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Abstract— The inverse problem in EEG-based source local-
ization is to determine the location of the brain sources that are
responsible for the measured potentials at the scalp electrodes.
The brain sources are usually modeled as current dipoles which
lead to a singularity in the right-hand side of the governing Pois-
son’s equation. Subtraction methods have been proposed as a
remedy and in this paper an improved subtraction method for
modeling the dipoles is presented. The accuracy is demonstrated
for radial and tangential sources in layered sphere models and is
to the best of the authors’ knowledge superior to previous meth-
ods for superficial sources. An additional advantage is that it
produces a right hand side with few non-zeros which is benefi-
cial for efficient solution of the inverse problem.
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Introduction

Epilepsy is one of the most common neurological diseases
and about 0.5 to 1% of the population suffers from it. Sur-
gical therapy has become an important therapeutic alterna-
tive for patients with medically intractable epilepsy. Correct
and anatomically precise localization of the epileptic focus is
mandatory to decide if resection of brain tissue is possible.

The most important non-invasive diagnosis tool used at
epilepsy surgery centers is electroencephalography (EEG). To
find the brain sources, which are usually modeled as current
dipoles, that are responsible for the measured potentials at
the EEG electrodes on the scalp is an inverse problem. In-
verse problems are in general more difficult to solve than di-
rect problems mainly due to ill-posedness and non-linearity.
In this case the data is perturbed by noise and the potentials
measured on the scalp surface do not uniquely determine the
location of the dipoles as many different dipole configurations
can generate the same distribution of potentials on the scalp.

Methods for solving the inverse problem in EEG-based
source localization are based on solutions of the correspond-
ing forward problem, i.e. simulation of the potentials on the

scalp for a given source. The associated differential equa-
tions are the quasi-static Maxwell equations, which reduce
to a Poisson equation. The sources are electrolytic currents,
usually modeled as point dipoles, which are activated during
epilepsy. The dipoles introduce singularities in the right-hand
side of the Poisson equation that need to be treated.

A major limitation in EEG-based source reconstruction
has been the poor spatial accuracy, which is attributed to low
resolution of previous EEG systems and to the use of sim-
plified spherical head models for solving the inverse prob-
lem. EEG-based source localization is an active field of
research[1, 2], but partly due to the mentioned shortcomings
the computational techniques are not yet part of the standard
pre-surgical diagnostic workup.

Realistic models of the human head are geometrically
complex and the tissue conductivity is highly inhomogeneous
and even anisotropic, which makes finite element methods
(FEM) well suited. The critical issue is how to handle the
computational complexity of FEM with regard to the in-
verse problem. As has been shown in recent publications
by Wolters et al.[3, 4] this can be accomplished through the
use of algebraic multigrid preconditioners, parallel comput-
ing, and not the least the concept of reciprocity which makes it
possible to solve the forward problem for each electrode posi-
tion rather than for each possible dipole position. A so-called
lead field matrix can be computed during the preprocessing.
The repeated solution of the forward problem in the iterative
process is then efficiently accomplished by multiplication of
the lead field matrix by the estimated source to produce the
electrode potentials.

Source localization is heavily dependent on the choice of
dipole model and several different alternatives have been sug-
gested in the literature. According to the survey article[5],
the subtraction method[6] is the most accurate. In this paper
we present an improved subtraction method that reduces the
non-zeros in the right-hand side (RHS) vector and in addition



produces the same non-zero structure of the vector regardless
of dipole position. This implies that only part of the lead field
matrix needs to be stored and the solution of the inverse prob-
lem will therefore be much faster.

Methods

The characteristic frequencies of the signals in the kHz
range and below make the capacitive and inductive effects of
the tissue negligible. Therefore, the quasi-static approxima-
tion of Maxwell’s equations for the potential Φ can be used.

If we denote the domain of interest as Ω (with boundary
∂Ω) and let the tissue conductivity be σ, we have Poisson’s
equation

∇ · (σ∇Φ) = ∇ · js in Ω, (1)

subject to the conditions

n̂ · (σ∇Φ) = 0 on ∂Ω, (2a)
Φ (xref) = 0. (2b)

The source current js is modeled by a mathematical dipole at
position x0 ∈ Ω with the moment M ∈ R3,

js (x) = Mδ (x− x0) . (3)

The source has a singularity at x0 and is therefore dif-
ficult to model with standard finite elements. A subtraction
method[6] is used to circumvent this problem, where the total
potential is split into two parts,

Φ =Φ ∞ + Φcorr. (4)

The first part, Φ∞, is the solution to Eq. (1) in an unbounded
domain with constant conductivity σ∞,

∆Φ∞ =
∇ · js

σ∞
. (5)

The solution can in this case be formed analytically as

Φ∞ (x) =
1

4πσ∞
M · (x− x0)

|x− x0|3
. (6)

An equation for Φcorr can now be formed by subtracting
Eq. (5) from (1),

−∇ · (σ∇Φcorr) = ∇ · ((σ − σ∞)∇Φ∞) in Ω, (7)

subject to the conditions

n̂ · (σ∇Φcorr) = −n̂ · (σ∇Φ∞) on ∂Ω, (8a)
Φ (xref) = 0. (8b)

This approach to the problem ensures that the RHS of Eq.
(7) is non-singular in the case where σ is constant in a small
ball around x0[4]. The original RHS of Eq. (1) has support
only at x = x0, whereas the RHS of Eq. (7) has support where
∇σ $= 0. To obtain a more compact support Ω is divided into
two subdomains

Ω =Ω c ∪ Ωt, (9)

where Ωc is the region with constant σ∞ containing the
source. See Fig. 1 for a schematic view in two dimensions. In
this region the correction potential is solved for as described
above, and in Ωt the whole solution is sought at once. Using
Eqs. (7) and (1) the new formulation reads,

−∇ · (σ∞∇Φc) = 0 in Ωc, (10a)
−∇ ·

(
σ∇Φt

)
= 0 in Ωt, (10b)

subject to the conditions

Φc + Φ∞ = Φt on ∂Ωc, (11a)
n̂c · (σ∞∇ (Φc + Φ∞)) = n̂c ·

(
σ∇Φt

)
on ∂Ωc,(11b)

n̂t ·
(
σ∇Φt

)
= 0 on ∂Ωt, (11c)

Φ (xref) = 0. (11d)

In this formulation the support is only in ∂Ωc, which can
greatly improve efficiency when solving the forward problem
multiple times.
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Figure 1: Schematic view of a two layer model.

The discretization of Eq. (10) performed by the piece-
wise linear FEM with basis functions ϕi centered at the mesh
points ξi. The solution to this equation, as well as Φ∞, is
represented in the FE space as

Φ∞ ≈
∑

ξi∈Ωc

u∞i ϕi (x) , (12a)

Φt ≈
∑

ξi∈Ωt

ut
i ϕi (x) , (12b)

Φc ≈
∑

ξi∈Ωc∧ξi /∈∂Ωc

uc
i ϕi (x) +

∑

ξi∈∂Ωc

(
ut

i − u∞i
)
ϕi (x). (12c)



After applying variational and FEM techniques to Eqs. (10)
and (11) we arrive at the system of linear equations

Ku = j, (13)

where u contains the nodal degrees of freedom in both do-
mains, Ωc and Ωt. The stiffness matrix has the entries

Ki,j =
∫∫∫

Ω
(σ∇ϕi) ·∇ϕj dV. (14)

The vector j has contributions from Eqs. (11a) and (11b)

j = jD + jN . (15)

The first part can be written as

jD = KDu∞, (16)

where the entries in KD are given by

KDi,j =
∫∫∫

Ω
(σ∞∇ϕi) ·∇ϕj dV,

ξi ∈ Ωc ∧ ξi /∈ ∂Ωc, ξj ∈ ∂Ωc. (17)

The entries in the vector jN are given by

jNi =
∫∫

∂Ωc
ϕi n̂c · (σ∞∇Φ∞) dS. (18)

The total potential in Ω can then be computed by means
of Eq. (4).

As a comparison, if the standard subtraction method[6] is
used to discretize Eqs. (7) and (8) on a multilayer isotropic
sphere with different conductivity in each layer, the RHS vec-
tor would consist of contributions of the type

ji =
∫∫

Sk

ϕi n̂ ·
((

σk+1 − σk
)
∇Φ∞

)
dS, (19)

for each interface k.
The system of linear equations, Eq. (13), can be efficiently

solved iteratively by a conjugate gradient (CG) solver precon-
ditioned by an algebraic multigrid (AMG) method.

Results

The model used for the head is a four layer sphere which
has been used in several studies [5]. The parameters are de-
fined in Table 1. The validation and comparison of the method
was done by calculating the potential for dipoles with eccen-
tricity from 0 to 97.4%, where the eccentricity of the dipole

is defined as the ratio between the distance from the center
of the sphere to the source divided by the radius of the brain
compartment, 78mm. Comparisons are made for dipoles di-
rected in the two principal directions, normal and tangential
to the surface. Finally, calculations were performed on two
tetrahedral meshes of different resolution.

Table 1: Parameterization of the four layer sphere model

Brain CSF Skull Scalp
Outer shell radius [mm] 78 80 86 92

Conductivity [S/m] 0.33 1.0 0.0042 0.33

The errors are calculated by comparing the solutions to
the potential given by an analytic solution[7] at each surface
node. The maximum relative error, the relative error, the rel-
ative difference measure, and the magnification factor, are de-
fined as

emax = max
i

|ua
i − un

i | / max
i

|ua
i | , (20a)

eRE =
‖ua − un‖2
‖ua‖2

, (20b)

eRDM =

√√√√∑

i

(
ua

i

‖ua‖2
− un

i

‖un‖2

)2

, (20c)

eMAG =
‖un‖2
‖ua‖2

, (20d)

where ua
i is the value of the analytical solution at surface node

i, un
i is the corresponding value of the numerical solution.

‖ · ‖2 denotes the Euclidean norm.
To benchmark the method proposed is this paper we com-

pare with the state-of-the-art method in the literature[6] ac-
cording to the survey article[5]. The errors are shown in Fig.
2 where the two methods are compared on two meshes of dif-
ferent resolution. The upper subfigure shows the result for
radial dipoles and the lower the result for tangential dipoles.
The newly developed method shows significantly better re-
sults for dipoles placed close to the surface of the inner layer.
For the coarser mesh the ratio of the RDM error between the
two solution methods at eccentricity 97.4% is 5.3 for both
radial and tangential dipoles. The corresponding ratios for
the finer mesh are 3.3, and 2.6, respectively. The largest im-
provement is indicated in the relative maximum error. On the
coarser mesh the ratio of the errors are 22 and 25 for radial
and tangential dipoles, respectively. The corresponding val-
ues for the finer mesh are 14 and 13, respectively.



0 0.25 0.5 0.75 1
0

0.025

0.05

0.075

0.1

e
m

a
x

0 0.25 0.5 0.75 1
0

0.0025

0.005

0.0075

0.01

e
R

E

0 0.25 0.5 0.75 1
0

0.0025

0.005

0.0075

0.01

e
R

D
M

0 0.25 0.5 0.75 1
0.998

0.999

1

1.001

1.002

e
M

A
G

(a) Radial dipole
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(b) Tangential dipole

Figure 2: Error as a function of eccentricity. Full lines:
method presented here, dotted lines: subtraction method from
[6].◦markers: mesh with 233k nodes, ×marker: mesh with
991k nodes.

Conclusions

In this paper we have presented an improved method for
modeling the dipole in source localization. The proposed
method has been shown to be more accurate than the state-
of-the-art method in the literature. Additional advantages are
that the RHS has fewer non-zeros and the same non-zero
structure regardless of dipole position something which in
contrast to earlier approaches also holds for anisotropic tis-
sue. This fact will be very beneficial for efficient solution of

the inverse problem. Future work will include development
of methods for solving the inverse problem and application to
source localization with realistic head models generated from
a segmentation of the patient’s MRI.
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