Formalizing the Dialogue Move Engine

Peter Ljungl of

Dept. of Computer Science
Chalmers University of Technology
412 96 Gteborg, Sweden
peb@cs.chalmers.se

Abstract
In this paper we present a calculus for reasoning mathematically about rule-based dialogue systems —dialagllednove engines
developed in the TRINDI project. The calculus is similar to term rewriting systems and dynamic logic. It is defined using monads, which
are used for describing programming languages, and in functional programming to capture computations with side-effects.

1. Introduction There are some standard operations and predicates on

In this paper we present a calculus for reasoning mathl—'stlS Wh'Chdwed;V'” :Jse B thedelefgand addgperathns
ematically about rule-based dialogue systems — so callefi€letes and adds elements to a list, aip@gn operation
dialogue move engineteveloped in the TRINDI, SDS and concatenates two lists, and theemberpredicate is a se-

INDI projects: (Bohlin et al, 1999; Traum et al, 1999). The guential member checking predicate, binding the second

calculus is similar to term rewriting systems (Visser and Be-2rgument to each element of the list. We will also use the

naissa, 1998) and dynamic logic (Harel, 1984). Itis defineoSt"’md_ard way of using lists to represent backtracking —com-
using monads, which are used for describing programmin utations that can fail or return several results — with the
languages, and in functional programming to capture com-= mpty list representing failure (Wadler, 1985).

putations with side-effects (Moggi, 1991; Wadler, 1995).

2. Defining the dial move engin
In the end we show how the calculus can be used to prove € g the dialogue mave engine

properties of a dialogue system. A dialogue move engine (DME for short) consists of a
description ofi) what the information state (infostate for
1.1. Preliminaries short) looks likeji) what kinds of dialogue moves there are

. . . . andiii) how they are applied to the infostateé) a collection
Since we are only interested in the dialogue manager ; .
. . of update rules on the infostate, avjcan update algorithm
part of a dialogue system, we assume that there exist goaod, . ' .
i . - Which defines how the rules are used to update the infostate.
translations between utterances and dialogue moves. With- . L X
Parallel with the formalization, we introduce an exam-

out I.O.SS of generality we can _then_assume that the dlalogugle DME to illustrate the principles. This is a small subset
participants communicate using dialogue moves.

A implification we assume that the dialogue i eof the information-seeking DME used in the GoDiS sys-
_As a simpiification we assu a 1alogue 1S S€iom, (Traum et al, 1999), but it is general enough for the
rial — that the participants make their utterances one afte urposes of this paper

another and that they never interrupt each other. Another '

simplification is that each utterance can be translated into 2.1. The information state
time-ordered list of dialogue moves, thus forgetting about The information stateis seen as a representation of an

overlapping sub-utterances and so on. agent’s current knowledge, especially the part that change

In the discussion at the end we will try to argue thatyring the dialogue. In this formalism the infostate is a type
these simplifications do not induce severe limitations onthgs For the example DME we will use a record with the
strength of the framework. fields shown in table 1 below, whepéan s a list of things
to do in the futurepelis a list of beliefs,qudis a list of
guestions currently under discussion, &mds a list of the

In this paper we use a lot of terminology taken from pro- dialogue moves that the other participant just uttered. We
gramming languages and type theory. For those not famildo not further define propositions and questions as the for-
iar with our way of writing things, here are some informal malization is independent of which notion of proposition or
explanations.

We writea € A to say that the object is of the type
A. The basic type constructors we are going to usexare

1.2. Notational conventions

— and[]. Given two typesd and B, A x B is the type of plan € [Move N

pairs of A and B, A — B is the type of functions fromt bel € [Propositior

to B, and[A] is the type of lists of typed. gud € [Question
Im € [Movg

ITRINDI (Task Oriented Instructional Dialoguefc Project
LE4-8314 SDS (Swedish Dialogue SystemSYTEK/HSFR Language
Technology Project F1472/1997INDI (Information Exchange in Dia- Table 1: The information state used in the example
logue),Riksbankens Jubileumsfond 1997-0134

ry : integratequestion
conditions
member(Im,Q)

ro : integrateanswer
conditions
member(im,A)

rg : answerquestion
conditions
member(qud,Q)

s : selectmove
conditions
member(plan,M)

isquestion(Q) is proposition(A) member(bel,A) effects
effects member(qud,Q) isanswerto(Q,A) delete(plan,M)
delete(Im,Q) isanswerto(Q,A) effects selecfM)
add(qud,Q) effects delete(qud,Q)
delete(Im,A) add(plan,inform(A))
delete(qud,Q)
add(bel,A)

Table 2: The update rules used in the example

question is chosen. In this simple example we have just twproved using the formalism we will introduce later. Since
kinds ofdialogue moves- to aska question and tsaform we want it to just say one thing at each turn, we have to
of a fact, represented as a proposition. change the algorithm to first apply the rutes.. . r3 until

We view a dialogue move as a basic type, so we neethis can no longer be done, and then apply the sweace,
to know how to incorporate an utterance, represented as selecting only one move.
sequence of moves, into the infostate. This is done with With these definitions we can define ttielogue move
the functionapply € 1ISx [Movd — IS which updates the engineto be a function that, given a list of dialogue moves
infostate with a list of moves. In our example thpply uttered by the user, applies them to the infostate, and then
function simply adds the moves to the end of litndist. updates the infostate with the update algorithm, selecting

new moves to perform during the updating. We now finally

2.2. Update rules have a functiodmee ISx [Movd — ISx [Movd, with the

An update rulespecifies an update on the infostate very simple definitiordme= updateo apply.
(called the effect), which is guarded by a condition — if
the condition holds, the effect can be applied. The effect
may also have a side effect: it can select one or several

dialogue moves to be performgd. Thg cond|t|o.ns and ef; orithm and show that this can be used to define the update
fects are compo'sed by combining basic operations on th les themselves. The calculus is similar to term rewrit-
elem_ents (_)f the infostate. The upd_ate rules of our examplﬁ1g systems (Visser and Benaissa, 1998) and dynamic logic
ahre I|ste,d Iln table 2 at?fo_ve. The first MO _rule_ﬁ [')nterg(;etj(Harel, 1984), with the main exceptions being that the rules
the user's last move — it it was a question, it will be added,q, 155 the ability to communicate to the outer world by

asa qu_est|on under dISCUSS.IOI’I, ar_1d 'f, it was an answer tQelecting dialogue moves to perform, and all the operators
a question currently under discussion it will be added as Are deterministic

belief. The third rule answers a question under discussion, We have two trivial rules and three basic operators that
if the system knows the answer, and the fourth rule SeleCtﬁmke new rules out of old ones:
the first move on the plan to be uttered to the user. Since
this last rule selects a dialogue move to be performed, we o Theidentityrule 1 always succeeds without affecting
call it aselection rule the infostate and without selecting any moves.

More formally we can say that an update rule is a func-
tion that given an infostate, returns either a failure if the e Thefailure rule 0 always fails.
condition fails, or the different results of the effect ap-
plied to the infostate. This gives usle € Rulewhere
Rule= IS — [ISx [Movd].

3. Acalculus of update rules
In this section we introduce a calculus for the update al-

e Thesequential composition; r’ of two rules first ap-
pliesr, and if that succeeds, appligsto the result of
r The composition selects all the moves selected by
eitherr or /. It fails if eitherr or ' fails. Composi-
tion hasl as an identity an@ as a zero, which gives
thelawsl ;r =r;1 =rand0;r =r;0=0.

2.3. The update algorithm

Theupdate algorithndefines how these rules should be
applied to an infostate; that is, given an infostate, the update

algorithm updates the infostate and selects a list of moves Thedeterministic choice -+ first applies, and only
to perform. This suggests that the update algorithm is @ i that fails it applies”. Choice ha$ as an identity and

functionupdatec IS — 1Sx [Move. _ 1 as a left zero, giving the laws+r = r +0 = r and
The naive algorithm is to check the rules in order, and | , ;. — 1 (but not necessarily equal to+ 1).

as soon as a rule applies update the infostate accordingly

and then repeat the algorithm until there are no rules that e The repetition * appliesr and if that succeeds it

apply. executes* on the result (concatenating the selected
But if we use this naive algorithm on our example rules, moves). Ifr fails, it succeeds leaving the infostate un-

all the moves that are in th@an will be selected at once — changed and selecting nothing. The repetition can be

this is maybe not immediate from the definitions, butcanbe unfolded using the other operators: = (r;r*) + 1.

r1 = dgelm.isquestiorq) ; deletélm, ¢) ; add(qud q)

ro = daclm.3gequd ispropositior(a) ;isanswerto(q, a) ; deletélm, a) ; deletéqud, ¢) ; add(bel, a)
rs = dgequd Jaebel isanswerto(q, a) ; deletéqud, ¢) ; add(plan, inform(a))
s = 3Jmeplan deletéplan, m) ;selectm)

Table 3: Formal definitions of the update rules of the example

With these definitions the update algorithm of our examplebind € M (A)x(A— M (A)) — M (B), which also satisfy
can be defined ag + 7o + r3)*;s. This suggests that three identity and associativity laws. Some monads also are
the update algorithm is just a very complicated update ruleequipped with a zero elemeditc M (A), and a plus opera-
But this definition of the update algorithm is not completely tion (+) € M (A) x M (A) — M (A), which in turn satisfy
correct; the type of thepdatefunction does not correspond a couple of other laws.

to the type of the update rules. The main difference is that Ap example of a monad is the state morBid(A) =

the update rules can fail, which the update algorithm is noj{g _, |5 4. with the definitionsoind(f, k) = As. k(a, s')
allowed to. But a correctly defined update algorithm will where(s',a) = f(s), andreturn(a, s) = (s,a). Another
never fail, which means that the list of results it re_turns W?“ example is the monad of lisfst] which is also a monad

be non-empty. Then we can use the standard list functiofyith zero and plus; whereeturn returns a singleton list,
head € [A] — A, which gives the first item in a list, to () is the empty list, and + I concatenates the listsand
extract the result we want. This gives for our example the/ The pind operation sends each element of the first list
resulting functiorupdate= head(r, + 72 +73)"; s). to the second function, concatenating the results, and can

- be defined by cases &ind([], k) = [| andbind(a:l, k) =
3.1. Defining the update rules appendk(a), bind(l, k).

Now it turns out that we can use the calculus to define The list monad is often used to represent backtracking
the update rules themselves. To apply an update rule weh. h il also do h W | bi q '
first check the conditions, and if they hold we can apply theVMch we V:;'. _asoh O here. edcanba SO combine rr?orga E
effects. Both the conditions and the effects are ordered ﬁ:&gég%rgt;?;nggnﬁﬁ«rxr?l ; i ([)l\éex%efvrﬁ; igaac)
we apply them in the order they are written. This means . o ’

L . L monad with zero and plus.
that an update rule is just a sequential composition of more
basic rules, the individual conditions and effects. There is
just one thing that needs to be taken care of — the special 2. A dialogue monad
memberpredicate which introduces some kind of choice
depending on the elements of the first argument. For that The backtrackable state monB&Mgives us a way to
purpose we introduce the operatbr € A.r(x), whereA define the rules and operators of our calculus, since the type
is a list andr(z) is a rule whenever is an element iMd. Rule of update rules is just an instance BSM[Movd).

The idea is that ifA = [ay,as,...,a,] when the rule is The 0 rule and the(+) operator are exactly the same as
invoked, therdz € A.r(z) = r(a1) + r(a2) +---+7r(a,). 0 and (+) for the monad. The identity and selection

Another addition is to add the special selection rulerules can be defined ds = return([]) and selecfm) =
selectm), which leaves the infostate unchanged and selecteeturn([m]) respecively. Sequentiation simply becomes
the single moven. With these additions to our calculus, ;" = append’(r,7'), whereappend’ is concatenation
we can define the update rules of our example as in table 6f lists lifted to theBSMmonad? and repetition is defined
above. (We still have to give definitions of the basic rulesby the unfolding equation* = (r;r*) + 1. For the(3)
of course). operator we have to use the fact that B®@Mmonad is a

function that takes an infostate and gives a list as result:

4. Interpreting the calculus 3z e f.r(x) = As.bind(f(s),r).3

Monads are standard tools in functional programming Apart from giving us a precise definition of the calculus
for capturing computations with side-effects, and they aredf update rules, it also gives us all the properties of monads,
also used in denotational semantics for defining programuke the associativity and identity laws. These laws are free
ming languages (Wadler, 1995; Moggi, 1991). Here we ardor us to use when we want to prove statements about, or to
going to use them to give a precise definition of our calcurewrite our dialogue move engine to a more efficient one.
lus.

4.1. Introducing monads 2 : - o .
) The precise definition of the lifting of a functighto a monad
The standard example of a monad is the type construGs ¢"(,. 'y = bind(r, Am. bind(+’, Am’. return(f (m, m’)))).

tor [] which takes any typel and gives backA], the type 30Observe that theind used here is the one in the list monad,

of lists of objects of typed. A monadl/ is a type con- notin theBSMmonad. The field labef is seen as the function on
structor with two operationsreturn € A — M(A) and the infostate that gives the current value of the figld

5. Proving properties of the DME 6. Discussion and future work

If we have defined a collection of update rules together In this paper we have introduced a calculus for building
with an update algorithm, we may want to show that someand reasoning about dialogue move engines. With the use
desirable properties hold for this dialogue system. Mosbf a simple example we have defined the basic constructors
important are to show that the system terminates, alwaysef the calculus.
succeeds and always produces some moves to utter to the In the beginning we introduced some simplifications on

user, but there are also other interesting properties. the dialogue system, and we will now try to argue that they
o can be accounted for. The limitations were that the dialogue
5.1. Termination is serial, and that each utterance can be translated into an

To prove that the update algorithm terminates for ev-ordered list of dialogue moves. But that the participants
ery given input, we have to show that all repetitions alwaydalk at the same time or interrupt each other can be coded
terminate. For this we can use induction on some parts ofising special arguments to the dialogue moves, as can the
the information state. In our example we can do induc-overlapping of moves, so these are not real limitations.
tion on the total length of them andqudlists (to be more If one wants to work with something other thlsts of
precise,n = 2|Im| + |qud), and notice that when any of moves, e.g. sets or partially ordered collections, one can re-
the rulesr; . .. rs is applied, the total length decreases (ac-define thg ;) andreturn operations in an appropriate man-
tually, it's the numbem that decreases). This means thatner. (Which means that one uses another monad in place
(r1 + ro + r3)* cannot continue forever, since thmand of the list monad). In the same way one can use another

qudlists will finally be empty. definition of the(+) operation, as long as it still obeys the
. monadic laws — e.g. one may want the choice to look at the
5.2. Non-failure current infostate before it decides which of the rules to try.

Since the repetition* always succeeds if it terminates, This is very much work in progress. It remains to show
the only thing we have to prove for our example is that thethat the framework can be used in real-world problems,
selection rules always succeeds. In our example case theravhere the infostate is much more complicated and there
is a possibility that thevlan at some point gets empty, so are more than four update rules. One possible research is-
we have to change the update rules in some way — e.g. bsue would be to see if the framework can be used to model
replacings with s + selectm) in the algorithm, wheren ~ the dialogue behaviour of a system. Possibly the calculus
is some default move. can be used to prove desired properties of the system as a

whole —e.g. that itin the end always gives a relevant answer
5.3. Productivity to a question, or that it fulfills given orders.

To show that the system is productive we have to show

that, whenever it terminates and succeeds, it executes a 7. References

selectrule. In our example itis easily shown just by looking p. Bohlin, R. Cooper, E. Engdahl and S. Larsson. 1999.

atthes rule. Information states and dialogue move engines. Gothen-
We may also want to show that the system does not se- pyrg Papers in Computational Linguistics GPCL 99-1.

lect too many dialogue moves at the same time (thus giv- yRL http://mww.ling.gu.se/publications/

ing the user the opportunity to interrupt with e.g. clarifying p Harel. 1984. Dynamic logic. In D. Gabbay and F. Guen-

questions). In our first naive definition of the update al- thner, editorsHandbook of Philosophical Logic, vol..II

gorithm, the system selected all the moves that was on the Rgidel.

plan, but in the s_econd algorithm the system selects only- Moggi. 1991. Notions of computation and monals.

one move at the time. formation and Computatiqro3(1).

D. Traum, J. Bos, R. Cooper, S. Larsson, I. Lewin, C. Math-

eson and M. Poesio. 1999. A model of dialogue moves

and information state revision. Trindi Deliverable D2.1.

URL http://www.ling.gu.se/research/projects/trindi/

5.4. Other properties

Another interesting property is that the system is effi-
cient. There could be some of the basic conditions or ef-

fects that take time to execute (e.g. #a@nswerto pred- b \yaqler. 1985. How to replace failure by a list of suc-

|c§1te which probably has to call a theorem prover). We .ccas |@nd Symposium on Functional Languages and
_rmght want to show that t_he system never calls such a pred- Computer ArchitecureLecture Notes in Computer Sci-
icate more than, say 5 times. In our example system, the ence LNCS 273. Springer Verlag.

!semswertotcondmon |sbce_1llet<:] a ngmbet:dofbtlTesh\(vnlch P. Wadler. 1995. Monads for functional programming.
in the worst case can be in the order|géid-|bel], whic In J. Jeuring and E. Meijer, editorgydvanced Func-

in turn means that the system should probably have to be tional ProgrammingLecture Notes in Computer Science

optxuf_zeo: in Som? We}y. v of lIl-desianed di LNCS 925. Springer Verlag.
loque L:avexar:n}i:)ne ? t?l Ff[r?vfl)errylo arwe -mﬁlgint?v v'vei‘t'hE.\ﬁsser and Z. Benaissa. 1998. A core language for rewrit-
9 Oove engine IS that two rules are commutative ing. In C. Kirchner and H. Kirchner, editor&nd Inter-

i H I ol _
e et o oo "AEnAI orkShop on Rewrig Loge and 1 Appice
y g property 9 Y tions Electronic Notes in Theoretical Computer Science

is on the form(ry + 7o + --- 4+ 7,)*, where each pair of ;

. 15. Elsevier.
rulesr;, r; commute, then that system can be implemented
asynchronously, executing each rujen parallel.

