines systems medicine

as a discipline? What should it seek to accomplish? How

should knowledge from disparate sources be assembled into

ontologies relevant to systems medicine? How are multiscale



data to be synthesized by corresponding multiscale models?

What is the burden of proof that such models are valid and

predictive of clinically relevant outcomes? Is network

analysis a useful tool for systems medicine?

Physicians, basic scientists, mathematicians, statisticians

and computer scientists met at the Third Bertinoro Systems

Biology workshop [1], sponsored by the University of

Bologna, focused on the theme ‘Systems Biology Meets the

Clinic’ to address these questions. Participants sought to

identify key challenges facing the successful translation of

systems biology to the clinical arena and discussed and

debated a roadmap seeking to address them. The meeting,

held over a 4-day period, comprised plenary lectures followed

by extensive thematic discussions, formal and informal,

centered on the theme of systems medicine as a distinct

translational discipline [2].

DDeeffiinniinngg  ssyysstteemmss  mmeeddiicciinnee
Workshop participants proposed that systems medicine be

defined as the application of systems biology to the

prevention of, understanding and modulation of, and

recovery from developmental disorders and pathologic

processes in human health. Although no clear boundary

exists between systems biology and systems medicine, it

could be stated that systems biology is aimed at a funda-

mental understanding of biologic processes and ultimately at

an exhaustive modeling of biologic networks, whereas

systems medicine emphasizes that the essential purpose and

relevance of models is translational, aimed at diagnostic,

predictive, and therapeutic applications. Accordingly,

advances in systems medicine must be assessed on both a

medical and more basic biologic scale, as the correspon-

dence between medicine and biology is intricate. Some

seemingly straightforward biologic models may have an

important medical impact, although some impressively

complex molecular models may not be immediately

medically relevant. Whereas systems biology may have so far

focused primarily on the molecular scale, systems medicine

must directly incorporate mesoscale clinical information

into its models; in particular, classic clinical variables,

biomarkers, and medical imaging data. As an example, it has

become increasingly clear that prognostic and predictive

models for malignant tumors using expression data cannot

ignore information from classic prognostic indices [3].

Furthermore, because of the necessary multiscale nature of

the models bridging embedded levels of organization from

molecules, organelles, cells, tissues, organs, and all the way

to individuals, environmental factors, populations, and

ecosystems, systems medicine aims to discover and select

the key factors at each level and integrate them into models

of translational relevance, which include measurable

readouts and clinical predictions. Such an approach is

expected to be most valuable when the execution of all experi-

ments necessary to validate sufficiently detailed models is

limited by time, expenses (e.g., in animal models), or basic

ethical considerations (e.g., human experimentation).

Systems medicine as a discipline did not emerge from clinical

medicine, but draws its relevance from it. Conversely,

advances in systems biology created the necessary conditions

and tools for the emergence of systems medicine.

Accordingly, although it may be appropriate to position

systems medicine as an extension of systems biology from a

historical perspective, the former also draws from several

other disciplines, such as clinical medicine and population

epidemiology, less familiar to systems biologists.

SSccaallee--ssppeecciiffiicc  mmooddeelliinngg  vveerrssuuss  mmuullttiissccaallee  mmooddeelliinngg
Computational models have for the most part attempted to

assimilate massive data streams collected by using global

measurement technologies (techniques that look at the

complete set of genes, transcripts, proteins, metabolites, or

other features in an organism) by using high-throughput

techniques and have been, by and large, scale specific. Such

attempts target the development of predictive mathematic

and computational models of functional and regulatory

biologic networks. Specific biologic hypotheses can thus be

tested by designing a series of relevant perturbation

experiments [4]. Clear merit inheres in such an incremental

approach, yet its true potential is likely to be realized only

when such data-driven, bottom-up approaches are com-

bined with top-down, model-driven approaches to generate

new medically relevant knowledge.

An open question is whether integrative systems-biology

approaches can reveal underlying principles related to the

aforementioned biologic functions. It is probably improper

to speak of the existence of biologic laws in the sense of

physical laws, yet probably deeper dynamic principles guide

the evolution of biologic systems. Energetic and physical

constraints play an important role in all scale-specific

models. Additional principles at play across multiple scales

in biologic systems are far less apparent. Thus, it appears

prudent at this stage that top-down and multiscale models

seek to recapitulate scale-specific observables. As mentioned

previously, if computational models are to be validated by

experiments such as randomized clinical trials and become

predictive of therapeutic interventions, relevant system

observables must be included.

OOnnttoollooggiieess  rreelleevvaanntt  ttoo  ssyysstteemmss  mmeeddiicciinnee
Considerable attention should be paid to the development of

ontologies relevant to systems medicine. Such ontologies

must reflect knowledge based on biologic function, rather

than on biologic structure. Indeed, structure is permissive to

function, and clearly, a wide variety of structures could have

evolved, under genetic, molecular, or physical constraints to
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accomplish a given function. Examples include energy

generation and storage and transmission of information.

The recent emphasis on mapping structure into function is

vital to the advancement of systems medicine. In addition, it

appears that the development of appropriate ontologies

could promote a (re)interpretation of empiric evidence in

light of such ontologies. As an example, experimental data

often appear to support contradictory hypotheses of limited

scope, when in fact the evidence can be reconciled under a

broader synthesis of the evidence.

Progress in developing meaningful ontologies for systems

medicine will challenge our current intuition of the nature of

a biologic function. Recent efforts at data reduction for

longitudinal expression data, by using principal-component

analysis to identify and monitor health and disease “trajec-

tories”, represent an attempt at understanding such “eigen-

processes” from a data-driven perspective [5,6]. Typically

and unfortunately, such processes have limited intuitive

meaning when interpreted through the prisms of currently

existing ontologies. Alternatively, existing community (for

example, Gene Ontology (GO)) or commercial efforts aimed

at developing a phenotype-driven ontology (e.g., annotating

genes to a priori defined functions such as “cell-cycle” or

“inflammatory response”) are commendable and clearly of

great value, although it is apparent that extensive cross-

contamination exists between such functional assignments

and the response to even the simplest experimental pertur-

bation of functions. Knowledge representations relevant to

systems medicine will probably lie within this spectrum, and

computational efforts will likely be crucial to their

development.

Both data-driven techniques and simulation-based tech-

niques open possibilities of reinterpreting what is meant by

biologic function, yielding new knowledge representations.

Multiscale models that include phenotypes as inputs or

readouts will provide mechanistic insight into the dynamic

interplay of such redefined functions, and plausibly suggest

phenotypically based therapeutic targets.

NNeeww  kknnoowwlleeddggee  aanndd  ffaallssee  ddiissccoovveerryy
Experimental design and statistical analysis should be dealt

with rigorously, as they play essential roles in discovery and

validation in systems biology and medicine [7]. Study design

is often the weakest point of complex molecular studies in

systems biology and medicine. For example, patients with a

disease such as ovarian cancer may be compared with

normal controls to discern aberrant regulation of pathways.

If controls are not carefully selected to be comparable with

patients demographically and in other covariates (age, sex,

income, social class), then differences observed may be

attributable to factors other than the disease.

Researchers are often unduly optimistic about sample sizes

required to show differences, and they fail to consider many

confounding effects. Interindividual variability in humans

can be large, often the largest effect in a study. This provides

an avenue for exploration of individual effects, leading to

personalized medicine, but also can make detection of

differences across subjects quite difficult.

High-throughput technologies have introduced new

challenges to experimental design and interpretation of

results. Avoiding false positives may result in difficulties in

identifying true positive. Standard approaches to correcting

for multiple-testing on datasets generated by global analysis,

such as expression microarray, rely on the incorrect

assumption that each value is independent of other values.

More recent approaches do not fully resolve this problem

[8]. Greatly increasing sample sizes is generally impractical.

A more practical approach is to make increased use of a

priori biologic knowledge, either by trimming the list of

analytes to a relatively small number for which the multiple-

testing correction is modest, or by testing pathways or

groups of genes [9]. This is usually done not by testing every

group of genes defined by a GO term or a Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) pathway, but by

selectively testing those thought to be of importance.

Because this more-focused approach, in its effort to improve

specificity, is ontology dependent, it may bear a subjective

element as to the certainty of prior knowledge. It, therefore,

also carries the risk of lacking sensitivity.

Addressing the previously mentioned challenges may have

direct clinical implications. A frequent problem encountered

by clinicians is that patients appearing to have the same

disease may not respond to the same treatment. Some

patients even experience severe adverse effects from the

treatment. Variable treatment response is also one of the

most important causes of the huge costs involved in drug

development. Taken together, these cause both increased

suffering and costs. Ideally, physicians should be able,

routinely and noninvasively, to measure a few diagnostic

biomarkers to personalize medication for each patient. At

present, not enough knowledge exists about the causes for

variable treatment responses in most common diseases.

However, recent studies of genetic markers for response to

treatment with anticoagulants indicate that personalized

dosage may become a clinical reality within the next 5 to

10 years [10]. The main problems involved in finding

markers for personalized dosage are that each complex

disease may involve altered interactions between hundreds

or thousands of genes that can differ among patients. This

heterogeneity may, in turn, depend on both genetic and

environmental factors. In addition to this complexity,

significant problems are involved in clinical research.

Ideally, a study aiming to find markers for personalized

medication would involve a known external cause, a key cell
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type, and a read-out, all of which can be studied experi-

mentally in patient samples.

For most complex diseases, all of these factors are not

readily available. It is therefore important to find model

diseases, in which all those factors can be studied together in

patient samples by using high-throughput technologies and

systems biologic principles [11]. Such model diseases might

be used to develop and apply the methods required to find

markers for personalized medicine.

It also has been suggested that the same methods might be

applied to find markers to predict the risk of developing

disease [12]. If successful, this may lead to a new era of

preventive medicine. Finally, the methods may be of great

value for drug development. If it were possible to predict

which patients respond to medication, this would result in

increased efficacy and reduced risk of not being able to market

drugs that have been developed at great cost. Conversely,

delineation of patients that do not respond to a medication

may help to develop new drugs for that specific subgroup. We

suggest that acute inflammatory diseases, such as severe

trauma, sepsis, and pancreatitis, might be very attractive test

beds for the development of such methods. Similarly, chronic

ailments, such as diabetes and other autoimmune disorders,

meet several of the criteria mentioned earlier and are of

prominent clinical and societal relevance.

NNeettwwoorrkk  aannaallyyssiiss
A network represents a set of objects and their mutual

relations. Much biologic and medical knowledge can be

naturally represented as networks: protein-interaction

networks, metabolic networks, gene co-expression networks,

disease networks, and many more. Growing concerns regard

current trends in network analysis in systems biology and

potential extension to the clinical arena through the

construction of “diseasomes” [13]. Do network representa-

tions actually convey new knowledge, or are they just a

convenient and eye-catching way to represent data? How

can such networks be used to extract new information that is

relevant to understanding biologic systems and guiding

clinical practice? Are current approaches adequately repre-

senting the types of entities and the specific nature of their

relations that determine disease pathophysiologic processes?

What challenges might be resolved and opportunities

opened for both basic research and clinical practice if

standards could be broadly adopted in our knowledge

representation, data collection, publication, and reasoning,

and if fundamental chemical, physical, and biologic entities

and processes could be included in network representations?

How might this be enabled by the adoption of disease-

oriented ontologies? From a mathematic and computational

perspective, what topologic, dynamic, and conditional

properties could allow the identification of the nodes in a

network whose perturbation would yield adversely affected

or clinically improved biologic states?

Although the methods used to analyze networks might still be

primitive, they are already providing useful information,

especially on the genetics of disease. It is now possible to

integrate information from various biologic networks to

identify genes involved in both mendelian and complex

diseases. In such research efforts, careful thought must be

given to how network inferences from microarray and other

types of data are evaluated. The development of such tools

should ideally involve an open dialogue between experi-

mentalists, modelers, and clinicians, who should be able to

assess tools best suited to their application. A need exists for

systematic benchmark testing and comparative evaluation of

the major tools available. For example, current methods tend

to focus more on testing performance capabilities over

simulated data or for functional enrichment in GO categories

that may not be very relevant to clinically relevant phenomena.

The identification of both disease-causative genes and

potential therapeutics has begun to be approached by using

integrative network-relevant methods for knowledge

representation and reasoning [14,15]. Another possibility is

the identification of specific interactions that have been

extensively validated, a so-called ‘gold standard’ for the

identification of causal, mechanistic, and deterministic

factors in a complex network. Some of these issues have

been raised within the Dialogue on Reverse Engineering

Assessment and Methods (DREAM) initiative [16]. For

example, representing gene interactions with graph

algorithms may be a useful method to discover parts of a

network that are not fully resolved [17]. The biologic

plausibility of such representations could then be integrated

with other technologies and discussed with basic biologists

and clinicians. Another approach is to extend network

analysis to evaluate disease-specific ontologies [18].

CCoonncclluussiioonnss  aanndd  rreeccoommmmeennddaattiioonnss
We consider that improvements in academic infrastructure

are sorely needed to facilitate cross-disciplinary trans-

lational studies that can someday connect what can be

learned by using model organisms with real-time samples

from patients. Such improvements include, but are not

limited to sufficient funding, appropriate development of

mechanisms allowing academic recognition of all partici-

pants of transdisciplinary teams, the creation of centers of

excellence in systems medicine and specific training

programs, and enhancement of the attractiveness of a

medical career for individuals with training in quantitative

fields. Recognition of systems medicine in the clinical arena

should be promoted at the professional society and journal

editorial levels. Indeed, whereas bioinformatics exercises

can access mainstream clinical literature on account of the

value of a significance test, the burden of proof appears
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disproportionately higher for computational disease and

therapeutic models of clinical relevance. Additionally, the

construction of a roadmap for systems medicine, facilitated

by enhanced visibility in the more clinically oriented medical

literature, will be essential to chart effort and progress. We

present essential elements of such a roadmap, as well as

underlying rationale (Figure 1).

A serious and useful dialogue between the clinic and systems

biology has begun. We hope that future developments will

provide continuing evidence that the systems-biology

community has taken this development to its heart, building

systems medicine on a millennium of scholarship and

medical tradition.
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