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Abstract—We deal with positioning of node in wireless sensor
network (WSN) using received signal strength (RSS) when there
is no priori knowledge about path-loss exponent and transmission
power. Since the RSS decreases on the average with distance, it
carries some information about the distance to an unknown node.
By ordering the RSS’s, we conclude that there are some convex
sets where the position of the unknown node can be found in
the intersection of them. We introduce a plane projection onto
convex sets (PPOCS) approach to solve the positioning problem.
Simulation results show good performance for the new methods
compared to other reduced complexity algorithms.

I. INTRODUCTION

Developing advanced technology in designing integrated
circuit allows wireless sensor network (WSN) to be used vastly
in both civil and military applications. Accurate positioning of
nodes is one of the important task which has great effect on
the performance of every WSN [1]. Most literatures assumed
that there are some anchor nodes, also called reference nodes,
which can be used to estimate the position of an unknown
node [2], [3].
In general, there are various positioning algorithms based on
time of arrival (TOA), time difference of arrival (TDOA),
received signal strength (RSS), and angle of arrival (AOA)
that can be used in different applications [4]. In this paper, we
consider independent RSS measurements collected by anchor
nodes. The weighted least squares (WLS) estimation can be
employed to find the position of the unknown node when
there are some RSS measurements in different nodes [4].
Besides high complexity implementation issue, local minima
and saddle points in WLS objective function might decrease
the performance of algorithm [5]. To avoid converging to
the local minima, a robust positioning algorithm based on
projection onto convex sets (POCS) was proposed in [6], [5]
which needs a few iterations to converge to global minimum.
To define a convex set in this method, an estimation of distance
to the unknown node should be initially done based on the RSS
measurement in each anchor node. This method of positioning
is low complex, and distributes the whole computation over
all anchor nodes [6].
In general, positioning algorithms that are based on distance
estimation derived from RSS measurements need to know or
somehow estimate channel parameters (such as path-loss ex-
ponent and transmission power) as well. In practice, however,
the transmission power and path-loss exponent might either
be unknown or difficult to accurately estimate in each anchor

node, hence relaxing the assumption of known channel param-
eters is quite reasonable. When the path-loss is unknown, there
are two different methods of positioning. In the first approach,
path-loss exponent needs to be estimated from measurements
as well. Some methods of estimation have been proposed
in literatures [7], [8], and [9]. In the second method, which
is considered in this paper, a model-independent positioning
is considered which dose not need the path-loss parameter
to estimate the position of the unknown node. In [10] a
low complex method was proposed provided a low accurate
estimation of an unknown position. Recently, a sequence-
based localization (SBL) approach based on partitioning the
sensing area into various distinct regions defined by distance
rank of anchor nodes to that region was introduced in [11].
To discriminate each region, a unique location sequence is
assigned to that area which depends on order of vicinity
to anchor nodes. Considering all location sequences in one
lookup table and defining sequence corresponding to the
unknown node based on the received signal from anchor nodes,
the problem of positioning of the unknown node is to find
the suitable location sequence in lookup table which is more
similar to that one measured in unknown node. Finally, the
centroid of the corresponding region is reported as the position
of the unknown node. This method even though shows good
performance makes a high level of complexity in practical
application. It also needs to update its lookup table for moving
nodes where their positions change with time. This method is
introduced for 2D case, and it seems that generalization to 3D
should not be straightforward.
In this paper, we relax assumptions on a-priori known path-
loss exponent and transmission power to only assume that
they are similar for all links, but unknown. By ordering the
RSS, we conclude that there are some convex sets which the
unknown node can be found in the intersection of them. For
2D space, these convex sets are halfplanes. In order to find
the intersection of all convex sets, we introduce a method
of plane projection onto convex set (PPOCS) which can be
implemented in a fully distributed manner. Simulation results
show a reasonable performance for the PPOCS with acceptable
complexity.
In [12] the authors consider, among other things, the algorithm
we call PPOCS-1. As far as we can tell, their work was not in
the open literature at the time we submitted this paper. Hence,
it is fair to consider their work as parallel to ours.



This paper is organized as follow: In Sec. II, the problem
of positioning is studied with considering signal model. Re-
garding the RSS, new algorithm based on new geometrical
model is introduced in Sec. III. In Sec. IV, various computer
simulations are engaged to evaluate the performance of new
algorithm.

II. SIGNAL MODEL

Let N anchor nodes with known coordinates {zi =
[xi, yi]

T ∈ R
2 }N

i=1 uniformly be located in a region. The
ensemble mean power at the ith sensor, measured in dB, can
be modeled as [13]

Pi = P0 − 10β log10(
di(z0)

d0
) + wPi

(1)

where β is a path-loss factor and P0 is the received power in
dB at calibration distance d0. wPi

is a log-normal shadowing
term, i.e, wPi

∼ N (0, σ2
Pi), which has the significant effect on

transmitted signal compared to thermal noise or other fading
effects. The RSS is a function of distance di(z) = ‖z − zi‖,
‖.‖ denoting Euclidean norm, between anchor nodes and the
unknown node, located at coordinates z0 = [x0, y0]

T ∈ R
2.

Considering deterministic values for P0 and β, we can model
the random variable Pi as a Gaussian distribution with mean
µi(z0) = P0 − 10β log10(

di(z0)
d0

) and variance σ2
Pi.

In the positioning algorithms based on distance estimate
derived from RSS measurements, the two parameters β and
P0 are normally assumed to be known to the anchor nodes.
Assuming known β and P0, the distance can be estimated
using the maximum likelihood estimator as

d̂i(z0) = 10
(P0−P i)

10β (2)

In this paper, we suppose deterministic values for β and P0.
The parameter β depends on the environment and P0 also
depends on some parameters like antenna radiation pattern
and hardware tolerances, hence they might be unknown in
each anchor node. We also assume that there is no correlation
between the RSS measurements in different nodes, although
when the distances between nodes are decreased, the correla-
tion between the RSS’s should be increased.

III. POSITIONING ALGORITHM WITH UNKNOWN CHANNEL
PARAMETERS

When there is no knowledge about β and P0, it is very
difficult to obtain information about distance from anchor
nodes to the unknown node . Instead of estimating the distance,
one can sort the RSS’s to find some information about position
of the unknown node. In this section, we briefly describe the
SBL method and considering the drawbacks of this method,
we propose new algorithms based on similar geometry used
in the SBL approach. For details of the SBL, see [11].

A. The SBL method

Let us consider a 2D network. For a pairs of anchor node,
we draw a perpendicular bisector to the line joining their
locations. This line divides the 2D space into two halfplanes

which can be uniquely defined based on proximity to anchor
nodes. Following for N(N−1)

2 unique pairs of anchor nodes,
the whole sensing area is divided into some vertices, edges,
and faces as shown in Fig. 1 for three anchor nodes. For each
region, a unique location sequence is defined which determines
the order sequence of anchor nodes’ ranks based on its distance
from them.
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Fig. 1. An example of defining the Edge, Face, and Vertex and their location
sequences for 3 anchor nodes

To define the location sequence, a predefined order of
anchor node IDs is considered and other location sequences
are written based on that. For example, if we consider the
predefined order of anchor nodes as ABC in Fig. 1, the location
sequence for Face is 213 which means anchor node B is the
closest node to that area while anchor node C is the farthest
node to that area. Similarly, the location sequences for Edge
and Vertex are 113, and 111 respectively.
The SBL algorithm can be implemented as follows [11]:

• Determine all feasible location sequences in the localiza-
tion space and list them in a location sequence table.

• Determine the location sequence of the unknown node
location by using the RSS measurement of localization
packets exchanged between itself and the anchor nodes.

• Search in the location sequence table for the ”nearest” lo-
cation sequence to the unknown node location sequence.

The centroid mapped to by that sequence is the location
estimate of the unknown node. For a vertex, the centroid is
the vertex itself. For an edge, the midpoint of that edge is
the centroid and finally for a face the center of the polygon
bounding it is the centroid [11](infinite edge or face should
be cut down to a finite edge or face).
One drawback of the SBL is the complexity issue due to
sequence table construction and searching in that table to
find the ”nearest” location sequence. The maximum number
of vertexes, edges, and faces are N4

8 − 7N3

12 + 7N2

8 − 5N
12 ,

N4

4 − N3 + 7N2

4 − N , and N4

8 − 5N3

12 + 7N2

8 − 7N
12 + 1,

respectively [11]. Therefore the maximum number of unique
location sequences is N4

2 − 2N3 + 7N2

2 − 2N + 1 [11].
To determine the ”nearest” location sequence, it is needed to
compute distance metric between location sequences. Two be-



low metrics between location sequences U = (u1, u2, ..., uN )
and V = (v1, v2, ..., vN ) are used in SBL [11].

• Spearman’s Rank Order Correlation Coefficient

ρ = 1 − 6
∑N

i=1(ui − vi)
2

N(N2 − 1)
(3)

• Kendall’s Tau

τ =
(nc − nd)√

nc + nd + ntu
√

nc + nd + ntv
(4)

Where nc is the number of concordant pairs, nd is the
number of discordant pairs, ntu is the number of ties in
U , and ntv is the number of ties in V . A pairs of location
sequence U and V is called concordant if ui > uj ⇒
vi > vj or ui < uj ⇒ vi < vj , and called discordant if
ui > uj ⇒ vi < vj or ui < uj ⇒ vi > vj .

Since the location sequence table is of size O(N 4), search-
ing through it for two metrics Spearman’s coefficient and
Kendall’s Tau takes O(N5) and O(N6) operations, respec-
tively. The amount of memory space required is on the order
of O(N5). In Table I the complexity of the SBL is shown
versus the number of anchor node N and compared to the other
methods [11]. As can seen the SBL has the most complexity
in that table comparing to other methods.

TABLE I
COMPLEXITY OF THE SBL [11], 3-CENTROID [11], PROXIMITY [11],

AND PPOCS

SBL Centroid Proximity PPOCS
Time O(N6) O(N log N) O(N log N) O(N2)

Space O(N5) O(N) O(N) O(N2)

B. New Algorithms

As we saw in the previous section, the SBL is a high
complex algorithm. In this section, a low complex method
of positioning which depends only on the received power is
proposed. We assume that both β and P0 are the same for
all links but not known. Like SBL method, we consider 2D
network but generalization to 3D is straightforward, but is not
considered in this paper.
As mentioned before, the RSS carries some information about
distance to unknown node. The ML estimate of the distance
to the unknown node from each anchor node, (2) needs some
additional information about β and P0. Instead of solving
(2), a simple assumption is considered, namely that the RSS
decreases with distance. With this assumption, it is quite
reasonable to obtain some information about proximity of the
unknown node to the anchor nodes with comparison between
RSSs. We can consider the received power in each pairs of
anchor nodes and deduce that the unknown node is more likely
to be closer to the anchor node with the greatest RSS. Let pk

for k = 1, 2, ..., N(N−1)
2 denote all possible anchor node pairs

(zi, zj) such that 1 ≤ i < j ≤ N . Given a pair pk = (zi, zj),
we can divide R

2 into two halfplanes whose boundary is a
bisector that is perpendicular to the line that joins the nodes

zi and zj . We are primarily interested in the half plane that
include the anchor node with the highest RSS measurement.
Formally, we define

Hk =

{

{z : (z − zi)
T (zj − zi) ≤ ‖zj − zi‖2/2}, Pi ≤ Pj

{z : (z − zj)
T (zj − zi) > ‖zj − zi‖2/2}, Pj < Pi

(5)

From (5), it is obvious that the unknown node most probably
can be found in the intersection of Hk, k = 1, 2, ..., N(N−1)

2 ,
i.e,.

ẑ ∈ A =

N(N−1)/2
⋂

k=1

Hk (6)

If the intersection A is empty, due to large-scal fading, the
estimator tries to find any point that minimizes the sum of
distances to the sets Hk, k = 1, 2, ..., N(N−1)

2 ,

ẑ = argmin
z

N
∑

i=1

‖z −PHk
(z)‖2 (7)

Where PHk
(z) is the orthogonal projection of z onto the

convex set Hk,

PHk
(z) = arg min

w∈Hk

‖z − w‖ (8)

Fig. 2 shows the intersection Hk for three anchor nodes
which contains the position of the unknown node.
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To find the unknown node position in the intersection A,
a convex polygonal region [14], we introduce two types of



projections onto convex sets to estimate the position of the
unknown node.

• Algorithm 1 (PPOCS-1)
1. Initialization z(0) is arbitrary.
2. For k = 0 until convergence or when k > n N(N−1)

2
for some n

z(k+1) = PHk
(z(k)) (9)

In algorithm 1, projection is done onto intersection of
two halfplanes. It means that algorithm 1 finds a point
which has the same distance to each of two anchor nodes,
even if they have measured widely different RSSs. Since
the primarily assumption about RSS is that its mean
decreases with distance, the anchor node with the greater
RSS is likely to be closer to the unknown node than is the
other node. Considering this fact, we move the boundary
of algorithm 1 to inside of halfplane including the anchor
node with the greatest RSS.
We define a halfplane H′

k similar to Hk, but where the
boundary now goes through the node with the strongest
received power:

H′
k =

{

{z : (z − zi)
T (zj − zi) ≤ 0}, Pi ≤ Pj

{z : (z − zj)
T (zj − zi) > 0}, Pj < Pi

(10)

• Algorithm 2 (PPOCS-2)
POPCS-2 is defined as
1. Initialization z(0) is arbitrary.
2. For k = 0 until convergence or when k > n N(N−1)

2
for some n

z(k+1) =

{

z(k), z(k) ∈ Hk

(1 − λk)z(k) + λkPH′

k
(z(k)), otherwise

(11)
where {λk}∞k=0 are relaxation parameters. In the simula-
tion, the relation parameters are first set to one, and after
a given number k0 of iteration, decreases as

λk =

⌈

k − k0 + 1

N

⌉−1

(12)

where dxe denotes the smallest integer greater than or
equal to x.

Let us consider a finite intersection for all halfplanes,
algorithm 1 tries to converge to one point on the perimeter of
the intersection area (hence no need to relaxation parameter),
while algorithm 2 tries to find a point inside the intersection.
In fact, in PPOCS-1, using relaxation parameters might bring
a point into the ‘wrong’ halfplane, which is not desired. Fig.
3 shows the basic concept of two methods of projection.

In the following, we obtain the complexity of the PPOCS
algorithms. For every halfplane, algorithm needs to save
parameters of a line (the boundary). Every line requires two
parameters, and therefore algorithm 1 needs to save N(N−1)

variables and algorithm 2 needs to save 2N(N −1) variables.
Hence PPOCS takes O(N2) space to save the required vari-
ables. We saw through simulation that both algorithms need
nN(N−1)

2 iterations to converge where n � N, in most cases
n = 1 is enough. Hence the complexity of PPOCS is of
O(N2). From Table I, it is clear that the complexity of PPOCS
is much lower than SBL.
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IV. SIMULATION RESULTS

In this section the performance of PPOCS is evaluated
through computer simulations. N sensor nodes, uniformly
distributed over a square area, were generated. A set of RSS
measurements from one unknown node, which was randomly
placed in the area, was generated based on the RSS model
(1). The cumulative distribution function (CDF) and mean
square error (MSE) of the position error e = ‖ẑ0 − z0‖ were
considered to evaluate the performance of various algorithms.
In simulation, two methods of PPOCS are evaluated and
also the performance of PPOCS is compared to the SBL,
Proximity, and 3-centroid [11] algorithms. For more detail
about Proximity, and 3-centroid see [11]. For implementation
of three mentioned algorithms, we used the C++ code files
provided by authors of [11]. It can be downloaded from
http://anrg.usc.edu/downloads.html.
In all simulations, the various values of different parameters
were set to: N = 6, σ2

Pi
= 4 dB, P0 = 30 dB at calibration

distance d0 = 1, β = 4, zi ∼ U([−10, 10], [−10, 10]).
Fig. 4 shows the CDF of different algorithms. As shown, the
SBL has the best performance among five algorithms, but, as
mentioned before, it has also a high level of complexity. It
can also be seen that PPOCS outperforms the Proximity and
3-centroid methods. From Fig. 4, it is clear that PPOCS-2 has
better performance rather PPOCS-1.
As mentioned before, PPOCS is an iterative method. In next

simulation, we compare the speed of convergence for two
version of PPOCS methods. In Fig. 5 the MSE for PPOCS-1
and PPOCS-2 is plotted as a function of the iteration index.
It shows that both PPOCS converges after a few iterations.
In various simulations, we observed both algorithms converge
after nN(N−1)

2 , n < N iterations, in most case n = 1 is
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Fig. 4. CDF of ‖ẑ − z‖, z ∼ U([−10, 10], [−10, 10]), σ2 = 4 dB, β =
4, P0 = 30 dB

enough. It also shows PPOCS-2 has lower residual MSE
compared to PPOCS-1.
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V. CONCLUSIONS

In this paper, a new method of positioning based on RSS
measurements was proposed when path-loss exponent and
transmission power are unknown in anchor nodes. Since the
RSS on average decreases with distance, we relaxed the as-
sumption of known channel parameters and proposed a method
of positioning just by comparing the RSS in each pair of
anchor nodes. Defining some convex sets based on the ordering
of RSS, we introduced a method of projection onto convex
sets to find the position of an unknown node. In this paper,
two similar methods of projections with different performance

were proposed which distributes the whole process between all
pairs of anchor nodes. The complexity of proposed methods
is of O(N2), where N is the number of anchor nodes.
For proposed methods, there is a good tradeoff between the
performance and complexity compared to other algorithms.
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