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Optimal lattices for sampling
Hans R. Künsch, Erik Agrell, and Fred A. Hamprecht

Abstract— The generalization of the sampling theorem
to multidimensional signals is considered, with or without
bandwidth constraints. The signal is modeled as a station-
ary random process and sampled on a lattice. Exact expres-
sions for the mean square error of the best linear interpo-
lator are given in the frequency domain. Moreover, asymp-
totic expansions are derived for the average mean square
error when the sampling rate tends to zero and infinity,
respectively. This makes it possible to determine the opti-
mal lattices for sampling. In the low-rate sampling case, or
equivalently for rough processes, the optimal lattice is the
one which solves the packing problem, whereas in the high-
rate sampling case, or equivalently for smooth processes,
the optimal lattice is the one which solves the dual packing
problem. In addition, the best linear interpolation is com-
pared with ideal low-pass filtering (cardinal interpolation).

Keywords— Best linear estimator, cardinal interpolation,
lattice theory, multidimensional signal processing, packing
problem, sampling theorem.

I. Introduction

IN CLASSICAL sampling and interpolation theory, the
objective is to discretize and store a time signal in such

a way that the signal can be estimated as accurately as
possible, even at instants for which no sample was stored
[21]. The classical method is to sample the signal at regular
intervals and to interpolate by summation of shifted and
scaled sin(x)/x functions. The interpolation error of this
method is zero if the signal is a realization of a stationary,
band-limited stochastic process and the sampling frequency
is sufficiently high.

In this presentation, we consider the analogous problem
in multidimensional signal processing, where a signal with
spatial and/or spectral and/or temporal resolution is to
be discretized, stored, and reconstructed. Applications in-
clude computer vision and image processing [11,20], remote
sensing [12], medical imaging [18], and experimental design
[9, 10]. From a geometrical point of view, it is intuitively
clear that the multidimensional signal should be sampled
as uniformly as possible, in order to gain as much informa-
tion as possible about the signal everywhere in the relevant
region. No part of the region should lie very far from the
closest sample point, since this would cause a relatively
large uncertainty in the estimate of the signal in that part.
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The problem of placing points uniformly in a multidi-
mensional space has been studied extensively in other ap-
plications and the solution is often to use a lattice. Which
lattice to use depends on which criterion is used to mea-
sure uniformity: the packing problem aims at maximizing
the distance between the closest pair of lattice points, the
covering problem aims at minimizing the maximum dis-
tance between a (nonlattice) point in space and its closest
lattice point, the quantizer problem aims at minimizing the
moment of inertia of the Voronoi region (defined in the next
section), etc. In one dimension, the only lattice (disregard-
ing rescaling) is the set of integers and in two dimensions,
the hexagonal lattice is most uniform (according to all com-
mon optimality criteria). In higher dimensions, the best
known lattices for various criteria are listed in [4] and its
references. None of these criteria, however, is immediately
applicable to sampling and interpolation.

If each dimension is sampled at regular intervals indepen-
dently of each other, the resulting multidimensional sam-
pling pattern is the cubic lattice. It has been recommended
for sampling based on complexity considerations [11], but
its performance in terms of estimation error is unfortu-
nately poor. The cubic lattice has the property that it
contains quite deep “holes” in between the lattice points,
from which the distance to any lattice point is much higher
than the corresponding distance in other lattices. Hence,
the samples would not support an accurate representation
of the signal near such “holes.” This undesirable property
becomes more prominent with increasing dimension [9].

We assume that the multidimensional signal is a real-
ization of a real stationary stochastic process and that its
(multidimensional) covariance function is known. It is not
required to be band-limited in any direction. If one has to
estimate also the covariance function, then uniform sam-
pling schemes perform poorly [19, Sec. 6.6]. The present
article complements earlier efforts that have focused on
finding an optimal sampling scheme on a finite domain
[13, 14, 17]. Johnson et al. considered a different kind of
asymptotics [13] and also note the “obvious connection”
with lattice theory, without investigating it further. Lim
et al. introduced numerical procedures [14].

In Section II, we introduce notation, define basic con-
cepts, and summarize Fourier analysis on lattices. In Sec-
tion III, the best linear estimator for interpolation of the
signal is derived and its average error variance is calculated,
as a function of the covariance function and the lattice. It
is concluded that the optimal lattice type depends on the
sampling rate. In Sections IV–V, we show that the best
sampling lattice for very low rate is the solution of the
packing problem and for very high rate, the dual of the
same lattice. Finally, in Section VI we give some numer-
ical examples to illustrate our results. The proofs of all
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Theorems are given in the Appendix.

II. Preliminaries

A. Stationary random fields

In the following, a multidimensional stochastic process
will be called a “random field.” We consider a real zero-
mean stationary random field (Z(x); x ∈ R

d) with finite
second moments and denote its covariance function by

R(x) = E[Z(y)Z(y + x)].

If Z is mean square continuous, then, by Bochner’s theorem
[6, Ch. 4, Sec. 2, Theorem 2], R is the Fourier transform of a
finite, positive measure, the spectral measure. In addition,
we assume that this spectral measure has a density S. This
means that

R(x) =
1

(2π)d

∫

Rd

S(ω) exp(iωT x)dω. (1)

A sufficient condition for this is
∫

Rd

|R(x)|dx <∞, (2)

and then the spectral density can be obtained as

S(ω) =

∫

Rd

R(x) exp(−iωT x)dx.

For estimation problems, it is useful to introduce the
Hilbert space HZ(D) spanned by the random variables
(Z(x); x ∈ D) for any D ⊆ R

d, with inner product
〈Z(x), Z(y)〉 = R(x − y), see [2, Ch. 2]. It consists of
all finite linear combinations

∑n
i=1 aiZ(xi) with xi ∈ D

and all limits (with respect to the inner product) of such
linear combinations. Many calculations are simplified if we
pass from HZ(D) to an equivalent Hilbert space of func-
tions ψ ∈ L2(R

d, (2π)−dS(ω)dω) that satisfy ψ(−ω) =

ψ(ω). Here overline denotes complex conjugation and
L2(R

d, (2π)−dS(ω)dω) is the space of complex functions
on R

d with the inner product

〈ψ, φ〉 =
1

(2π)d

∫

Rd

ψ(ω)φ(ω)S(ω)dω. (3)

From (1), it is clear that the operator T which maps the
random variables Z(x) to the functions exp(ixT ω) pre-
serves inner products. By linearity and completion, this
operator can be extended to the whole space HZ(Rd) while
still preserving inner products. The image of HZ(Rd) un-
der T is therefore a subspace of L2(R

d, (2π)−dS(ω)dω). By
standard results in Fourier theory, this subspace is in fact
the whole space {ψ ∈ L2(R

d, (2π)−dS(ω)dω); ψ(−ω) =

ψ(ω)}. This means that to any such function ψ there cor-
responds a random variable in HZ(Rd) and vice versa, such
that all inner products are preserved. For a proof of these
basic facts, see, e.g., [6, Ch. 4, Sec. 5, esp. Theorem 3].

The best linear interpolator of Z(x) based on observed
values of (Z(x′); x′ ∈ D) is defined as the unique element

Ẑ(x) ∈ HZ(D) such that

E[(Z(x) − Ẑ(x))2] = inf
Y ∈HZ(D)

E[(Z(x) − Y )2].

In some disciplines, Ẑ(x) is called the “kriging” esti-

mator of Z(x) [9]. By Hilbert space geometry, Ẑ(x)
is the orthogonal projection of Z(x) onto HZ(D). We

can compute Ẑ(x) by computing first the orthogonal
projection of exp(ixT ω) onto the subspace spanned by
(exp(ix′T ω); x′ ∈ D) and then applying the inverse of T .

B. Lattices

The standard reference for lattice theory is the book by
Conway and Sloane [4]. A d-dimensional lattice Λ(B) is a
countably infinite subset of R

d of the form {u = BT w; w ∈
Z

n} where the so-called generator matrix B is an n × d
matrix with linearly independent rows. This means that
the lattice consists of all integer linear combinations of the
row vectors of B. B is often square, but in some cases
a representation with n < d may be preferable. For d >
1, the generator matrix is not unique. For instance, two
possible generator matrices for the hexagonal lattice in d =
2 dimensions are

B1 =

[
2 0

1
√

3

]
, B2 =

[
1 −

√
3

1
√

3

]
.

In a three-dimensional coordinate system, a rescaled ver-
sion of the same lattice may be represented without square
roots, as with

B3 =

[
1 1 0
1 0 1

]
.

The Voronoi region of a lattice point is the set of all
vectors in R

d that are at least as close to this point as to
any other lattice point:

Ω(B,u)
def
=
{
x ∈ R

d; ‖x − u‖ ≤ ‖x − u′‖ ∀u′ ∈ Λ(B)
}

It is easy to see that all Voronoi regions are translations of

Ω(B)
def
= Ω(B,0) and that they are convex polytopes that

tile the space R
d (modulo the overlap at the boundaries).

In the frequency domain, an important role is played
by the dual lattice of Λ(B), scaled by 2π. It consists of all
points λ ∈ R

d such that λT u is an integer multiple of 2π for
any u ∈ Λ(B). A possible choice of the generator matrix
A for the dual lattice is, if B is square, A = 2π(B−T ). We
will always use the notation B and A for the generators
of two dual lattices scaled by 2π. If u is in Λ(B), then
the function ω → exp(iuT ω) is periodic with periods λ ∈
Λ(A):

exp(iuT (ω + λ)) = exp(iuT ω) exp(iuT λ) = exp(iuT ω)

because uT λ is an integer multiple of 2π. Moreover, these
functions are orthonormal in L2(Ω(A), dω/vol(Ω(A))) by
the following lemma which is proved in the Appendix.

Lemma 1: If B and A are the generators of two lattices
that are dual to each other up to a scaling by 2π, then

1

vol(Ω(A))

∫

Ω(A)

exp(iuT ω)dω =

{
1 (u = 0)
0 (u ∈ Λ(B) \ {0}).

Finally, like in the case of the cubic lattice, it can be
shown that the functions (exp(iuT ω); u ∈ Λ(B)) for any
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lattice form an orthonormal basis of the space of periodic
functions with periods in Λ(A), that is, they are com-
plete. In particular, any periodic integrable function g of ω

whose periods belong to a lattice Λ(A) can be represented
as a linear combination (Fourier series) of the functions
(exp(iuT ω); u ∈ Λ(B)):

g(ω) =
∑

u∈Λ(B)

c(u) exp(iuT ω). (4)

The sum converges in L2(Ω(A), vol(Ω(A))−1dω), and the
coefficients are given by

c(u) =
1

vol(Ω(A))

∫

Ω(A)

g(ω) exp(−iuT ω)dω. (5)

III. The interpolation error

Let Ẑ(x) be the best linear interpolator of Z(x) based
on observations (Z(u); u ∈ Λ(B)) on a lattice. In this
section, we develop some expressions and bounds for the
mean square error for a fixed x

σ2(x,Λ(B))
def
= E[(Z(x) − Ẑ(x))2]

and the average mean square error over x ∈ Ω(B)

σ2(ave,Λ(B))
def
=

1

vol(Ω(B))

∫

Ω(B)

σ2(x,Λ(B))dx.

Some of the results (equations (8), (11), and (12) below)
were given already by Petersen and Middleton [16, Sec. VI].
Since they form the basis for our main results and our
arguments are different, we give proofs here.

A. Expressions for the best linear interpolator

We use the isometry between Hilbert spaces discussed in
Section II and give in the following theorem the element ψx

in L2(R
d, (2π)−dS(ω)dω) that corresponds to Ẑ(x). This

generalizes a result by Stein [19, pp. 98–99] for cubic lat-
tices.

Proposition 1: Under the isometry Z(x) ↔ exp(iωT x)
between HZ and L2(R

d, (2π)−dS(ω)dω), the best linear

estimator Ẑ(x) based on observations (Z(u); u ∈ Λ(B))
corresponds to the function

ψx(ω) =

∑
λ∈Λ(A) exp(ixT (ω + λ))S(ω + λ)

∑
λ∈Λ(A) S(ω + λ)

. (6)

The proof is given in the Appendix.
Under additional assumptions, we can obtain a more ex-

plicit representation of Ẑ(x) in the space domain. The
function ψx is periodic with period belonging to Λ(A) and
can thus be expanded into a Fourier series, cf. (4). More-
over, it is easily seen that the Fourier coefficients (5) of ψx

are of the form c(x − u) where

c(x − u) =
1

vol(Ω(A))

·
∫

Ω(A)

∑
λ∈Λ(A) exp(i(x − u)T (ω + λ))S(ω + λ)

∑
λ∈Λ(A) S(ω + λ)

dω.

Introducing

S∗(ω) =
S(ω)∑

λ∈Λ(A) S(ω + λ)
(7)

and using the periodicity of the denominator, we can also
write

c(x−u) =
1

vol(Ω(A))

∫

Rd

exp(i(x−u)T ω)S∗(ω)dω. (8)

Since exp(iuT ω) corresponds to Z(u) under the isometry
between HZ and L2(R

d, (2π)−dS(ω)dω), one expects from
the Fourier series

ψx(ω) =
∑

u∈Λ(B)

c(x − u) exp(iuT ω) (9)

that also
Ẑ(x) =

∑

u∈Λ(B)

c(x − u)Z(u). (10)

The weight function c(x) is sometimes called an “interpo-
lation function”, especially in the spline community [21].

However, (9) converges in L2(Ω(A), dω) and not nec-
essarily in L2(R

d, (2π)−dS(ω)dω). A sufficient condi-
tion for this to hold is for instance that

∑
λ∈Λ(A) S(ω +

λ) is bounded. The difference between the two L2-
spaces also shows up in cases where the set {ω ∈
Ω(A);

∑
λ∈Λ(A) S(ω + λ) = 0} is not empty. For Proposi-

tion 1, it is irrelevant how we define ψx on this set. How-
ever, for the Fourier coefficients in (8) this can make a
difference: These coefficients and the representation (10)
are then not unique.

B. Expressions for the mean square error

As a consequence of Proposition 1, we obtain in the next
theorem several equivalent expressions for the mean square
error. For numerical evaluation or asymptotic analysis, one
can choose whichever is most convenient in a given situa-
tion. In order to state the result, we introduce a short
notation for the continuous convolution of the covariance
function

R∗2(x)
def
=

∫

Rd

R(y)R(x − y)dy =

∫

Rd

R(y)R(x + y)dy.

Theorem 1: The following expressions hold for the mean
square error of the best linear interpolator:

σ2(x,Λ(B)) =
1

(2π)d

∫

Rd

S∗(ω)

·
∑

λ∈Λ(A)\{0}

(1 − exp(ixT λ))S(ω + λ)dω, (11)

σ2(ave,Λ(B)) =
1

(2π)d

∫

Rd

S(ω)(1 − S∗(ω))dω (12)

= R(0) − 1

(2π)d

∫

Ω(A)

∑
λ∈Λ(A) S

2(ω + λ)
∑

λ∈Λ(A) S(ω + λ)
dω (13)

= R(0) − 1

(2π)d

∫

Ω(A)

∑
u∈Λ(B) exp(iuT ω)R∗2(u)
∑

u∈Λ(B) exp(iuT ω)R(u)
dω.

(14)
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Here S∗ is defined in (7) and a value “0/0” should be in-
terpreted as zero. In particular, we have

σ2(ave,Λ(B)) ≤ sup
x
σ2(x,Λ(B)) ≤ 2σ2(ave,Λ(B)).

(15)
The proof is given in the Appendix. Eq. (12) is similar

to a general one-dimensional sampling error formula [1].
From Theorem 1, we can deduce following bounds for the

average mean square error which are new to our knowledge.
Again, the proof is given in the Appendix.

Proposition 2: For any spectral density we have

σ2(ave,Λ(B)) ≤ 2
1

(2π)d

∫

Rd\Ω(A)

S(ω)dω.

If the spectral density is isotropic and decreasing in ‖ω‖,
then in addition

σ2(ave,Λ(B)) ≥ 1

(2π)d

∫

Rd\Ω(A)

S(ω)dω.

As a simple example for Theorem 1 we consider a spectral
density S which is constant on a region D ⊂ R

d and zero
outside of D. Then the integrand on the right hand side
of (13) is equal to the nonzero value of S if ω + λ ∈ D for
some λ ∈ Λ(A) and zero otherwise. This implies that

σ2(ave,Λ(B))

R(0)
= 1 − vol(ΩD(A))

vol(D)

where

ΩD(A)
def
= {ω ∈ Ω(A); (ω + λ) ∈ D for some λ ∈ Λ(A)} .

C. Cardinal interpolation

For a similar example, we look at the case where S is zero
outside of Ω(A). Then by Proposition 2, σ2(ave,Λ(B)) is
zero, and therefore σ2(x,Λ(B)) is also zero for any x (this
can also be seen directly from (11)). In other words, we
can recover all values Z(x) without error from the values
of Z on the lattice Λ(B). This is the well-known spatial
version of Nyquist’s sampling theorem [15] due to Peter-
son and Middleton [16]. Moreover, we can compute the
coefficients (8) explicitly. By Proposition 1, the function

ψx corresponding to Ẑ(x) (or more precisely, one possible
choice of this function) is

ψx(ω) = exp(ixT (ω mod Λ(A)))

where we define ω mod Λ(A) to be ω − λ with λ ∈ Λ(A)
such that ω − λ ∈ Ω(A). Thus the coefficients (8) in the
representation (10) are

c(x − u) =
1

vol(Ω(A))

∫

Ω(A)

exp(i(x − u)T ω)dω, (16)

independently of S, which corresponds to ideal low-pass
filtering. For the cubic lattice, c(x − u) is of course the
product of the well known sin(x)/x functions. We call in-
terpolation with these coefficients cardinal interpolation.

Often, cardinal interpolation is applied even for random
fields whose spectra do not vanish outside Ω(A). The ad-
vantage is that in contrast to the best linear estimator, it
does not require the knowledge (or estimation) of the co-
variance function or the spectrum. The disadvantages are
that its coefficients decay slowly and that it is less precise
than the best linear estimator. Denote by σ2

c (x,Λ(B)) the
mean square error for cardinal interpolation. Then we have
for a general spectral density (which need not vanish out-
side Ω(A))

σ2
c (x,Λ(B)) =

1

(2π)d

·
∫

Rd

| exp(ixT ω) − exp(ixT (ω mod Λ(A)))|2S(ω)dω

=
1

(2π)d

∑

λ∈Λ(A)∫

Ω(A)

| exp(ixT (ω + λ)) − exp(ixT ω)|2S(ω + λ)dω

=
1

(2π)d

∑

λ∈Λ(A)

|1 − exp(ixT λ)|2
∫

Ω(A)

S(ω + λ)dω.

In one dimension, these expressions have been derived by
Brown [3]. Because |1 − exp(ix)|2 = 2(1 − cos(x)), by
Lemma 1 the average interpolation error with cardinal in-
terpolation is

σ2
c (ave,Λ(B)) = 2

1

(2π)d

∫

Rd\Ω(A)

S(ω)dω, (17)

which is the upper bound from Proposition 2. By the lower
bound of the same theorem, for isotropic and decreasing
spectral densities, the average mean square error with car-
dinal interpolation is larger by at most a factor of two com-
pared with the optimal interpolation.

D. Average versus worst case error

In the next two sections we determine the lattice that
minimizes σ2(ave,Λ(B)) among all lattices with equal vol-
ume vol(Ω(B)). Note that 1/vol(Ω(B)) is the sampling
rate, that is, the limit of the number of points in Λ(B)∩D
divided by vol(D) as the domain D is extended in all di-
rections. We are not able to solve this problem in full gen-
erality, but we will derive the solution for the two limiting
cases where the sampling rate tends to zero and to infinity
respectively for certain classes of random fields.

Alternatively, we could try to minimize the worst case
mean square error supx σ

2(x,Λ(B)), but this is an even
more difficult problem. Note, however, that if Λ0 minimizes
the average mean square error, then by (15) for any other
lattice Λ with the same sampling rate

sup
x
σ2(x,Λ0) ≤ 2 sup

x
σ2(x,Λ).

Hence if we choose the lattice with minimal average mean
square error, the loss we will incur with respect to worst
case mean square error is bounded.
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IV. The optimal lattice for low-rate sampling

In this section, we study the case where the sampling
rate tends to zero. More precisely, we look at the behavior
of σ2(ave,Λ(βB)) as β tends to infinity for a fixed lattice
Λ(B) and a fixed covariance R0(x). The sampling rate is
then 1/(βdvol(Ω(B))). Instead of rescaling the lattice, we
can equivalently rescale the covariance function, that is,
we will consider σ2(ave,Λ(B)) for covariance functions of
the form R(x) = R0(βx) with β increasing to infinity. For
large β, the dependence between any two observed values
is small and thus the sampled realizations of Z look rough.

A. An exact expression

Without loss of generality, we will take R(0) = 1. More-
over we assume that β is large enough so that

ε
def
=

∑

u∈Λ(B)\{0}

|R(u)| < 1. (18)

Let us introduce the notation

∆(u)
def
=

{
0 (u = 0)
−R(u) (u ∈ Λ(B) \ {0})

By expanding the inverse of the denominator of the inte-
grand in (14) into a Taylor series, we can then write




∑

u∈Λ(B)

exp(iuT ω)R(u)




−1

=

∞∑

k=0




∑

u∈Λ(B)

exp(iuT ω)∆(u)




k

. (19)

This leads to another exact expression for σ2(ave,Λ(B)).
In order to formulate it, we denote by ∆k(u) the k-fold
discrete convolution of ∆: We set ∆1(u) = ∆(u) and for
k > 1 we define recursively

∆k(u)
def
=

∑

u′∈Λ(B)

∆k−1(u − u′)∆(u′) (20)

By assumption (18) and an induction argument, we see
that ∑

u∈Λ(B)

|∆k(u)| ≤ εk. (21)

In particular, ∆k is well defined. Now we can state the
following result which is proved in the Appendix.

Proposition 3: If R(0) = 1 and assumption (18) holds,

σ2(ave,Λ(B)) = 1 − 1

vol(Ω(B))

(
R∗2(0)

+

∞∑

k=1

∑

u∈Λ(B)

∆k(u)R∗2(u)


 . (22)

B. Asymptotic approximations

From Proposition 3 we now derive a series of approxima-
tions of σ2(ave,Λ(B)) in equations (23), (24), (27), (28)
and (29) below. Heuristically, the contribution of the terms
in the expression (22) becomes smaller as k increases, cf.
(21). If we ignore all terms with k ≥ 1, then we obtain an
approximation that is independent of the lattice:

σ2(ave,Λ(B)) ≈ 1 − R∗2(0)

vol(Ω(B))
. (23)

In order to compare different lattices, we thus have to
look at the next order approximation. In addition to the
terms with k = 1 we need to include also the term with
k = 2 and u = 0, because in the sparse sampling case
R∗2(0) is much larger than R∗2(u) for u ∈ Λ(B) \ {0}.
This gives

σ2(ave,Λ(B)) ≈ 1 − R∗2(0)

vol(Ω(B))


1 +

∑

u∈Λ(B)\{0}

R2(u)

−
∑

u∈Λ(B)\{0}

R(u)
R∗2(u)

R∗2(0)


 . (24)

By (21) and the Cauchy-Schwarz inequality for R∗2(u), the
error in this approximation can be bounded by

R∗2(0)

vol(Ω(B))

(
ε2 max

u∈Λ(B)\{0}

R∗2(u)

R∗2(0)
+

ε3

1 − ε

)
. (25)

The approximation (24) is however too complicated for
optimization. Hence we need to simplify it, using addi-
tional assumptions. If we assume R to be isotropic and
monotonically decreasing with distance, the largest sum-
mands are those where ‖u‖ is minimal, and if R decays
quickly these largest summands dominate the sum of all
other terms. The following theorem contains a precise
statement. We denote by ρ = ρ(B) half the minimum
distance between two points of the lattice, i.e., the packing

radius, by τ = τ(B) the number of lattice points at dis-
tance 2ρ from the origin, i.e., the kissing number, and by
e an arbitrary unit vector.

Theorem 2: Consider a sequence of isotropic covariance
functions R(x) = R0(β‖x‖) depending on a parameter
β ≥ 1 and assume that R0 is monotonically decreasing
and satisfies

R0(r)

C exp(−rp)
→ 1 (r → ∞) (26)

for a constant 0 < C <∞ and p > 0. Then up to an error
that is of lower order as β → ∞,

σ2(ave,Λ(B)) ≈ 1 − R∗2(0)

vol(Ω(B))

·
(

1 + τR2(2ρe) − τR(2ρe)
R∗2(2ρe)

R∗2(0)

)
. (27)
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Moreover, for p ≥ 1,

σ2(ave,Λ(B)) ≈ 1 − R∗2(0) − τR(2ρe)R∗2(2ρe)

vol(Ω(B))
, (28)

and for p < 1

σ2(ave,Λ(B)) ≈ 1 − R∗2(0)

vol(Ω(B))
+
τR2(2ρe)

vol(Ω(B))

·
(

2

∫

Rd

R(x)dx −R∗2(0)

)
, (29)

where in both cases the error is of lower order as β → ∞.
As a corollary, the lattice Λ(B) minimizing σ2(ave,Λ(B))

for given vol(Ω(B)) is in all cases considered the one max-
imizing the packing radius ρ(B). For p ≥ 1, this follows
from the monotonicity of R∗2 and for p < 1 it follows be-
cause

2

∫

Rd

R(x)dx−R∗2(0) = β−d

∫

Rd

(2R0(‖x‖)−R2
0(‖x‖))dx

and the last integral is strictly positive. When there are
several lattices with the same maximal packing radius, we
should take the one with minimal value of τ(B).

V. The optimal lattice for high-rate sampling

In this section, we study the case where the sampling rate
tends to infinity, that is the behavior of σ2(ave,Λ(βB)) as
β tends to zero. This means that the dependence between
sampled values is strong and thus the sampled realizations
of Z look smooth. As in the previous section, we will fix
the lattice and rescale the covariance function as R(x) =
R0(βx). Equivalently, in the frequency domain the spec-
tral density function takes the form S(ω) = β−dS0(‖ω‖/β)
where S0 and R0 are a Fourier pair. In order to simplify
notation, we will use the parameter α = 1/β which tends
to infinity.

A. Optimal interpolation

We rewrite (12) in the equivalent form

σ2(ave,Λ(B)) =
1

(2π)d

∫

Rd

r(Λ(A),ω)dω, (30)

where

r(Λ(A),ω) =
S(ω)

∑
λ∈Λ(A)\{0} S(ω + λ)

∑
λ∈Λ(A) S(ω + λ)

. (31)

We first explain our approximation heuristically. Because
the square has maximal area among all rectangles with
common perimeter, it is intuitively clear that r(Λ(A),ω)
is maximal if the two factors in the numerator are equal.
If S0 is monotonic and decreases quickly, then for α tend-
ing to infinity, the infinite sum

∑
λ∈Λ(A)\{0} S(ω + λ) is

approximately equal to the largest summand which is the
one where ‖ω + λ‖ is minimal. Together, this implies that

r(Λ(A),ω) is maximal for ω = λ̂/2 for any λ̂ that belongs

to the set Ψ(A) of shortest nonzero vectors in Λ(A). More-
over, near such a point r(Λ(A),ω) can be approximated as

r(Λ(A),ω) ≈ q(λ̂,ω)
def
=

S(ω)S(λ̂ − ω)

S(ω) + S(λ̂ − ω)

and the contribution from other points to the integral is
negligible. This suggests that

σ2(ave,Λ(B)) ≈ 1

(2π)d

∫

Rd

∑

λ̂∈Ψ(A)

q(λ̂,ω)dω

=
τ

(2π)d

∫

Rd

q(2ρe,ω)dω, (32)

where ρ = ρ(A) and τ = τ(A) are the packing radius and
the kissing number respectively of the dual lattice, and e

is an arbitrary unit vector in R
d. The integral on the right

hand side of (32) depends essentially only on the values of
S(ω) for ω near ρe. Since we assume S to be isotropic and
monotonic, σ2(ave,Λ(B)) will be minimal if ρ is maximal,
that is, the optimal lattice B for high-rate sampling is the
dual of the one solving the packing problem.

We now state a rigorous result which is proved in the
Appendix.

Theorem 3: Consider a sequence of isotropic spectral
density functions S(ω) = αdS0(α‖ω‖) depending on a pa-
rameter α ≥ 1 and assume that for some p > 0 and some
0 < C <∞

S0(r)

C exp(−rp)
→ 1 (r → ∞). (33)

Then for α → ∞, the error in the approximation (32) is of
lower order and

σ2(ave,Λ(B))

exp(−(αρ)p)(αρ)d−p(d+1)/2
→ τ(A)

Cπ

2
(2πp)−(d+1)/2.

B. Cardinal interpolation

It is interesting to compare cardinal interpolation (ideal
low-pass filtering) with optimal interpolation in the high-
rate sampling case. If the sampling rate goes to infinity, the
mean square error of cardinal interpolation also converges
to zero, and one might conjecture that in this situation the
two interpolation methods are actually equivalent, meaning
that the ratio of the mean square errors converges to one.
Cardinal interpolation is optimal for band-limited fields,
and if the spectral mass accumulates at the origin, the field
is almost band-limited. However, the results of Stein [19]
point out that the high frequency behavior of S is crucial
for the interpolation error in the high rate sampling case,
and the conjecture is actually false. To show this, we first
approximate (17) with

σ2
c (ave,Λ(B)) ≈ 2τ(A)

1

(2π)d

∫

ω1>ρ

S(ω)dω,

which is the union-bound approximation for high signal-to-
noise ratios. By analogous arguments as used in the proof
of Theorem 3 we can show the following result.
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Fig. 1. Cardinal (thick line) and optimal interpolation functions c (thin lines, for β ∈ {1/5, 1/2, 1, 2, 5}) for the 2D hexagonal lattice. Top:
along an axis through a lattice point and one of its nearest neighbors, situated at a distance of 2. Bottom: along an axis through a lattice
point and one of its second nearest neighbors, situated at a distance of 2

√
3. Left: Exponential covariance exp(−β‖x‖). Right: Gaussian

covariance exp(−‖βx‖2/2).

Proposition 4: Under the assumptions of Theorem 3,

σ2
c (ave,Λ(B))

exp(−(αρ)p)(αρ)d−p(d+1)/2
→ τ(A)2C(2πp)−(d+1)/2

as α → ∞, and hence

σ2(ave,Λ(B))

σ2
c (ave,Λ(B))

→ π

4
< 1.

The optimal lattice for cardinal interpolation is again the
lattice solving the dual packing problem. It is somewhat
surprising that the asymptotic loss of cardinal over optimal
interpolation is independent of the dimension and of the
parameter p, that is, of the shape of the spectral density.

VI. Some numerical results

First, we illustrate the difference between the cardinal
and the optimal interpolator. Figure 1 shows the the weight

functions c of (8) and (16) in specific directions for d = 2
and the hexagonal lattice. For (8), we use both the expo-
nential covariance R(x) = exp(−β‖x‖) and the Gaussian
covariance R(x) = exp(−‖βx‖2/2). Note that all weight
functions must be equal to one at the origin and zero at
all other lattice points, but they may be zero also at non-
lattice points. The figures show that in general the opti-
mal weight function decays more quickly than the cardinal
weight function, with a faster decay for higher β. For small
values of β, such as β = 1/5 for the Gaussian covariance in
Figure 1, the decay is slower than cardinal, since the spec-
tral density S(ω) = 2πβ−2 exp(−‖ω‖2/(2β2)) is effectively
concentrated on a set that is smaller than Ω(A).

Next, we compare efficiencies of specific lattices with
our asymptotic results. If we have two lattices Λ(B1)
and Λ(B2) such that vol(Ω(B1)) = vol(Ω(B2)) = 1 then
we can define the asymptotic relative efficiency of Λ(B2)
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with respect to Λ(B1) as follows: For any β > 0, define
β′ = β′(β) by the equation

σ2(ave, β′Λ(B2)) = σ2(ave, βΛ(B1)),

assuming that a solution exists. In words, we adjust the
sampling rate for the second lattice such that the average
interpolation error is the same. The ratio of the sampling
rates is then (β′/β)−1/d. The high-rate asymptotic relative
efficiency of Λ(B2) with respect to Λ(B1) is now defined
as the limit of (β′/β)1/d as β → 0. Similarly, the low-
rate asymptotic relative efficiency is defined as the limit
of the same expression as β → ∞. It is easily seen that
under the condition (33) of Theorem 3, the high-rate ef-
ficiency is equal to (ρ(A1)/ρ(A2))

d and under the condi-
tion (26) of Theorem 2, the low-rate efficiency is equal to
(ρ(B1)/ρ(B2))

d. For d = 2, the asymptotic relative effi-
ciency of the hexagonal with respect to the square lattice
is equal to 1.15 both in the high- and the low-rate sam-
pling limit since both lattices are self dual. For d = 3
the packing radius is maximized for the face-centered cu-
bic lattice. The dual of the face-centered cubic lattice is
the body-centered cubic lattice which therefore maximizes
the dual packing radius. Hence in d = 3, the optimal lat-
tice depends on the sampling rate. The relative efficiency
of these lattices is equal to 1.09 and so the gains are not
tremendous. However, the asymptotic relative efficiency of
the optimal lattice in d = 3 over the cubic lattice is 1.41 in
both the low- and high-rate case, which is more substan-
tial. In d = 8, where the so-called lattice E8 has a number
of optimality properties [4], both the high- and low-rate
asymptotic relative efficiency of E8 over the cubic lattice is
as high as 16.

Figure 2 illustrates our duality result. We have evalu-
ated numerically the average mean square error for inter-
polation of a process with a Gaussian covariance which is
sampled on two rectangular lattices with generator matri-
ces B1 = diag(1/2, 1/2, 4) and B2 = diag(2, 2, 1/4). The
two lattices have the same point density, but their per-
formance in sampling depends on the sampling rate: B1 is
better for low-rate sampling and B2 for high-rate sampling.
This curious behavior corresponds to the fact that B1 has
a higher packing radius than B2, whereas the reverse is
true for their duals. The relative efficiency between these
two lattices is 8 in both the low- and high-rate regime. The
two optimal lattices for d = 3 have a similar relation, al-
though their low relative efficiency (1.09) would make the
two curves almost indistinguishable in a graph like Fig. 2.

Finally, we give some examples to illustrate the qual-
ity of our asymptotic approximations for the average mean
square error. In Figure 3, we show the average mean square
error (computed numerically) as a function of β for a pro-
cess with Gaussian covariance sampled on the rectangu-
lar lattice generated by B1 = diag(1/2, 1/2, 4), along with
five approximations. We see that the approximations agree
closely in the appropriate ranges of β, and that (32) and
(27) are better approximations than those given by Theo-
rem 3 and (28), respectively. The extra term in (28) com-
pared with (23) does not improve the convergence much in
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Fig. 2. The dependency on the packing radius is illustrated
by two rectangular lattices with generator matrices B1 =
diag(1/2, 1/2, 4) and B2 = diag(2, 2, 1/4). The process has a
Gaussian covariance.
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Fig. 3. The average mean square error for a process with Gaussian
covariance sampled on the rectangular lattice generated by B1 =
diag(1/2, 1/2, 4) (solid), along with five approximations thereof.

this example.

These features are confirmed also for the case d = 2
with the cubic and the hexagonal lattice. Tables I and II
deal with low rate sampling. We use numbers instead of
graphs in order to give more precise information on the
errors. The approximations are excellent and they cover
a range of sampling rates where interpolation is still rea-
sonable. The second approximation (27) is always better
than (23) and the hexagonal lattice is always better than
the cubic lattice. We conjecture that the hexagonal lat-
tice is optimal for all twodimensional, isotropic, monotonic
covariance functions and all sampling rates, because it is
self-dual. Note that for the exponential covariance, the su-
periority of the hexagonal over the cubic lattice becomes
apparent with the approximation (27) only for relatively
high values of β. The reason is that the kissing number
τ(B), which appears as a factor in the difference between
(23) and (27), is larger for the hexagonal lattice. Generally,
the approximations are better for the Gaussian covariance,
which was to be expected since the covariance decays faster.

In the high-rate sampling case, we compare the func-
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TABLE I

Average mean square interpolation errors and their approximations for the exponential covariance.

value lattice β = 0.5 β = 1 β = 1.5 β = 2 β = 2.5 β = 3 β = 3.5 β = 4

exact cubic .2137 .4074 .5670 .6880 .7743 .8338 .8745 .9028
exact hexagonal .2123 .4052 .5649 .6864 .7732 .8331 .8741 .9026
(23) any –5.283 –.5708 .3019 .6073 .7487 .8255 .8718 .9018
(27) cubic –.1423 .4567 .5720 .6864 .7732 .8334 .8744 .9027
(27) hexagonal 2.460 .8719 .6549 .7035 .7764 .8338 .8743 .9026

TABLE II

Average mean square interpolation errors and their approximations for the Gaussian covariance.

value lattice β = 1 β = 2 β = 3 β = 4 β = 5 β = 6

exact cubic .00518 .3147 .6524 .803655 .874336 .9127335
exact hexagonal .00329 .3039 .6517 .803652 .874336 .9127335
(23) any –2.142 .2146 .6509 .803651 .874336 .9127335
(27) cubic –.829 .3135 .6524 .803655 .874336 .9127335
(27) hexagonal –.154 .3156 .6517 .803652 .874336 .9127335

tion r(Λ(A),ω) (see (31)) whose integral is equal to
σ2(ave,Λ(B)) with two approximations: The first approx-

imation is
∑

λ̂∈Ψ(A) q(λ̂,ω) (see (32)). The second ap-

proximation is the function we obtain when we replace
each term q(λ̂,ω) by its Laplace approximation, cf. (47).
Figures 4 and 5 show the results for the spectral density
S(ω) = exp(−α‖ω‖) for two values of α. This illustrates

the appearance of the peaks at the points ω = λ̂/2 with

λ̂ ∈ Ψ(A) with increasing α. A similar behavior is ob-
served for other spectral densities that satisfy the assump-
tion (33) although the range of values α where the ap-
proximations is reasonable depends strongly on p. For
S(ω) = exp(−‖αω‖2/2), that is for the Gaussian covari-
ance, this is the case for α ≥ 2.5 or equivalently β ≤ 0.4.
For S(ω) = exp(−‖αω‖1/2) we need α ≥ 50.

VII. Summary and conclusions

If we consider sampling lattices with the same density
and a class of signals characterized by a fixed covariance
function R, then we can ask for any sampling rate β−d, how
large is the average interpolation error σ2(ave,Λ(βB)) and
which lattice minimizes this average interpolation error.
The results obtained in this paper can be summarized in
the Table III.

Unfortunately, for these statements we need additional
conditions on the decay of the covariances or spectral den-
sities respectively, and it would be interesting to formu-
late and prove more general results. The approximations
for the average interpolation error are quite accurate for a
large range of sampling rates, and the duality between low-
and high-rate sampling that we found is surprising.
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Summary of main results.
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≈ 1 Theorem 1 numerical

small Theorem 2 packing radius
very small equation (23) none

0 R(0) none
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Appendix

Proof of Theorems

Proof of Lemma 1: We introduce the fundamental
parallelotope of the lattice Λ(A):

Ω̃(A)
def
=
{
ω ∈ R

d; ω = AT w with w ∈ [0, 1)d
}
.

Like the Voronoi regions, the translates of Ω̃(A) by ele-
ments of the lattice Λ(A) form a tiling of the space R

d.

Moreover, vol(Ω(A)) = vol(Ω̃(A)) =
√

(det(AAT )) or, for
square A, vol(Ω(A)) = | det(A)|. The integral over Ω(A)

of periodic functions is the same as the integral over Ω̃(A).
Hence by a change of variables from ω = AT w to w we
obtain

1

vol(Ω(A))

∫

Ω(A)

exp(iuT ω)dω =

∫

[0,1)d

exp(iuT AT w)dw.
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By the definition of the dual lattice, uT AT is an integer
vector times 2π, and thus the claim follows from the basic
properties of the complex exponential. 2

Proof of Proposition 1: Because
∫

Ω(A)

∑

λ∈Λ(A)

S(ω + λ)dω =

∫

Rd

S(ω)dω = (2π)dR(0),

(34)

∑
λ∈Λ(A) S(ω + λ) is finite almost everywhere and thus

ψx is well defined and bounded by one. We have to
show two things: First, the function ψx from (6) corre-
sponds to a random variable in HZ(Λ(B)), and second,
exp(iωT x) − ψx(ω) is orthogonal to exp(iωT u) for any
u ∈ Λ(B). The first claim holds because ψx is periodic
with period λ for any λ ∈ Λ(A). For the second claim,
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we split the integration over R
d into integrations over all

translates of Ω(A) and use the periodicity of ψx(ω) and
exp(iωT u). Then we obtain
∫

Rd

ψx(ω) exp(−iωT u)S(ω)dω

=
∑

λ∈Λ(A)

∫

Ω(A)

ψx(ω) exp(−iωT u)S(ω + λ)dω

=
∑

λ∈Λ(A)

∫

Ω(A)

exp(ixT (ω + λ))S(ω + λ) exp(−iωT u)dω

=

∫

Rd

exp(ixT ω) exp(−iωT u)S(ω)dω.

2

Proof of Theorem 1: Because Ẑ(x) is an orthogonal
projection,

σ2(x,Λ(B)) = E[(Z(x)−Ẑ(x))2] = E[(Z(x)−Ẑ(x))Z(x)].

Using Proposition 1, the mean square error is therefore
equal to

1

(2π)d

∫

Rd

(exp(ixT ω) − ψx(ω)) exp(−ixT ω)S(ω)dω

=
1

(2π)d

∫

Rd

∑
λ∈Λ(A)(1 − exp(ixT λ))S(ω + λ)

∑
λ∈Λ(A) S(ω + λ)

S(ω)dω,

which is the first claim. For the second claim, we note
that by Lemma 1, averaging exp(ixT λ) over x ∈ Ω(B)
gives zero for λ ∈ Λ(A) \ {0}. In a similar way, the second
inequality in (15) is proved because supx |1−exp(ixT λ)| =
2. The first inequality in (15) is trivial.

The expression (13) follows by splitting the integration
over R

d into integrations over all translates of Ω(A) and
using the periodicity of

∑
λ∈Λ(A) S(ω + λ). Finally (14)

follows by applying the Poisson summation formula to the
numerator and the denominator of the integrand in (13).

2

Proof of Proposition 2: We use the expression (13)
in the equivalent form

σ2(ave,Λ(B))

=
1

(2π)d

∫

Ω(A)

(
∑

λ S(ω + λ))2 −∑λ S
2(ω + λ)∑

λ S(ω + λ)
dω,

where all summations are over λ ∈ Λ(A). The proof fol-
lows from some simple algebraic manipulations. In order to
simplify the notation, let (ak; k = 0, 1, . . .) be an arbitrary
nonnegative and summable sequence. Then we have

(
∞∑

k=0

ak

)2

+

(
∞∑

k=1

ak

)2

= a2
0 + 2

∞∑

k=0

ak

∞∑

k=1

ak.

Therefore
(

∞∑

k=0

ak

)2

−
∞∑

k=0

a2
k = 2

∞∑

k=0

ak

∞∑

k=1

ak −
(

∞∑

k=1

ak

)2

−
∞∑

k=1

a2
k

≤ 2

∞∑

k=0

ak

∞∑

k=1

ak.

Substituting S(ω + λk) for ak, where {λ0,λ1, . . .} is an
enumeration of Λ(A) with λ0 = 0, the first claim follows.

For the second claim, we observe that

a0

∞∑

k=1

ak −
∞∑

k=1

a2
k =

∞∑

k=1

(a0 − ak)ak ≥ 0

if a0 ≥ ak for all k. By the definition of the Voronoi cell,
‖ω‖2 ≤ ‖ω − λ‖2 for all ω ∈ Ω(A) and all λ ∈ Λ(A), and
thus the second claim follows. 2

Proof of Proposition 3: By a change of summation,
it follows from the definition of the k-fold convolution (20)
that for all k ≥ 1

∑

u∈Λ(B)

exp(iuT ω)∆k(u)

=
∑

u∈Λ(B)

exp(iuT ω)∆(u) ·
∑

u∈Λ(B)

exp(iuT ω)∆k−1(u)

(35)

=


 ∑

u∈Λ(B)

exp(iuT ω)∆(u)




k

(36)

where (36) follows recursively by repeated application of
(35). Moreover, by a similar substition

∑

u∈Λ(B)

exp(iuT ω)R∗2(u) ·
∑

v∈Λ(B)

exp(ivT ω)∆k(v) =

∑

u∈Λ(B)

exp(iuT ω)
∑

v∈Λ(B)

R∗2(u − v)∆k(v). (37)

The claim (22) now follows from (14) by applying in turn
(19), (36), (37), and Lemma 1 (note that vol(Ω(A)) =
(2π)d/vol(Ω(B)) ). 2

Proof of Theorem 2: First we show that the quantity
ε in (18) is asymptotically equal to τR(2ρe). We have

ε = R(2ρe)


τ +

∑

u∈Λ(B); ‖u‖>2ρ

R(u)

R(2ρe)


 .

By the assumption (26), R(u)/R(2ρe) converges to zero for
any fixed u ∈ Λ(B) with ‖u‖ > 2ρ and it is for all β ≥ 1
upper-bounded by a constant times exp(−‖u‖p). Hence
by Lebesgue’s dominated convergence theorem, the sum
over all u ∈ Λ(B) with ‖u‖ > 2ρ converges also to zero
provided that

∑
u∈Λ(B) exp(−‖u‖p) is finite. This follows

by adapting an argument of Gunning [8, p. 71]. By the
definition of a lattice, any u ∈ Λ(B) has the form BT w

with w ∈ Z
d. Denoting the smallest eigenvalue of the

matrix BBT by λmin, we have

‖u‖2 = wT BBT w ≥ λmin‖w‖2.

Moreover, for p ≥ 2 we have by Jensen’s inequality ‖w‖p ≥
d(p−2)/2(|w1|p + · · · + |wd|p), whereas for p < 2 we obtain
‖w‖p ≥ (|w1|p + · · · + |wd|p) by summing the inequalities

wp
i

(w2
1 + · · · + w2

d)p/2
≥ w2

i

w2
1 + · · · + w2

d

.



12 To appear in IEEE Transactions on Information Theory—final manuscript, Oct. 2004.

Hence, we conclude that, with c
def
= λ

p/2
min min(1, d(p−2)/2),

∑

u∈Λ(B)

exp(−‖u‖p) ≤
(

∞∑

w=−∞

exp(−c|w|p)
)d

<∞.

The same argument shows that
∑

u∈Λ(B)\{0}R
2(u) is

equal to τR2(2ρe) times a factor that converges to one.
Finally, as we will show below, R∗2 is also monotonically
decreasing and thus the same argument can be used once
again to show that

∑
u∈Λ(B)\{0}R(u)R∗2(u) is equal to

τR(2ρe)R∗2(2ρe) times a factor that converges to one.
Hence, (24) is asymptotically equivalent to (27), and the
error term (25) is of lower order than (27).

It remains to show the monotonicity of the convolution.
For this, we write R as a superposition of indicator func-
tions φr of the spheres with center 0 and radius r:

R(x) =

∫ ∞

0

φr(x)dG(r).

Here φr(x) is equal to one if ‖x‖ ≤ r and zero otherwise,
and G(r) = R(0) −R(re). Then

R∗2(x) =

∫ ∞

0

∫ ∞

0

φr ∗ φs(x)dG(r)dG(s).

The convolution φr ∗φs(x) is nothing else than the volume
of the intersection of two spheres with radii r and s whose
centers have distance ‖x‖. Thus for any r and s, φr∗φs is a
non-increasing isotropic function, and the same thing holds
for R∗2. Alternatively, one can use the result [7, eq. (36)].

Note that in (27), the two last terms go in opposite di-
rections because both R and R∗2 are positive. In order to
find out which term dominates, we need to analyze the be-
havior of R∗2. As β increases, the maxima of R(x)R(x+u)
become more and more pronounced. Thus we obtain the
leading term of the convolution by a Laplace approximation
argument (see, e.g., [5, Ch. 4]). This technique restricts the
integration for the convolution to a neighborhood where the
integrand is maximal and replaces the integrand there by
a simpler function. Although Laplace approximations are
well known, we could not find a result in the literature that
applies directly to our problem. Therefore we give here the
proofs of the approximations (28) and (29).

It turns out that the location of the maxima of
R(x)R(x+u) and also the asymptotic behavior of the con-
volution depends on the value of p in the assumption (26).
We begin with the case p ≥ 1. In this case, the function
‖x‖p + ‖u+x‖p is minimal for x = −u/2 if p > 1 whereas
for p = 1 it is minimal on the segment from 0 to −u. We
first consider the case p > 1. We let B denote the ball
with center −u/2 and radius η‖u‖ where η will be chosen

later: B
def
= {x ∈ R

d; ‖x + u/2‖ ≤ η‖u‖}. By the triangle
inequality, we have for x ∈ B ‖x‖ ≤ ‖u‖( 1

2 + η) and also
‖x+u‖ ≤ ‖u‖( 1

2 +η). Assumption (26) implies that there
is a constant C1 > 0 such that R0(r) ≥ C1 exp(−|r|p) for
all r. Thus on B

R(x)R(x + u) ≥ C2
1 exp(−21−p(1 + 2η)p(β‖u‖)p)

and therefore by restricting the integration to B

R∗2(u) ≥ const.‖u‖d exp(−21−p(1 + 2η)p(β‖u‖)p).

By a simple change of variables, R∗2(0) is equal to a con-
stant times β−d and thus the claim follows if we choose η
such that 21−p(1 + 2η)p < 1, which is possible for p > 1.

Next, we consider the case p = 1. We may assume that
u = (‖u‖, 0, . . . , 0)T and we write x ∈ R

d as (x,yT )T with
y ∈ R

d−1 . We will restrict the integration to the strip
B = {x ∈ R

d; −‖u‖ ≤ x ≤ 0}. By the triangle inequality,
‖x‖ ≤ |x|+‖y‖ and ‖x+u‖ ≤ ‖u‖− |x|+‖y‖ on B. This
implies for x ∈ B

R(x)R(x + u) ≥ C2
1 exp(−β‖u‖ − 2β‖y‖)

and therefore by restricting the integration to B

R∗2(u) ≥ C2
1 exp(−β‖u‖)‖u‖β1−d

∫

Rd−1

exp(−2‖y‖)dy.

The expression on the right is bounded below by a constant
times β‖u‖R(u)R∗2(0) and (28) follows.

For p < 1, the two last terms in (27) are in general of the
same order as will become apparent in the proof. Hence
we need a more precise analysis of the convolution. We use
again a Laplace approximation argument. For p < 1, the
minima of ‖x‖p + ‖x + u‖p are at x = 0 and x = −u. We
will assume that u = (‖u‖, 0, . . . , 0)T and we introduce
the half-space H = {x ∈ R

d; x1 ≥ −‖u‖/2}. Using the
symmetry of R, we obtain after a change of variables

R∗2(u)

R(u)
= 2

∫

H

R(u + x)R(x)

R(u)
dx.

Then we have a single maximum near x = 0, and we will
replace the integral over H by the integral over B where
B denotes the ball with center 0 and radius ηβ−p where

η will be chosen later: B
def
= {x ∈ R

d; ‖x‖ ≤ ηβ−p}. On
B, R(u + x)/R(u) is practically equal to one for any u,
leading to the approximations

R∗2(u)

R(u)
≈ 2

∫

B

R(u + x)R(x)

R(u)
dx

≈ 2

∫

B

R(x)dx ≈ 2

∫

Rd

R(x)dx. (38)

The approximation (29) follows by combining (38) with
(27).

The rest of the proof consists of controlling the errors
due to the three approximations in (38). For the first ap-
proximation, the key argument is to show that for some
δ > 0, constants C1 < C2, and all x ∈ H

R(u + x)R(x)

R(u)
≤ C2

2

C1
exp(βp(‖u‖p − ‖u + x‖p − ‖x‖p))

≤ C2
2

C1
exp(−δβp‖x‖p). (39)

The first inequality holds because (26) implies that if
we choose C1 small enough and C2 big enough, then



To appear in IEEE Transactions on Information Theory—final manuscript, Oct. 2004. 13

C1 exp(−(β‖x‖)p) ≤ R(x) ≤ C2 exp(−(β‖x‖)p) for all x.
For the second inequality, we distinguish between the two
cases x1 ≥ 0 and −‖u‖/2 ≤ x1 ≤ 0. If x1 ≥ 0, then
‖u + x‖ ≥ ‖u‖ + x1 ≥ ‖u‖ and thus (39) holds for all
δ ≤ 1. If −‖u‖/2 ≤ x1 ≤ 0, then ‖u + x‖ ≥ ‖u‖ − |x1|.
Hence it is sufficient to show that for all 0 ≤ r ≤ 1/2

(1 − δ)rp + (1 − r)p ≥ 1 (40)

(simply put r = |x1|/‖u‖). But by concavity of t→ tp, (1−
t)p ≥ (1−t) for all 0 ≤ t ≤ 1 and tp ≥ t21−p for 0 ≤ t ≤ 1/2.
Hence (40) and thus also (39) hold for 1−δ = 2p−1. Finally,
(39) is sufficient to justify the first approximation in (38)
since by a simple change of variables and the definition of
B
∫

H\B

exp(−δβp‖x‖p)dx ≤ β−d

∫

‖x‖>ηβ1−p

exp(−δ‖x‖p)dx

= o(β−d) = o

(∫

Rd

R(x)dx

)
.

This last argument can be repeated in order to justify the
third approximation in (38).

Thus there remains the justification of the middle ap-
proximation. Because ‖u‖ − ‖x‖ ≤ ‖u + x‖ ≤ ‖u‖+ ‖x‖,
we have for ‖x‖ → 0 by the definition of the derivative

| ‖u‖p − ‖u + x‖p| ≤ ‖u‖p(1 − (1 − ‖x‖/‖u‖)p)

= p‖u‖p−1‖x‖ + o(‖x‖).

This implies that for any c > p‖u‖p−1 and β sufficiently
large, we have for all x ∈ B

exp(−cη) ≤ exp(βp(‖u‖p − ‖u + x‖p)) ≤ exp(cη).

By the assumption (26), we therefore have also

exp(−cη) ≤ R(x + u)

R(u)
≤ exp(cη).

Because η can be chosen arbitrarily small, this justifies the
middle approximation in (38). 2

Proof of Theorem 3: First we determine the points
where r(Λ(A),ω) is maximal. Since for any two posi-
tive real numbers a and b, ab = max(a, b) · min(a, b) and
max(a, b) ≤ a+b ≤ 2 max(a, b), r(Λ(A),ω) can be bounded
as

1

2
min(S(ω),

∑

λ∈Λ(A)\{0}

S(ω + λ)) ≤ r(Λ(A),ω)

≤ min(S(ω),
∑

λ∈Λ(A)\{0}

S(ω + λ)). (41)

Our assumptions on S allow us to replace the infinite sum∑
λ∈Λ(A)\{0} S(ω + λ) by the largest summand, cf. the

proof of Theorem 2. Together with the bounds (41), this
implies that the maxima of r(Λ(A),ω) are asymptotically

at ω = λ̂ with λ̂ ∈ Ψ(A). Moreover, as α tends to infinity,
the maxima become more and more pronounced so that we
can use Laplace approximations once again.

The proof consists of two steps. First, we are going to
show that there is a δ > 0 and an integrable function h(ω)
such that for all α ≥ 1 and all ω ∈ R

d

∣∣∣∣∣∣
r(Λ(A),ω) −

∑

λ̂∈Ψ(A)

q(λ̂,ω)

∣∣∣∣∣∣
≤ αd exp(−αp(ρ+δ)p)h(ω).

(42)
In a second step we are going to show that

∫
Rd q(2ρe,ω)dω

exp(−(αρ)p)(αρ)d−p(d+1)/2
→ C

4

(
2π

p

)(d+1)/2

. (43)

From this, the theorem follows, cf. (30) and (32).
For (42) we choose δ such that for any ω ∈ R

d, there exist
at most two lattice points λ ∈ Λ(A) such that ‖ω − λ‖ ≤
ρ+δ, and if two such points exist, they must have distance
2ρ in addition. For ‖ω‖ > ρ+ δ, we will use the bound

∣∣∣∣∣∣
r(Λ(A),ω) −

∑

λ̂∈Ψ(A)

q(λ̂,ω)

∣∣∣∣∣∣
≤ (τ + 1)S(ω), (44)

which follows from (41) and the analogous bound

1

2
min(S(ω), S(ω − λ̂)) ≤ q(λ̂,ω) ≤ min(S(ω), S(ω − λ̂)).

(45)
By (44) and our assumption (33) on S, there is a constant
C1 ≥ C such that

α−dS(ω) ≤ C1 exp(−(α‖ω‖)p)

= C1 exp(−‖ω‖p) exp(−(αp − 1)‖ω‖p)

≤ C1 exp(−‖ω‖p) exp((ρ+ δ)p) exp(−αp(ρ+ δ)p).

Hence (42) holds on ‖ω‖ > ρ+ δ if we set

h(ω) = C1(τ + 1) exp((ρ+ δ)p) exp(−‖ω‖p).

For ‖ω‖ ≤ ρ+ δ, we use the bound
∣∣∣∣∣∣
r(Λ(A),ω) −

∑

λ̂∈Ψ(A)

q(λ̂,ω)

∣∣∣∣∣∣
≤ 2

∑

λ∈Λ(A)\{0,ξ̂}

S(ω − λ),

(46)

where ξ̂ is the point in Ψ(A) closest to ω. In order to see

why this bound holds, denote S(ω) by a, S(ω − ξ̂) by b

and the sum of S(ω − λ) over all λ ∈ Λ(A) \ {0, ξ̂} by c.
By simple algebraic manipulations we find

∣∣∣∣
a(b+ c)

a+ b+ c
− ab

a+ b

∣∣∣∣ =
a2c

(a+ b)(a+ b+ c)
≤ c.

From this and (45), (46) follows. If ‖ω‖ ≤ ρ + δ, then by

the definition of ξ̂ and our choice of δ, ‖ω−λ‖ > ρ+ δ for

all Λ(A) \ {0, ξ̂}. Hence, arguing as above, we obtain in
this case

∑

λ∈Λ(A)\{0,ξ̂}

S(ω − λ) ≤ C1α
d exp((ρ+ δ)p)

·
∑

λ∈Λ(A)

exp(−‖ω + λ‖p) exp(−αp(ρ+ δ)p)
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and thus (42) holds on ‖ω‖ ≤ ρ+ δ if we set

h(ω) = 2C1 exp((ρ+ δ)p)
∑

λ∈Λ(A)

exp(−‖ω + λ‖p).

It is easy to see that h is integrable because
∫

‖ω‖≤ρ+δ

∑

λ∈Λ(A)

exp(−‖ω + λ‖p)dω

≤ (τ + 1)

∫

Ω(A)

∑

λ∈Λ(A)

exp(−‖ω + λ‖p)dω

= (τ + 1)

∫

Rd

exp(−‖ω‖p)dω.

(By our choice of δ, there are τ + 1 Voronoi cells that in-
tersect {ω ∈ R

d; ‖ω‖ ≤ ρ+ δ}.)
Finally, we turn to the proof of (43). Replacing ω by

ω + ρe, we have
∫

Rd

q(2ρe,ω)dω =

∫

Rd

S(ρe + ω)S(ρe − ω)

S(ρe + ω) + S(ρe − ω)
dω,

and we will work with this symmetric form. Without loss
of generality, we assume that e = (1, 0, . . . , 0)T and we
write ω ∈ R

d as (ω1, ξ
T )T with ξ ∈ R

d−1. By a Taylor
expansion of the function x → xp/2 at the point x = ρ2 we
conclude that for any ε > 0 there is a δ > 0 such that for
|ω1| ≤ δ and ‖ξ‖ ≤ δ
∣∣‖ω + ρe‖p − ρp − a1ω1 − a2‖ξ‖2

∣∣ ≤ ε(|ω1| + ‖ξ‖2),

where a1 = pρp−1 and a2 = pρp−2/2. By our assumption
(33) on S, we thus have the approximation

S(ρe + ω)S(ρe − ω)

S(ρe + ω) + S(ρe − ω)

≈ Cαd exp(−(αρ)p)
exp(−a2α

p‖ξ‖2)

2 cosh(αpa1ω1)
. (47)

Moreover, in a neighborhood of 0, we obtain upper and
lower bounds if we multiply the right hand side (47) by
exp(±3εαp(‖ξ‖2 + |ω1|)). By similar arguments as above,
the integrals outside this neighborhood are asymptotically
negligible and thus we can integrate the upper and lower
bounds over R

d. Then the integral is the product of two
integrals, one with respect to ω1 and one with respect to
ξ. By well known properties of the multivariate Gaussian
density, the one with respect to ξ is equal to

(
2π

2αp(a2 − 3ε)

)(d−1)/2

.

After a change of variables u = exp(αpa1ω1), the integral
with respect to ω1 is equal to

2

αpa1

∫ ∞

1

u3ε/a1

1 + u2
du.

Using Lebesgue’s dominated convergence theorem, it is
easy to see that this converges for ε→ 0 to

2

αpa1

∫ ∞

1

1

1 + u2
du =

π

2αpa1
.

The integration of the lower bound is similar. Thus by
taking all the arguments together and by letting ε go to
zero, we obtain

∫

Rd

q(2ρe,ω)dω ∼ C exp(−(αρ)p)αd−p(d+1)/2

· 1

4
(2π)(d+1)/2a−1

1 (2a2)
−(d−1)/2.

The claim now follows by substituting the values of a1 and
a2. 2
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