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ABSTRACT

The performance of several algorithms for positioning a sin-
gle sensor node based on distance estimates to it from a num-
ber of nodes at known positions (anchor nodes) is compared
when the distance estimates are obtained from a measure-
ment campaign. The distance estimates are based on time-
of-arrival measurements done by ultrawideband devices in
an indoor office environment. The compared algorithms are
based on nonlinear least squares, least squares and total least
squares after data preprocessing, and projection methods. No
algorithm is uniformly best; however, least squares and to-
tal least squares after data preprocessing show higher mean
squared errors in almost all cases, while the nonlinear least
squares and projection methods have similar performance;
projection methods performs slightly better.

1. INTRODUCTION

Position information of the nodes that make up a wireless
sensor network is required in most, if not all, applications.
Preferably, the positioning should be carried out by the net-
work itself to avoid a cumbersome manual node deployment.

We will here consider the problem of positioning a single
node using range (distance) estimates to a number of nodes at
known positions (so-called anchor nodes or reference nodes).
In general, the range estimates can be based on many dif-
ferent types of measurements, e.g., received signal strength
(RSS) or, as the case is in this papers, on time of arrival
(TOA) [1]. The quality of the positioning depends on the
quality of the range measurements, the geometry of the net-
work, and the performance of the positioning algorithm. In
particular, it is important that any assumptions on the range
estimates posed by the positioning algorithms are satisfied
to a reasonable degree. For example, a maximum likelihood
approach requires knowledge of the joint PDF of the range
estimates. In complex environments, e.g., indoor scenarios,
the PDF might not be readily available, and we have to settle
for other methods, such as least squares methods.

The well-known nonlinear least squares (NLS) method
will therefore be used to benchmark a number of more novel
algorithms that offer either lower computational complex-
ity, robustness against positive bias in the distance estimates
(which tends to occur in non line-of-sight situations), or bet-
ter performance compared to standard NLS. Details about the
algorithms are found in Sec. 3.
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The range estimates used to evaluate the algorithms come
from a recent ultrawideband (UWB) measurement campaign
planned and carried out under the auspices of NEWCOM++,
an EU FP7 Network of Excellence (see Sec. 6 for details).
UWB technology has the potential to deliver very accurate
range estimates and thereby enabling accurate positioning
[2]. However, it is not clear how to best use the range es-
timates, and this paper aims to shed some light on this.

This paper is organized as follows: in Sec. 2 the range
measurement scenario is explained, the considered position-
ing algorithms are introduced in Sec. 3, and their perfor-
mance using the measured ranges are compared in Sec. 4,
and conclusions are drawn in Sec. 5.

2. RANGE MEASUREMENTS

The measurement campaign was performed on the second
floor of the Department of Electronics, Information and Sys-
tems at the Cesena campus of the University of Bologna,
Italy. The sensor node positions, numbered from 1 to 20,
are indicated with red dots in the floor plan in Fig.1. The
measurement area was equipped with typical office furniture
like tables, chairs, etc. During measurements, no moving ob-
jects were present between the nodes and the nodes remained
at fixed positions. The nodes were placed at the same height
(1.13 meters), and the range measurements can therefore be
used by 2D position algorithms.

Two Timedomain PulseON 220 UWB nodes [3] were
used to produce range estimates between any pair of distinct
node positions. A total of 1000 range measurements for each
node position pair were made by the devices using their built-
in, proprietary TOA-based estimator. Unfortunately, no de-
tails about the range estimator are publicly available.

The range estimate d̂i, j between node i and j is simply
modeled as

d̂i, j = d j(θ i)+wi, j, i, j ∈ {1, . . . ,20} (1)

where wi, j is the ranging error, d j(θ ) is the distance from
node j to θ , i.e.,

d j(θ ) = ‖θ −θ j‖. (2)

where ‖ · ‖ is the Euclidean norm and θk = [xk yk]
T is the

coordinates of node k, see Fig.1. In this paper, we consider
the ranging error wi, j as a random variable with unknown dis-
tribution. Due to connectivity issues, not all d̂i, j are available
(see Fig. 2).

We can use the measurement data to evaluate the per-
formance of positioning algorithms by considering all nodes
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Figure 1: The measurement environment where the red
points indicate the sensor node positions.

that is connected to node i, for i = 1,2, . . . ,20, as anchor
nodes. Since we know the position of the nodes, we can eas-
ily compute the positioning error and form statistics, e.g., cu-
mulative distribution function (CDF) or mean squared value
(MSE) of the error.

3. POSITIONING ALGORITHMS

In this section, some previously proposed methods are briefly
reviewed and four partly new algorithms are introduced:
nonlinear least squares using differential evolution (Sec. 3.2),
projection onto rings (Sec. 3.4), least squares (Sec. 3.5), and
total least squares (Sec. 3.6). In the following, the index i
is used for the unknown node and the set of anchor nodes
used to position node i is denoted by C i. We make Ci as
large as possible by including all nodes that are connected
to node i into Ci (which implies that d̂i, j exists if and only
if j ∈ Ci), and we let Ni be the number of elements in C i.
As an example, we deduce from the 20th row in Fig. 2 that
C20 = {10,11,13,14,15,17,18,19} and N20 = 8.

3.1 Nonlinear least squares

The nonlinear least squares (NLS) position estimate based on
the ranging measurement (1) can be found as the solution to
the minimization problem

θ̂ i = argmin
θ ∑

j∈Ci

‖d̂i, j −d j(θ )‖2. (3)

The signal model (2) is nonlinear in the unknown parameters,
which implies that the objective function in (3) normally suf-
fers from local minima and saddle points. There is, in gen-
eral, no analytical solution to (3) and we are forced to use nu-
merical methods. We note, that if wi, j are uncorrelated, iden-
tically distributed, zero-mean Gaussian random variables for
all j ∈ Ci, the NLS estimate is also the maximum likelihood
estimate [4].

In this paper we will compute the NLS estimate using two
different methods: the MATLAB routine lsqnonlin [5]
and the differential evolution method described below; both
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Figure 2: Connectivity matrix: the markers show which
nodes were connected during the measurements and, conse-
quently, for which node pairs that distance estimates exist.

search methods are initialized randomly in the deployment
area (see Fig. 1).

3.2 Differential Evolution

Differential evolution (DE) is a global optimization method,
which was introduced by Storn and Price [6]. DE can be
thought of as a random search of the objective function,
which, in our case, is the NLS objective function used to esti-
mate θ i, i.e., Ji(θ ) = ∑ j∈Ci

‖d̂i, j−d j(θ )‖2. To implement the
search, DE maintains a population of Np candidate parame-

ter vectors, θ̂ k
i (n) for n = 1,2, . . . ,Np, where k = 0,1, . . . ,K

is the generation index. A new generation is formed from the
previous generation in a partially random fashion, as detailed
below, and the final estimate θ̂ i is best candidate vector found
in any generation.

The variant of DE considered here (DE/rand/1/bin, see
[6]) is implemented as follows.

1. Initialize first generation: select randomly θ̂ 0
i (n) for n =

1,2, . . . ,NP.
2. Form new generations: for k = 0,1, . . . ,K, form the k+1

generation from the kth generation as
(a) Mutate: for n = 1,2, . . . ,NP form

v(n) = θ̂ k
i (r1)+

[
θ̂ k

i (r2)− θ̂ k
i (r3)

]
F,

where r1,r2,r3 are distinct integers drawn uniformly
from the set {1,2, . . . ,Np}.

(b) Crossover: for n = 1,2, . . . ,NP, (i) let u(n) = v(n)
and (ii) replace, with probability pCR, each coordinate

of u(n) with the corresponding coordinate of θ̂ k
i (n)

(c) Select: for n = 1,2, . . . ,NP,

θ̂ k+1
i (n) =

{
θ̂ k

i (n), if Ji(θ̂
k
i (n)) ≤ Ji(u(n))

u(n), otherwise
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We note from the description above that the tuning pa-
rameters of DE is the number of candidate vectors in a
generation, NP, the step size F , the crossover probabil-
ity, pCR, and the number of new generations K. The con-
straints are that NP ≥ 4 and F ∈ [0,2]. Some practical ad-
vice on how to set the tuning parameters can be found at
www.icsi.berkeley.edu/˜storn/code.html.

3.3 Projection onto convex sets

It is clear that the minimum of each term in the cost function
in (3) is obtained when d̂i, j = d j(θ ). Now, suppose we define
the discs Di, j as

Di, j = {θ ∈ R
2 : d j(θ ) ≤ d̂i, j}, j ∈ Ci, (4)

it then is reasonable to define an estimate of θ i as a point in
the intersection Di of the discs Di, j,

θ̂ i ∈ Di =
⋂
j∈Ci

Di, j. (5)

A method called projection on convex sets (POCS) can be
used to compute an estimate of the form (5), and was pro-
posed for the positioning problem by Blatt and Hero in [7].
If the intersection is the empty set (which can occur due to
measurement noise), the POCS estimate will be any point
that minimizes the sum of the distance to the discs,

θ̂ i = argmin
θ ∑

j∈Ci

‖θ −PDi, j(θ )‖, (6)

where PDi, j(θ ) is the orthogonal projection of θ onto D i, j .
POCS, and several variations of it, have been studied in
[1, 7, 8]. In these papers, it is concluded that POCS (as de-
scribed above) has problems when the unknown node is out-
side the convex hull of the anchor nodes (the problem was
alleviated to some extent in [8]). On the other hand, POCS
is quite robust against overestimated range estimates (which
may occur in non-line-of-sight environments) as long as the
unknown node is inside the convex hull of the anchor nodes.

3.4 Projection onto rings

In the case when the measurement noise in (1) is small, we
can often improve POCS by replacing the disc D i, j with a
ring (or, more formally, an annulus) defined as

Ri, j = {θ ∈ R
2 : d̂i, j −εl ≤ d j(θ )≤ d̂i, j +εu}, j ∈ Ci (7)

where εl +εu determines the width of the ring. The width is a
tuning parameter of the resulting algorithm; it is reasonable
to make the width dependent on the ranging error statistics
in (1). Since we do not assume any knowledge of the er-
ror statistics, we simply choose εl = εr = 0 in the numerical
results presented in Sec. 4.

The projection onto rings (POR) positioning algorithm is
an iterative algorithm. The estimate after the kth iteration is

denoted as θ̂ k
i , and is computed as

1. Initialize: assign θ̂ 0
i to an arbitrary value.

2. Iterate: for k > 0, let θ̂ k+1
i = θ̂ k

i + λk[PRi, j(k) (θ̂
k
i )− θ̂k

i ].
3. Terminate after convergence or after a fixed number of

iterations

Here, j(k) is a periodic function that cycles through all ele-
ments in the set Ci and {λk}k≥1 is a sequence of relaxation
parameters. The relaxation parameters can be tuned to en-
hance performance and convergence rate. No such optimiza-
tion is attempted here; we simply choose

λk =

{
1, k ≤ k0⌈

k−k0+1
Ni

⌉−1
, k > k0

(8)

where �x� is the smallest integer that is greater or equal to
x. Finally, the projection onto the ring R i, j can be written as
PRi,i(θ ) = θ + r(θ j −θ)/d j(θ ), where

r =

⎧⎨
⎩

d j(θ )− (d̂i, j − εl), d j(θ ) < d̂i, j − εl

d j(θ )− (d̂i, j + εu), d j(θ ) > d̂i, j + εu

0, otherwise
.

3.5 Least squares

In this section, we formulate a linear LS algorithm similar to
the acoustic source localization algorithm in [9]. To form a
linear least squares problems, we need to find a signal model
that is linear in the unknown parameters. One approach is to
consider pairs of distance estimates as follows. We can form
Mi = Ni(Ni − 1)/2 distinct 2-element subsets (pairs) of C i.
For the mth pair, { j,k}, it is easily seen from (2) that

bm(θ )= [d2
k (θ )−‖θ k‖2]− [d2

j (θ )−‖θ j‖2] = 2(θ j −θk)T︸ ︷︷ ︸
=aT

m

θ ,

(9)
which is seen to be a linear function of θ . We couple this
signal model with the measurement

b̂m = (d̂2
i,k −‖θk‖2)− (d̂2

i, j −‖θ j‖2). (10)

An estimate of θ i can now be obtained by fitting the signal
model (9) to the measurements (10). To this end, we form

bi(θ )= [b1(θ ) · · · bMi(θ )]T = [a1 · · · aMi ]
T θ =Aiθ

and compute the estimate as

θ̂ i = argmin
θ

‖b̂i −bi(θ )‖ = A†
i b̂i, (11)

where b̂i =
[
b̂1 b̂2 · · · b̂Mi

]T
and A†

i is the left-hand
pseudoinverse of Ai. Assuming that Ai has full column rank,
A†

i = (AT
i Ai)−1AT

i .

3.6 Total least square approach

The anchor nodes are normally assumed to be at fixed and
known positions. However, in practice, there are uncertain-
ties in anchor node positions due to imperfect deployment,
movement of anchor nodes, etc. One approach to take these
uncertainties into account is to apply a total least squares
framework [10].

To explain how this can be done for the problem at hand,
we start by rewriting the least squares problem in (11) in an
equivalent form: the least squares estimate θ̂ i is a solution to
Aiθ = b̃i, where b̃i is found as

b̃i = arg min
b′∈R

Mi
‖b̂i −b′‖ (12)

subject to b′ ∈ range(Ai)
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Hence, we can think of b̃i as the smallest perturbation to
the measurement b̂i such that b̃i is consistent with the sig-
nal model (i.e., that b̃i is a linear combination of the columns
of Ai).

Now, if we allow for uncertainties in the anchor node po-
sitions, the Ai matrix contains uncertainties, just as b̂i does.
It is then logical to look for small perturbations to both A i

and b̂i such that the signal model is satisfied. The total least
squares (TLS) estimate is a solution to Ãiθ = b̃i, where Ãi

and b̃i are found as[
Ãi b̃i

]
= arg min

[A′ b′]∈R
Mi×3

∥∥[
Ai b̂i

]− [A′ b′]
∥∥

F (13)

subject to b′ ∈ range(A′)

where ‖ · ‖F denotes the Frobenius norm.
As shown in [10], the TLS estimate can be computed as

θ̂ i = (AT
i Ai −σ2I2)−1AT

i b̂i, (14)

where σ is the smallest singular value of
[
Ai b̂i

]
and I2 is

the 2×2 identity matrix.

4. NUMERICAL RESULTS

In this section, the performance of the six algorithms de-
scribed in Sec. 3 are compared when applied to the mea-
surement data described in Sec. 2. Performance is measured
in terms of mean-squared value and cumulative distribution
function (CDF) of the position error ‖ θ̂ i −θ i‖.

Numerical solutions to the nonlinear least squares
problem in (3) are found using the MATLAB routine
lsqnonlin [5] using default parameters (denoted NLS-
M in the plots) and differential evolution (NLS-DE) of type
DE/rand/1/bin with NP = 300, F = 0.6, pCR = 0.5, and
K = 0.6. Differential evolution simulations were done with
the MATLAB routine devec3 downloaded from www.
icsi.berkeley.edu/˜storn/code.html. Both al-
gorithms were initialized randomly in the deployment area.

Projection onto convex sets (POCS) and projection onto
rings (POR) use the relaxation parameters as defined in (8)
with k0 = Ni, where Ni is the number of anchor nodes. The
maximum number of iterations for both methods was K =
20Ni. For POR, we set εl = εu = 0.

The least squares (LS) and total least squares (TLS) algo-
rithms are based on measurement data after the preprocessing
as described in (10). Both methods produce their estimates
analytically without any tuning parameters.

Fig. 3a shows the root mean-squared error (RMSE) for
all algorithms and nodes (a total of 1000 estimates were done
for each node and algorithm). As seen, the RMSE fluctuates
and no algorithm is uniformly best. However, both LS and
TLS show relatively bad performance; perhaps this is due to
the nonlinear preprocessing needed by these algorithms, see
(10). We also note that TLS is slightly better than LS. The
NLS-M, NLS-DE, and POR algorithms have almost identical
RMSE performance, except for nodes 12, 16, and 20, when
POR is slightly worse than the others. POCS has the best
RMSE for most nodes. However, POCS has problems when
the unknown node is outside the convex hull of the anchor
node, which is the case for nodes 1, 6, 12, 19, and 20.

The position error CDFs give more insight into the per-
formance of the algorithms. In the following, we will discuss

the CDFs for nodes 1, 12, and 19, to point out some interest-
ing features. Coincidentally, the choice of nodes are for cases
when POCS does not have the best RMSE; for this reason,
the selection of CDFs are a bit unfair to the POCS method.

Fig. 3b shows the error CDFs for node 1. We note that the
CDFs for the NLS approaches are quite similar, but different
from the POCS and POR CDFs. However, all three methods
show very similar RMSEs (see Fig. 3a). This serves as a
reminder that the RMSE is not always a complete indicator
of performance. We also note that for node 1, the LS and
TLS methods suffer from frequent relatively large errors and
that the TLS CDF is always to the left of the LS CDF.

The CDFs for node 12 in Fig. 3c show very similar per-
formance for the NLS approaches and the POR, LS, and
TLS approaches; NLS is better than POR, LS, and TLS. The
POCS method has frequent and large errors, explaining its
large RMSE. This relative poor POCS performance is ex-
pected since node 12 lies outside the convex hull of its anchor
nodes (nodes 10, 11, and 13–17), see Figs. 1 and 2.

For node 19, we see from Fig. 3d that the NLS CDFs are
more different compared to the case for node 1 or node 12.
We note that the NLS-M algorithm tends to converge to
worse solutions than the NLS-DE approach in about 20%
of the cases. The RMSE for LS and TLS is very high (see
Fig. 3a). We see from the CDFs that is due to infrequent very
large errors (and not due to frequent large errors).

5. CONCLUSIONS

Several positioning algorithms have been compared in terms
of the resulting mean-square error (MSE) or position error
CDF. The algorithms attempt to position a single node given
distance estimates to a number of nodes at known positions
(anchor nodes). The distance estimates were obtained from
an indoor measurement campaign employing ultrawideband
devices with built-in time-of-arrival ranging capabilities.

From the experimental data presented in Sec. 4, it can
be concluded that the preprocessing (10) followed by least
squares (11) or total least squares (14) has higher MSE than
the other algorithms for all nodes but one (node 12). The
POCS method described in Sec. 3.3 and [1, 8] has low MSE
for most nodes. However, POCS performs relatively bad for
nodes that are outside the convex hull of the anchor nodes; a
conclusion supported by earlier findings in [1, 8]. The NLS
approaches (Secs. 3.1 and 3.2) performs similarly, worse than
POCS, and slightly better than POR (Sec. 3.4).

Position error CDFs can lead to other rankings of the al-
gorithms. In fact, dissimilar CDFs that produced the (essen-
tially) same MSE were encountered. Hence, it is important
to be well aware of the application requirements on the posi-
tioning error when choosing positioning algorithm.
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Figure 3: Numerical results; (a) shows the RMSE of different algorithms for different nodes; (b)–(d) shows the position error
CDFs for node 1, 12, and 19, respectively.
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