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Abstract—In this paper we study bit-interleaved coded modu-
lation (BICM) transmission using non-uniform (NU) quadrat ure
amplitude modulation (QAM) constellations. For such a NU-
QAM-BICM transmission, we develop closed-form approxima-
tions for the probability density function of the L-values, and we
use them to predict the coded bit error rate (BER) performance of
the system in the AWGN channel. We then numerically optimize
NU-QAM-BICM based on convolutional codes. Compared to
uniform QAM-based BICM transmission, and for a target BER
of 10

−7, we reach gains up to1 dB. When the design is applied
to turbo codes a decrease in the error floor can be obtained.

I. I NTRODUCTION

Bit-interleaved coded modulation (BICM) [1]–[3] is used
in most of the existing communication standards (cf. HSPA,
IEEE 802.11a/g, IEEE 802.16, DVB-S2, etc.). In BICM the
channel encoder and the modulator are separated by a bit-
level interleaver, which makes the design simple and flexi-
ble, i.e., the code rate and the constellation can be chosen
independently. Besides its flexibility, BICM maximizes the
code diversity, and therefore, it outperforms trellis coded
modulation in fading channels.

When BICM is used with Gray-mapped 4-ary quadrature
amplitude modulation (QAM), all the coded bits are equally
treated by the modulator. However, the coded performance of
the system will change if the modulator introduces unequal
error protection (UEP). UEP caused by the binary labeling
of the constellation for BICM transmissions was formally
analyzed in [4]. In particular, it was shown in [4] that gains
can be obtained if the UEP is exploited by properly designing
the interleaver or the code. UEP for BICM transmissions can
be also obtained/exploited by changing the binary labelingof
the constellation, by allowing unequal power allocation for
systematic/parity bits, by deleting some bits (puncturing), or
by allowing non-equally spaced constellations.

Non-uniform (NU) constellations (also known as hierarchi-
cal, embedded, multi-resolution, or asymmetrical constella-
tions) consist of non-uniformly spaced signal points (c.f.[5],
[6]). They offer different levels of protection to the transmitted
bits in the same symbol, which can be adjusted by changing
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the relative distances between the symbols. Due to this prop-
erty, NU constellations have received a great deal of attention
for many applications, for example, multimedia transmission
[7], multi-resolution image transmission [6], [8], simultaneous
voice and multi-class data transmission [9], and superposition
of bits from different users in the same carrier of an OFDMA
system [10]. NU constellations have also been standardizedfor
digital video broadcasting-terrestrial [11], and in Qualcomm’s
Media forward link only [12].

NU constellations have been analyzed in the literature in
terms of uncoded bit-error-rate (BER). For example, exact
expressions for uncoded BER of binary reflected gray coded
(BRGC) hierarchical QAM transmission in an additive white
Gaussian noise (AWGN) channel were derived in [5]. In
the context of BICM transmission, NU constellations can be
used in order to improve the systems performance. Recently,
in [13]–[15], the selection of NU constellations for BICM
has been done based on capacity arguments, which can be
related to improving the convergence of turbo-codes, or the
performance of low density parity check (LPDC) codes.

In general, all the distances between the symbols in a
NU constellation can be different. However, in this paper we
restrict our analysis to the set of NU-QAM constellations pre-
sented in [5], i.e., constellations that preserve certain symmetry
(more details in Sec. II-B). Moreover, we focus on BICM using
low complexity encoder/decoders (convolutionally-encoded
BICM). Since capacity arguments would probably fail in this
scenario, we take a different approach compared to the one in
[13]–[15]. We select the NU constellation based on minimizing
bounds on the coded BER over the AWGN channel, showing
that this could also be used to lower the error floor of turbo
codes. More particularly, and based on the Gaussian model
for the probability density function (PDF) of the L-values
proposed in [16], we develop new closed-form expressions for
the NU-QAM-BICM scheme. These new expressions are used
to develop union bounds (UB) on the BER, which are then
used to numerically optimize its design. Presented numerical
examples show that convolutionally-encoded NU-QAM-BICM
offers gains over uniform QAM-based transmissions. For the
particular codes analyzed in this work, the gains can be up
to 1 dB for a BER target of10−7 if the distances between
the symbols in the NU constellations are optimized according
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Figure 1. Model of NU-QAM-BICM transmission: a channel encoder
followed by the interleavers (π1, . . . , πn), the multiplexing (MUX), the NU
M -PAM mapper, the channel, and the inverse processes at the receiver’s side.

to the spectrum of the codes. For turbo-encoded NU-QAM-
BICM, the gains are visible in the error floor region.

II. SYSTEM MODEL

The NU-QAM-BICM system model under consideration is
shown in Fig. 1. In what follows, we describe functionalities of
various blocks of such transmission scheme, where we closely
follow the system model from [4].

A. Encoder, Interleaving, and Multiplexing

The kc vectors of information bitsbl are encoded by a
rate R = kc/n channel encoder, wherel = 1, . . . , kc. The
vectors of coded bitsc1, . . . , cn are then fed ton parallel
interleavers, which are assumed to be infinite and independent
(ideal), yielding randomly permuted sequences of the coded
bits c

π
p = πp{cp}, p = 1, 2, . . . , n. The multiplexing unit

(MUX) assigns the coded and interleaved bits to the different
bit positions in the NUM2-QAM constellation, and it is
defined using a matrixKn×m ≡ K of dimensionsn × m,
whose elements,0 ≤ κp,k ≤ 1, denote the fraction of bitscπ

p

that will be assigned to thekth bit positionuk. For example,
if n = m andK is chosen to be an identity matrix, all the bits
from the first encoder’s output will be transmitted in the first
bit position, the bits from the second encoder’s output through
the second bit position, and so on.

B. Non-uniform M -PAM Constellations

In this paper we consider NUM2-QAM constellations,
where the binary labeling is the so-called BRGC [17]. There-
fore, each symbol is a superposition of independently mod-
ulated real/imaginary parts, which allows us to focus on
the equivalent NUM -PAM constellation, whereM = 2m

(cf. Fig. 1). At any time instantt, the coded and interleaved
bits [u1(t), . . . , um(t)] are mapped to a NUM -PAM symbol
x(t) ∈ X = {x0, . . . , xM−1} using a binary memoryless
mappingM : {0, 1}m → X . Since the mapper is memo-
ryless, from now on we drop the time indext. We consider
general NUM -PAM constellations labeled with the BRGC
as the one shown in Fig. 2 (M = 8). In this figure, the
M constellation points are shown with black circles, where
the white squares/triangles are “virtual” symbols that help
to understand the construction of the NU constellation as
explained below. We usek = 1, 2, . . . , m to denote the bit
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Figure 2. NU 8-PAM constellation with BRGC.

position of the binary labeling, wherek = 1 represents the
left most bit position. The bit value of the most significant
position (k = 1) selects one of the two squares in Fig. 2.
Similarly, for a given value of the first bit, the bit value for
the next position (k = 2) selects one of the two triangles that
surround the previously selected square. Finally, given the bit
values fork = 1 and k = 2, the bit value of bit position
k = 3 selects one of the two black symbols that surround
the previously selected triangle. This selected black symbol
is finally transmitted by the modulator. Since the NU 8-PAM
constellation can be seen as superposition of virtual NU 2-
PAM and 4-PAM constellations, it is referred to as hierarchical
2/4/8-PAM constellations in [5].

As shown in Fig 2, the distances between the symbols
evolve in a hierarchical fashion, i.e.,2d1 represents the dis-
tance between the points in the virtual BPSK constellation
formed by the two squares,2d2 represents the distance be-
tween the virtual BPSK constellations formed by the two
pairs of triangles centered around the squares. Finally,2d3

represents the distance between points in the virtual BPSK
constellation centered around the triangles. Then for a gener-
alized NUM -PAM constellation,2d1, 2d2,. . . , 2dm represent
respectively the distances between points in the first, second,
. . ., mth levels of hierarchy. In order to keep the BGRC of the
constellation, the distancedk ≥ ∑k−1

i=1 di. The NU M -PAM
constellation is defined then by the elements inX which can
be expressed in terms of the distancesdk as

xi =

m
∑

k=1

(−1)1+bk(i,m)dk, (1)

where bk(i, m) denotes thekth bit of the length-m binary
representation of the integer numberi.

We define the so-called priority parameters asαk = dk

dm

with k = 1, . . . , m − 1. Changing them, the uncoded BER
performance of the different bit positions can be varied, cf. [5].
We will show that these parameters control the coded BER
performance of BICM transmission as well. Using (1), it is
possible to write the average symbol energy assuming equally
likely symbols Es =

∑m
k=1 d2

k. Throughout this paper, we
consider that the constellation is normalized to have unit
energy and it translates into the following relation between dm

and the priority parameters [5]dm = 1√
α2

1+α2
2+...+α2

m−1+1
.

C. Demultiplexing, Deinterleaving and Decoding

The result of the transmission of a symbol is given by
Y = X + Z, whereX ∈ X , andZ ∈ R are samples of zero-
mean independent Gaussian random variables with variance
N0/2. The signal-to-noise ratio (SNR) per symbol is given
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Figure 3. Left: Pice-wise linear relationship (2), conditioned onX = x0,
γ = −3 dB, 8-PAM, andk = 3. The black circles represent the uniform
8-PAM constellation. Right: Piece-wise Gaussian functions that, added up,
form the PDF of the L-values, where each Gaussian piece corresponds to a
linear piece in the left figure. The GA is shown with white circles.

by γ = 1
N0

. At the receiver’s side, logarithmic likelihood
ratios (L-values) are calculated for each bit in the transmitted
symbol (Uk). These L-values are then demultiplexed (Lπ

k ),
deinterleaved (Lk) and then passed to a channel encoder which
produces an estimate of the transmitted bits.

III. PDF OF L-VALUES AND EQUIVALENT CHANNEL

MODEL

In order to predict the coded BER performance of the
system using union bounding techniques, finding the PDF of
the L-values passed to the channel decoder is crucial. We use
fUk

(λ|X = xi) to denote the PDF of the L-value for bit
positionk, conditioned on the transmitted symbolxi. The L-
value forkth bit position for received signalY and given the
transmitted symbolxi can be written as [1], [2]

Uk(Y |X = xi) = γ

[

min
x∈Xk,0

{

(Y − x)2
}

− min
x∈Xk,1

{

(Y − x)2
}

]

,

(2)

where Xk,b is the set of symbols labeled with thekth bit
equal tob, and where we have used the so-called max-log
approximation. This approximation is often used in practical
implementations, and it is known to have small impact on the
receivers’s performance when Gray-mapped constellationsare
used.

Since the relationship between the L-values and the channel
outcomeY is non-linear, cf. (2), it was proposed in [16] to
divide the observation space ofY into adjacent regions for a
given bit position. Therefore, in a given region, the L-value
in (2) becomes linear respect toY . This led to closed-form
expressions for the PDF of the L-values for uniform QAM
constellations. For illustration, in the left part of Fig. 3we
show this piece-wise linear relationship for the particular case
of uniform 8-PAM, bit positionk = 3 and transmitted symbol
X = x0. It was shown in [16, eq. (22)] that the exact PDF
of the L-values is a sum of piece-wise Gaussian functions
defined over each region in which linear relationship holds.
In the right side of Fig. 3 we show four (corresponding to

Table I
VALUES OFδk AND (xi − ρk) FOR NU 8-PAM DEFINING THE

PARAMETERS IN(3).

k xi δk (xi − ρk)

x3 −2(d1 − d2 − d3) −(d1 − d2 − d3)

1
x2 −2(d1 − d2 − d3) −(d1 − d2 + d3)
x1 −2(d1 − d2 − d3) −(d1 + d2 − d3)
x0 −2(d1 − d2 − d3) −(d1 + d2 + d3)

2
x1 −2(d2 − d3) −(d2 − d3)
x0 −2(d2 − d3) −(d2 + d3)

3 x0 −2d3 −d3

each linear relationship in the left figure) piece-wise Gaussian
functions for 8-PAM andk = 3, where the exact PDF of the
L-values is simply the sum of all those functions (lines).

A. Gaussian Approximation for the PDF of the L-values

Because of the mathematical simplicity, a purely Gaussian
model was further presented in [16], which allows for simple
analysis of the system with a negligible impact on the coded
BER performance. This Gaussian approximation (GA) simply
replaces the exact PDF of the L-values (sum of piece-wise
Gaussian functions defined over different intervals inλ) by
one single Gaussian function defined overλ ∈ R. We adopt
the so-called zero crossing model (ZCMod), which selects one
of the Gaussian functions aroundλ = 0. In what follows, we
briefly review it here while more details can be found in [16,
Sec. II-C].

For a given bit positionk, it can be shown that there are
2k−1 regions which contain two symbols with opposite bit
value for that particular bit. In these regions the value ofλ
crosses zero and they are referred to as zero crossing regions
[16, Sec. II-C]. For example, forM = 8 and k = 3 in
Fig. 3, there are four zero crossing regions on the left side
of the figure, and therefore, there are four Gaussian pieces on
the right side. Among those2k−1 zero-crossing regions (2k−1

Gaussian functions aroundλ = 0), the ZCMod only considers
the one which is the closest to the transmitted symbol (Fig. 3,
since X = x0, the considered region is the one with solid
line). According to the ZCMod, the mean and variance of the
Gaussian function for a transmitted symbolxi are written as

µk(xi) = 2γδk [xi − ρk] , σ2
k = 2γδ2

k, (3)

whereδk , (āk,1 − āk,0), ρk , 1
2 (āk,1 + āk,0), and where

āk,b denotes the symbol labeled bit valueb at positionk in a
zero-crossing region closest to the transmitted symbolxi.

Our objective now is to find expressions for the mean
values and variances in (3) which are valid for NUM -
PAM constellations. In Table I, we present the valuesδk and
(xi − ρk) as a function of the constellation distancesdk.
In this table, and for a given bit position, we only consider
transmission of those symbols that correspond to a bit “1”1.

1This is simply because the computation the UB requires considering
sequences of either ones or zeros.



Moreover, we present only the symbols in the constellation
that yield a different mean value. This is because of the
symmetry of the BRGC, and for a given bit position, there
can be different symbols labeled with a bit “1” which have
identical mean.

From Table I, it is possible to infer that for a givenk,
there areMk , M/2k different values of(xi − ρk). From
the definition of the mean value in (3), and sinceδk does not
depend on the transmitted symbol, there will be a total ofMk

mean values. From the evolution of(xi−ρk) andδk in Table I
in terms of the distancesdk, and using (3), we can write a
generic closed-form expression for mean values and variances
of the Gaussian functions for NUM -PAM constellations as

µk,j = 4γ

[

dk −
m

∑

i=k+1

di

][

dk +
m

∑

i=k+1

(−1)1+bi(j−1,m−k)di

]

(4)

σ2
k = 8γ

[

dk −
m

∑

i=k+1

di

]2

, (5)

wherej = 1, 2, . . . , Mk andk = 1, 2, . . . , m.

B. Equivalent Channel Model

Using the GA results presented in the above section, it is
possible to build an equivalent model for theM2-QAM BICM
channel as done in [4]. In this model each bituk after the
MUX can be seen as being sent over avirtual channel whose
output L-valueUk has a distribution that depends onk and the
symbol sent. In [4], because of uniform distance between the
constellation symbols, the variances for all bit positionswere
same and only the mean values were dependent on transmitted
symbols. On the other hand, for NU transmission, the variance
depends on the bit positionk whereas the mean depends
on both bit position as well as the sent symbol. Therefore,
in case of NU constellation-based BICM transmission, the
virtual channel representation is quite different than uniform
constellation-based transmission. Specifically, insteadof one
index as used in [4], we use two indexes: one index isk for
bit position and the other index isj that depends on the symbol
out ofMk possible symbols. Using these notations, all possible
virtual channels can be denoted byΘk,j with k = 1, 2, . . . , m
and j = 1, 2, . . . , Mk. There will be a total ofT = 2m − 1
virtual channels whose mean and variances are given by (4)
and (5).

The probability that a given bit frompth encoder output
is transmitted through virtual channelΘk,j , ξp,k,j depends
on the probability of assigningpth encoder output tokth bit
position i.e.,κp,k and the probability of sending symbol from
the constellations.ξp,k,j corresponds to the product of these
two probabilities and for equiprobable symbol transmission, it
can be written asξp,k,j =

κp,k

Mk
.

For illustration purpose, the equivalent BICM channel for
kth bit position with equiprobable symbol transmission is
shown in Fig. 4. Oncepth encoder output is assigned tokth
bit position with probabilityκp,k, the bit sequencecp|k is
passed through one of theMk channels with probability1/Mk.

BICM Channel for kth bit position

1
Mk

1
Mk

1
Mk

cp|k Lp|k

ξp,k,1

ξp,k,2

ξp,k,Mk

Θk,1

Θk,2

Θk,Mk

...

Figure 4. Equivalent channel model for thekth bit position of the “BICM
channel” in Fig. 1.

Therefore, the PDF of L-value given that thepth output bit is
transmitted in thekth bit positionLp|k, is summation of all
possibleMk Gaussian function weighted by the corresponding
probability ξp,k,j . With this defined probability and virtual
channel model, thepth output Lp ∈ R of this channel is
associated with thepth binary inputcp, whereLp is a Gaussian
mixture with density given by

fLp
(λ) =

m
∑

k=1

Mk
∑

j=1

ξp,k,jΦ(λ; µk,j , σ
2
k), (6)

whereΦ(λ; µ, σ2) = 1√
2πσ2

exp− (λ−µ)2

2σ2 .

IV. PERFORMANCEANALYSIS

Using the generalized weight distribution spectrum (GWDS)
of the code, the union bound (UB) on the BER for a BICM
system using a linear code is given by [4]

BER ≤ UB =

∞
∑

l=wfree

∑

w∈Wn(l)

β(w)PEP(w), (7)

where wfree is the free distance of the code,β(w) is the
GWDS of the code,PEP(w) is the pairwise error probability
which represents the probability of detecting a codeword
with generalized weightw instead of the transmitted all-one
codeword. We also define the setWi(l) as all the combinations
of i nonnegative integers whose sum equalsl, i.e., Wi(l) ,

{(w1, . . . , wi) ∈ (Z+)i : w1 + . . . + wi = l}.
To calculate the PEP we need to calculate the probability

that the decoder selects a codeword with generalized weight
w instead of the transmitted all-one codeword. To this end,
we note that the decision is made based on the sum ofw1 +
. . .+wn L-values in the divergent path. LetD be the decision
variable where

D =

w1
∑

i=1

L
(i)
1 + . . . +

wn
∑

i=1

L(i)
n =

n
∑

p=1

wp
∑

i=1

L(i)
p , (8)

i.e., a sum ofl independent random variables, where the
random variable associated with theith output is a sum of
i.i.d. Gaussian mixtures given by (6). Consequently, for a given
value ofw, the PEP can be calculated as the tail integral of
the PDF ofD.

Using the similar methodology as in [4], we can approxi-
mate the UB of BER for BICM transmission using NU-QAM



constellations as follows:

UB ≈
lmax
∑

l=wfree

∑

w∈Wn(l)

β(w)
∑

r1,...,rn

g(r1, . . . , rn)·

Q (h(r1, . . . , rn)) , (9)

g(r1, . . . , rn) =

n
∏

p=1





(

wp

rp

) m
∏

k=1

Mk
∏

j=1

ξ
rp,k,j

p,k,j



 , (10)

h(r1, . . . , rn) =

∑n
p=1

∑m
k=1

∑Mk

j=1rp,k,jµk,j
√

∑n
p=1

∑m
k=1 σ2

k

∑Mk

j=1 rp,k,j

, (11)

where µk,j and σ2
k are defined in (4) and (5),

respectively, Q(x) = 1√
2π

∫ ∞
x

e−t2/2 dt, rp =

[rp,1,1 . . . rp,1,M1 . . . rp,m,1 . . . rp,m,Mm
] ∈ WT (wp) for

p = 1, . . . , n, and the multinomial coefficients are defined as
(

wp

r

)

,
wp!

Πm
k=1Π

Mk
j=1rp,k,j

. For practical reasons, the outer sum

in the UB approximation in (10) is limited tolmax.
Analyzing the expression in (9), it is possible to see that

it is composed of three terms:β(w) which depends only on
the code,Q (h(r1, . . . , rn)) which depends only on the chan-
nel and constellations distance parameters, andg(r1, . . . , rn)
which depends on the interleaver. In the next section we show
numerical examples of a system where the interleaver and the
constellation parameters are optimized.

V. NUMERICAL RESULTS

We now present numerical examples in order to quantify
the potential gains when NU-QAM constellations are used. In
particular, we analyze the simplest case wheren = m = 2,
i.e., a NU 4-PAM constellation and a rate-1/2 convolutionally-
encoded or turbo-encoded BICM system. Moreover, we con-
sider two multiplexing matrices:K′ = I2 (I2 being the
identity matrix), andK′′ which is simplyK

′ with its columns
permuted. These two interleaver designs correspond then to
Zehavi’s design [1, Fig. 7] where all the bits from the same
encoder’s output are assigned to the same modulator’s input
(the first encoder output is assigned to the first bit positionfor
K

′, and vice-versa forK′′).
For the convolutional code (CC), we use rateR = 1/2

optimum distance spectrum (ODS) convolutional codes with
constraint lengthK = 3, 4, 5 [18]. The decoding is based on
the soft-input Viterbi algorithm without memory truncation,
and the block length used for simulation is10.000 information
bits. The turbo code (TC) we use for simulation is formed
by a parallel concatenation of two recursive systematic con-
volutional encoders of rate 1/2 with polynomial generators
(1, 5/7)8. Alternate puncturing of the parity bits yieldR =
1/2. The block length is1.000 information bits. The decoder
perform 20 iterations and uses the MaxLogMAP algorithm
with a scaling factor of0.7 applied the extrinsic information.

We first investigate the behavior of the UB approximation
given by (9) for a given SNR and different codes withlmax =
100. For this particular case (n = m = 2) there is only one
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Figure 5. UB using (9) (lines) for different values ofα1, different interleaver
designs, different ODS convolutional codes (K = 3, 4, 5), and γ = 9 dB.
The results obtained by numerical simulations are shown with markers. The
thick lines are the analytical UB for TC for interleaver designs andγ = 6 dB

constellation priority parameter, i.e.,α1 = d1/d2. Note that
three values ofα1 are of particular interest. Ifα1 = 2 the
uniform 4-PAM constellation is obtained. Ifα1 = 1 a three-
point constellation where the two constellation pointsx1 and
x2 are located at zero is obtained. Ifα1 → ∞ the NU 4-PAM
constellation becomes a 2-PAM constellation (x0 = x1 = −1
andx2 = x3 = 1). The results obtained for different values of
α1 are shown in Fig. 5 for CCs and the TC and also for both
interleaver designs. If we analyze the results for the CCs and
α1 = 2, we can see that there is a performance gain that can be
obtained solely by changing the interleaver, which has already
been shown in [4]. If the value ofα1 is modified, additional
gains can be obtained. Thus, in general, one could choose the
optimumK (denoted byK∗) and the optimumα1 (denoted by
α∗

1) simply by minimizing the UB. From this figure it is clear
that the optimum pair(K∗, α∗

1) depends on the code. For the
TC similar conclusions can be drawn.

In general the optimization ofα1 and K can be done for
each SNR, however, and for simplicity, we have plotted the
results in Fig. 5 for two particular SNR values (γ = 9 dB for
the CC andγ = 6 dB for the TC) which result in a BER of
interest (between10−7 and10−4). The optimal(α∗

1, K
∗) ob-

tained for the four different codes in Fig. 5 are as follows. For
CCs: (α∗

1, K
∗)

∣

∣

K=3
= (6.5, K′′), (α∗

1, K
∗)

∣

∣

K=4
= (6.5, K′),

and (α∗
1, K

∗)
∣

∣

K=5
= (2.75, K′′), and for the TC(α∗

1, K
∗) =

(2.75, K′′).
In Fig. 6 we present the BER obtained using (α∗

1, K
∗) for

CCs withK = 3 andK = 5, and we compare them against a
scheme where only the interleaver is optimized, i.e.,α1 ≡ 2.
This figure confirms that a joint optimization of the interleaver
and the constellation outperforms the system where only the
interleaver is optimized. It also confirms the tightness of the
UB approximation. Note that even if the optimization was
performed forγ = 9 dB, the performance improved for any
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BER below10−3. Particularly, for a BER target of10−7, the
joint optimization results in gains of up to 1 dB (forK = 3).

Finally, in Fig. 7 we present the BER obtained using the
optimized system for the TC. From this figure it is clear that
the use of NU 4-PAM lowers the error floor of the TC, and that
the UB developed in Sec. IV perfectly predicts the error floor
of the code. In order to illustrate the fact that the use of NU
constellations must be combined with the interleaver design,
we show the results for the TC usingK

′ andα∗
1 = 2.75 (which

is optimal for K
′′). These results are even worse than those

obtained with a uniform 4-PAM case (α1 = 2) and arbitrary
interleaverK′ or K

′′.

VI. CONCLUSIONS

In this paper we studied UEP for BICM transmission using
NU-QAM constellations. We developed closed-form expres-
sions for the PDF of the L-values for NU constellations, and
we used those for computing union bounds. We then used our
model to improve the design of BICM transmissions obtaining
gains for both convolutionally and turbo encoded BICM.
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